
International Journal of Innovative
Computing, Information and Control ICIC International c⃝2018 ISSN 1349-4198
Volume 14, Number 3, June 2018 pp. 1057–1077

LOCATION SENSITIVE MULTI-TASK ORIENTED SERVICE
COMPOSITION FOR CYBER PHYSICAL SYSTEMS

Yuan Sun, Xingshe Zhou and Gang Yang

School of Computer Science and Engineering
Northwestern Polytechnical University

No. 127, West Youyi Road, Beilin District, Xi’an 710072, P. R. China
sunyuan@mail.nwpu.edu.cn; { zhouxs; yeungg }@nwpu.edu.cn

Received August 2017; revised December 2017

Abstract. As a core technology to enable service-based cyber physical systems (CPSs),
CPS service composition has received a lot of attention from researchers. However, ex-
isting studies on it mostly aim to solve single task oriented CPS service composition
problem, and the multi-tasking requirements of CPSs are not considered. In fact, there
are quite a few situations where multiple tasks need to be completed as soon as possible,
such as smart emergency response, and smart manufacturing. In addition, locations have
much influence on the execution time of CPS services because before CPS services begin
to work for tasks, the required physical entities must move or be transported to the prede-
fined locations. In this paper we investigate the CPS service composition problem in which
these two characteristics are both considered. To address it, we not only need to select
appropriate CPS services for each task, but also need to arrange the invocation sequence
for each selected CPS service. The final goal is to find a service selection and invoca-
tion scheme that can optimize the makespan as much as possible. A heuristic approach
based on an improved quantum genetic algorithm is designed to handle it. Experimental
results show that the proposed method can find the superior schemes. Compared with the
schemes given by other methods, our schemes can achieve lower makespan under various
situations, such as different number of CPS services and tasks, and different types of
spatial distribution.
Keywords: Cyber physical systems (CPSs), Service composition, Quantum genetic al-
gorithm, Location sensitivity, Multiple tasks

1. Introduction. Recent years have witnessed rapid development and continuous inte-
gration of such technologies as embedded computing, wireless sensor network and net-
worked control. These progresses make a large number of physical entities integrated into
the cyber world, thus leading to the emergence of cyber physical systems (CPSs) [1, 2, 3].
The representative CPS application scenarios include smart emergency response, swarms
of UAVs (unmanned aerial vehicles), and smart manufacturing.

In CPSs, the cyber world and the physical world are tightly integrated [4, 5]. Physi-
cal entities (PEs), e.g., sensors, actuators, robots, and drones, and cyber entities (CEs),
e.g., software modules for analysis, control and decision making, mutually collaborate to
conduct sophisticated operations [4]. The events in the physical world are first reflected
in the cyber world, where they are used to make control decisions that are returned to
the physical world to adjust physical processes [5]. Moreover, in order to enhance this
collaboration, in recently emerging cloud-based CPSs [6, 7, 8], expensive computational
operations can even be performed on clouds. This tight integration makes researchers
realize that treating cyber entities and physical entities as very separate concepts is inef-
fective to manage and leverage them. As a sequence, service computing technologies have
been gradually applied in CPSs [9, 10, 11, 12, 13].

1057

1058 Y. SUN, X. ZHOU AND G. YANG

In service-based CPSs, a set of CEs and PEs that closely work together are abstracted
into a CPS service. CPS services are treated as basic structural units of application tasks
that arise now or may arise in the future. A core technology to enable service-based CPSs
is CPS service composition, which can compose a number of CPS services to complete
application tasks.
There have been many studies on CPS service composition [14, 15, 16, 17]. Although

these works are well done, unfortunately, they are mostly single task oriented, and the
multi-tasking requirements of CPSs are not considered. The multi-tasking requirements
are closely related to the exclusivity of CPS services. In general, a CPS service can only
work for one task at a time, because a CPS service is integrated with operations of one
or more physical entities, and a physical entity can usually perform only one operation
at a time. If there are multiple tasks that need to be completed as soon as possible, CPS
service composition will be very different from traditional service composition. For CPS
service composition, the service selection conflicts might happen because one CPS service
might be selected to work for more than one task. Nevertheless, it is not the same case for
traditional service composition, because software services, especially the ones deployed on
clouds, are designed to handle concurrent invocations at a very short time [18].
In addition, the location sensitivity of CPS services also needs to be considered. In

existing works [12, 14, 16, 17], locations are mostly treated as preconditions or effects of
CPS services. Actually, the location sensitivity of CPS services is also embodied in other
respects. On the one hand, because tasks in CPSs are often location dependent, before
CPS services are really executed to work for tasks, the required PEs need to move to the
designated locations. In this sense, the execution time of a CPS service usually includes
two parts: the moving time, during which the required PE moves to the designated
location, and the operating time, during which the CPS service is really executed. On
the other hand, under certain circumstances, the PEs required by some CPS services are
incapable of moving or do not have enough energy for moving. At this point, these CPS
services must employ other CPS services (called transportation services) to transport their
PEs.
In this paper, we focus on the location sensitive multi-task oriented CPS service com-

position (LMSC) problem. To illustrate the LMSC problem, we introduce a motivation
example, a smart emergency response scenario where two valuable objects (at locations
A and B, respectively) in a disaster site are required to be transfered to a safe place (de-
noted by S) quickly (see Figure 1). We assume that the environment in the disaster site,
such as the positions of the objects, obstacles and fires, are well known, and according

Figure 1. A simple smart emergency response scenario where two valuable
objects are required to be transfered to a safe place quickly (PF – Putting
out fires. RO – Removing obstacles. TO – Transporting objects.)

LOCATION SENSITIVE MULTI-TASK ORIENTED SERVICE COMPOSITION 1059

to this information, the operating steps of the two transferring tasks (denoted by tasks
1 and 2, respectively) can be obtained. There are four CPS services, each of which can
only accomplish one operating step, e.g., putting out fires, removing obstacles, and trans-
porting objects. Both the first and second CPS services require a mobile robot, and the
robot used by the first CPS service does not have enough energy for moving. The last
two CPS services are transportation services, and each of them uses a claw-handed drone
to transport objects.

To address it, we need to find five CPS services to accomplish the total five subtasks.
However, there are only four CPS services available, so it is inevitable that certain CPS
service will be selected to work for more than one subtask. If the first CPS service is
selected, a transportation service is required to help it, because the robot used by the
first CPS service does not have enough energy for moving.

In general, three sub-problems must be solved simultaneously to deal with the LM-
SC problem: (1) selecting a set of CPS services for each task, (2) selecting appropriate
transportation services for some CPS services, and (3) resolving possible service selection
conflicts. The second sub-problem comes from the location sensitivity of CPS services.
The last sub-problem originates from the multi-tasking requirements. To resolve the pos-
sible conflicts, we need to arrange the invocation sequence for each selected CPS service.
The final goal is to find a service selection and invocation scheme that can optimize the
makespan (the time for completing all tasks) as much as possible. The contributions of
this paper are summarized as follows.

1) To the best of our knowledge, it is the first time that the multi-tasking requirements
and the location sensitivity of CPS services are simultaneously considered in CPS service
composition.

2) We formulate the location sensitive multi-task oriented CPS service composition
problem in theory by a mixed integer programming model.

3) A heuristic approach based on an improved quantum genetic algorithm (called SSI-
IQGA) is presented to deal with the LMSC problem. Compared to the basic quantum
genetic algorithm, the improvements such as dynamic rotation angle mechanism, quantum
variation and quantum crossover are integrated into SSI-IQGA to enhance the searching
performance of the algorithm.

4) Simulations are conducted to evaluate the performance of the proposed method.
The results indicate that the proposed method outperforms other methods under different
situations.

The rest of this paper is organized as follows. Section 2 presents the related work. Sec-
tion 3 provides the problem definition. Section 4 details the proposed heuristic approach
based on an improved quantum genetic algorithm. Section 5 evaluates the performance
of the proposed algorithm. Section 6 draws the conclusion and discusses the future work
of this paper.

2. Related Work. In general, before CPS service composition is conducted, an appro-
priate service model is usually required to accurately describe CPS services.

CPS service description refers to defining functional and non-functional properties of
CPS services. Huang et al. [19] first extended the web ontology language for services
(OWL-S) [20] to construct a context-sensitive resource-explicit service model. In the
model, the concept of service provision constraints is proposed to define the relationships
between the CPS services provided a PE. Subsequently, Huang et al. [14] proposed two
new concepts, namely context precondition and context effect, to describe the special
types of constraints that are related to the context of PEs. In [12], these two concepts are
reserved. Besides them, Zhu et al. proposed a concept called “AppliedTo”. It is used to

1060 Y. SUN, X. ZHOU AND G. YANG

express the fact that after the execution of a CPS service, the context of some PE may
change. Jin et al. [21] proposed a service model that can define time and space related
characteristics. Wan et al. [22] presented a resource-centric CPS service model in which
a resource description template is employed to model PEs.
CPS service composition is utilized to compose a number of CPS services to complete

application tasks. Huang et al. [14] proposed an iterative AI planning based service com-
position approach. An AI planning step consists of two stages: abstract composition and
physical composition. In abstract composition, services are selected according to their
functionalities and context related constraints are omitted. In physical composition, con-
crete services are selected by considering context information. Yen et al. [15] proposed
automated service composition reasoning techniques to handle dynamically arising situa-
tions. They consider that the specification of the current and desired states of the physical
world is important to successful service composition reasoning. A model for the states of
the physical world was also presented by them. Mohammed et al. [23] investigated the
service composition problem under uncertainty in CPSs. They proposed the Markov task
network, which can utilize the advantages of both hierarchical task network and Markov
logic network to accomplish the service composition under uncertainty. Wang et al. [17]
proposed a static service composition mechanism that exploits the workflow business logic
model to build an abstract process graph of the task. In the situations where the task
needs to be verified before it is executed, the service composition is often conducted in
design time. In this composition approach, Petri net is often employed to model CPS
services [9].

3. Problem Definition.
1) CPS service model: We let S denote a set of M CPS services in the system:

S = {Sm|m = 1, 2, . . . ,M}. The m-th CPS service, Sm, is associated with a 4-tuple:
< Fm, Tm, Am, Pm >, where Fm denotes the functional ability of Sm, which includes
functional category, e.g., removing obstacles, transporting objects, and functional prop-
erties, e.g., weight limit, and size limit, Tm denotes the operating time of Sm, Am denotes
whether Sm needs a transportation service, and Pm denotes the PE that Sm needs. The
set of all the transportation services in S is denoted as SR. P denotes the set of H PEs:
P = {Ph|h = 1, 2, . . . , H}, where Ph is the h-th PE.
2) Task model: We let T denote a set of N tasks in the system: T = {Tn|n =

1, 2, . . . , N}. The n-th task, Tn, consists of a sequence of Kn subtasks: Tn = {Tn,k|k =
1, 2, . . . , Kn}. Tn,k means the k-th subtask of the n-th task, and is associated with a
4-tuple: < Fn,k, B

l
n,k, E

l
n,k,Sn,k >. Fn,k denotes the functional requirement of Tn,k, which

has the same definition as the functional ability of a CPS service. Bl
n,k and El

n,k denote
the begin and end locations of the subtask Tn,k, respectively. Sn,k denotes a set of CPS
services that can accomplish Tn,k. By comparing Fn,k with the functional abilities of all
the CPS services, Sn,k can be obtained before runtime.
3) Hypotheses: Hypotheses considered in this paper are summarized as follows: (1) the

attributes of CPS services, e.g., functional properties, and operating time, are all known
beforehand, and do not change at runtime; (2) a CPS service can only work for one task
at a time; (3) when a CPS service is invoked to work for a task, it cannot be interrupted;
(4) tasks and their locations are all known beforehand; (5) CPS services clearly know how
to move their PEs between task locations, and the moving distances do not change at
runtime; (6) a PE can only be used by one CPS service at a time; (7) the working area
is relatively large, and PEs, such as robots, and drones, can autonomously avoid path
conflicts between them.

LOCATION SENSITIVE MULTI-TASK ORIENTED SERVICE COMPOSITION 1061

4) Problem formulation: In this paper, we aim to find a service selection and invocation
scheme that can optimize the makespan (the time for completing all tasks) as much as
possible. We denote the makespan as Z. The problem can be formulated into the mixed
integer programming as follows:

minZ (1)

subject to: Z ≥ Bt
n,k + Tn,k, n = 1, 2, . . . , N, k = 1, 2, . . . , Kn (2)∑

1≤m≤M
Xm,n,k ∗ r(m,n, k) = 1, n = 1, 2, . . . , N, k = 1, 2, . . . , Kn (3)∑

1≤m≤M
Ym,n,k ∗ r(m,n, k) = As(n,k), n = 1, 2, . . . , N, k = 1, 2, . . . , Kn (4)∑

1≤x≤N,1≤a≤Kx,x ̸=y∧a ̸=b

(
U s,s
Ps(y,b),x,a,y,b

+ U r,s
Ps(y,b),x,a,y,b

)
+WPs(y,b),y,b = Xm,y,b,

y = 1, 2, . . . , N, b = 1, 2, . . . , Ky, m = 1, 2, . . . ,M (5)∑
1≤x≤N,1≤a≤Kx,x ̸=y∧a ̸=b

(
U s,r
Psr(y,b),x,a,y,b

+ U r,r
Psr(y,b),x,a,y,b

)
+W r

Psr(y,b),y,b
= Ym,y,b,

y = 1, 2, . . . , N, b = 1, 2, . . . , Ky, m = 1, 2, . . . ,M (6)∑
1≤y≤N,1≤b≤Ky ,y ̸=x∧b̸=a

(
U s,s
Ps(x,a),x,a,y,b

+ U s,r
Ps(x,a),x,a,y,b

)
+ VPs(x,a),x,a = Xm,x,a,

x = 1, 2, . . . , N, a = 1, 2, . . . , Kx, m = 1, 2, . . . ,M (7)∑
1≤y≤N,1≤b≤Ky ,y ̸=x∧b̸=a

(
U r,s
Ps(x,a),x,a,y,b

+ U r,r
Ps(x,a),x,a,y,b

)
+ V r

Psr(x,a),x,a
= Ym,x,a,

x = 1, 2, . . . , N, a = 1, 2, . . . , Kx, m = 1, 2, . . . ,M (8)

Bt
y,b −Bt

x,a +D ∗
(
1− U s,s

h,x,a,y,b

)
>= Tx,a + δ

(
El

x,a, B
l
y,b

)
,

x, y = 1, 2, . . . , N, a = 1, 2, . . . , Kx, b = 1, 2, . . . , Ky, h = 1, 2, . . . , H (9)

Bt,r
y,b −Bt

x,a +D ∗
(
1− U s,r

h,x,a,y,b

)
>= Tx,a + δ

(
El

x,a, p(y, b)
)
,

x, y = 1, 2, . . . , N, a = 1, 2, . . . , Kx, b = 1, 2, . . . , Ky, h = 1, 2, . . . , H (10)

Bt
y,b −Bt,r

x,a +D ∗
(
1− U r,s

h,x,a,y,b

)
>= T r

x,a + δ
(
Bl

x,a, B
l
y,b

)
,

x, y = 1, 2, . . . , N, a = 1, 2, . . . , Kx, b = 1, 2, . . . , Ky, h = 1, 2, . . . , H (11)

Bt,r
y,b −Bt,r

x,a +D ∗
(
1− U r,r

h,x,a,y,b

)
>= T r

x,a + δ
(
Bl

x,a, p(y, b)
)
,

x, y = 1, 2, . . . , N, a = 1, 2, . . . , Kx, b = 1, 2, . . . , Ky, h = 1, 2, . . . , H (12)

Bt
n,(k+1) −Bt

n,k >= Tn,k, n = 1, 2, . . . , N, k = 1, 2, . . . , Kn − 1 (13)

Bt
n,k −Bt,r

n,k >= T r
n,k, n = 1, 2, . . . , N, k = 1, 2, . . . , Kn (14)∑

1≤n≤N,1≤k≤Kn

(
Vh,n,k + V r

h,n,k

)
<= 1, h = 1, 2, . . . , H (15)∑

1≤n≤N,1≤k≤Kn

(
Wh,n,k +W r

h,n,k

)
<= 1, h = 1, 2, . . . , H (16)

Bt,r
n,k ∗ (1− As(n,k)) = 0, n = 1, 2, . . . , N, k = 1, 2, . . . , Kn (17)

0 ≤ Bt
n,k ≤ +∞, 0 ≤ Bt,r

n,k ≤ +∞, n = 1, 2, . . . , N, k = 1, 2, . . . , Kn (18)

Xm,n,k ∈ {0, 1}, Ym,n,k ∈ {0, 1}, n = 1, 2, . . . , N, k = 1, 2, . . . , Kn, m = 1, 2, . . . ,M (19)

U s,s
h,x,a,y,b ∈ {0, 1}, U r,s

h,x,a,y,b ∈ {0, 1}, U s,r
h,x,a,y,b ∈ {0, 1}, U r,r

h,x,a,y,b ∈ {0, 1},
x, y = 1, 2, . . . , N, a = 1, 2, . . . , Kx, b = 1, 2, . . . , Ky, h = 1, 2, . . . , H (20)

Vh,n,k ∈ {0, 1}, V r
h,n,k ∈ {0, 1}, Wh,n,k ∈ {0, 1}, W r

h,n,k ∈ {0, 1},

1062 Y. SUN, X. ZHOU AND G. YANG

n = 1, 2, . . . , N, k = 1, 2, . . . , Kn (21)

The decision variables include Bt
n,k, B

t,r
n,k, Xm,n,k, Ym,n,k, U

s,s
h,x,a,y,b, U

r,s
h,x,a,y,b, U

s,r
h,x,a,y,b,

U r,r
h,x,a,y,b, Vh,n,k, V

r
h,n,k, Wh,n,k and W r

h,n,k. We let T r
n,k denote the transportation subtask

that helps accomplish Tn,k. B
t
n,k and Bt,r

n,k are the non-negative continuous variables that
indicate the begin time of Tn,k and T r

n,k respectively. The other ten are binary variables.
Xm,n,k = 1 if CPS service Sm is selected to work for Tn,k, and Ym,n,k = 1 if transportation
service Sm is selected to help accomplish Tn,k. U s,s

h,x,a,y,b, U
r,s
h,x,a,y,b, U

s,r
h,x,a,y,b and U r,r

h,x,a,y,b

define the order in which two selected CPS services use Ph. For example, U r
h,x,a,y,b = 1

if Ph is used by the transportation service selected to help accomplish Tx,a before it is
used by the CPS service selected to accomplish Ty,b, otherwise 0. Vh,n,k = 1 if the CPS
service selected to work for Tn,k is the last one to use Ph, otherwise 0. V r

h,n,k = 1 if the
transportation service selected to help accomplish Tn,k is the last one to use Ph, otherwise
0. Wh,n,k = 1 if the CPS service selected to work for Tn,k is the first one to use Ph,
otherwise 0. W r

h,n,k = 1 if the transportation service selected to help accomplish Tn,k is
the first one to use Ph, otherwise 0. It is worth noticing that the invocation sequence for
each selected CPS service can be determined using subtask execution sequences, because
subtasks are finally accomplished by CPS services.
The other symbols used are listed in Table 1. From constraint (2), we can see that

the optimization objective, minimizing Z, is equivalent to making Z the upper bound for
the end times of all subtasks. Constraint (3) ensures that for each subtask, exactly one
CPS service is selected to work for it. Constraint (4) guarantees that if a selected CPS
service needs a transportation service, exactly one transportation service is selected to

Table 1. Some symbols used in the paper

Symbol Meaning

Bl
n,k the begin location of Tn,k

El
n,k the end location of Tn,k

T r
n,k the transportation subtask that helps accomplish Tn,k

Bt
n,k the begin time of Tn,k

Bt,r
n,k the begin time of T r

n,k

Et
n,k the end time of Tn,k. E

t
n,k = Bt

n,k + Tn,k

r(m,n, k) r(m,n, k) = 1 if Sm belongs to Sn,k (the candidate service set of Tn,k),
otherwise 0

Tn,k the operating time of the CPS service that is selected to accomplish Tn,k.
Tn,k =

∑
1≤m≤M Xm,n,k ∗ Tm ∗ r(m,n, k)

T r
n,k the operating time of the CPS service that is selected to accomplish T r

n,k.
T r
n,k =

∑
1≤m≤M Ym,n,k ∗ Tm ∗ r(m,n, k)

s(n, k) the CPS service selected to work for Tn,k. s(n, k) =
∑

1≤m≤M Xm,n,k ∗m
sr(n, k) the transportation selected to help accomplish Tn,k.

sr(n, k) =
∑

1≤m≤M Ym,n,k ∗m
p(n, k) the end location of the subtask that uses PPs(n,k)

before Tn,k.

p(n, k) =
∑

1≤x≤N,1≤a≤Kx,x ̸=n∧a ̸=k

(
U s,s
Ps(n,k),x,a,n,k

∗ El
x,a

)
δ(l1, l2) the moving time from the location l1 to the location l2
[p, q] the time interval that begins at p and ends at q

LOCATION SENSITIVE MULTI-TASK ORIENTED SERVICE COMPOSITION 1063

help it; if otherwise, no transportation service is selected. Constraints (5)-(8) ensure that
all selected CPS services that are not the first or last one to use PEs have predecessors
or successors respectively. Constraints (9)-(12) enforce that there is enough time for CPS
services to accomplish subtasks and move (or transport) PEs between task locations.
Constraint (13) guarantees that for each task, its subtasks are accomplished in sequence.
Constraint (14) enforces that before a selected CPS service begins to be executed, the
required PE must be transported to the task location. In constraints (9)-(12) D is a large
positive value that helps formulate mixed integer programming constraints.

It is easily seen that solving the complicated mixed integer programming is a nontrivial
task. Therefore, we turn to heuristic approaches in the sequel.

4. Proposed Approach Based on the Improved Quantum Genetic Algorithm.
Quantum genetic algorithm (QGA) [24, 25] has been proved to be an effective algorithm
for the complicated optimization problems such as task scheduling [26], and job shop
scheduling [27, 28]. Compared to classic evolutionary algorithms, QGA can maintain
better population diversity with smaller population size by introducing the basic ideas
behind quantum computing, such as quantum bits, and superposition states. Thus, Q-
GA can achieve superior results in a relatively low computation cost. Inspired by these
superiorities of QGA, we propose to utilize QGA to design a heuristic approach.

The proposed heuristic approach is based on the improved quantum genetic algorithm
for service selection and invocation (called SSI-IQGA). The improvements of SSI-IQGA
to the basic QGA include dynamic rotation angle mechanism, quantum variation and
quantum crossover.

The workflow of SSI-IQGA is depicted in Figure 2. The input data of SSI-IQGA
includes CPS services, tasks, environmental information (e.g., task locations and moving

Figure 2. The workflow of SSI-IQGA

1064 Y. SUN, X. ZHOU AND G. YANG

paths between them). The population of SSI-IQGA is initialized at the beginning of
the algorithm. In each evolution iteration, the population is first evolved by quantum
rotation gates. Afterwards, every chromosome in the population is measured and a set of
feasible solutions is obtained. Then, the quality of each feasible solution is evaluated by
calculating its fitness. Next, the best solution is updated based on the fitness values. At
last, to increase the probability of SSI-IQGA to escape from local optimality, quantum
variation and quantum crossover is conducted in some evolution iterations. The algorithm
terminates when the maximum evolution iteration number is achieved. The output is the
service selection and invocation scheme obtained from the best solution of SSI-IQGA.
In the subsequent subsections, we first introduce the basic QGA, and then detail the

main steps of SSI-IQGA. At last, we discuss the implementation of SSI-IQGA.

4.1. Introduction to QGA. Quantum bit (qubit) and quantum superposition state are
the basic concepts of QGA. A qubit is represented by a superposition of two basis states
|0⟩ and |1⟩: |q⟩ = α|0⟩+β|1⟩, α2+β2 = 1, where α and β are complex numbers, denoting
the probability amplitudes of the basis states.
The fundamental difference between QGA and the traditional genetic algorithm (GA)

is that in QGA each chromosome in the population is made up of multiple qubits. For
example, a chromosome ψ containing L qubits can be described by

q1 q2 . . . qL

ψ =

[
α1 α2 . . . αL

β1 β2 . . . βL

]
,

(22)

where αj and βj are the probability amplitudes of qubit qj (j = 1, 2, . . . , L). In general,
after the measurement of a chromosome, each qubit of the chromosome will collapse into
a certain state (|0⟩ or |1⟩), and a feasible solution will be obtained finally. However,
we cannot determine which certain state a qubit will collapse into, so a chromosome in
QGA can correspond to different feasible solutions. It makes QGA have better population
diversity than GA.

4.2. Solution representation. In our SSI-IQGA algorithm, the qubits of a chromosome
fall into three parts: CPS service selection part, transportation service selection part and
subtask sequence part. The qubits in the first part indicate the CPS services that are
selected to work for the subtasks. Since one qubit can only collapse into one of two
certain states (|0⟩ or |1⟩), if a subtask has more than two candidate services, more than
one qubit are required to represent the selected CPS service. In general, if a subtask has
n candidate services, the number of qubits required can be calculated as ⌈log2(n)⌉, where
⌈x⌉ = min{z|z ≥ x, z ∈ Z+}. The qubits in the second part indicate the transportation
services that are selected to help the selected CPS services. It has the same representation
manner as the first part. In the second part, if a selected CPS service does not need a
transportation service, one qubit is still required, but the state of the qubit is meaningless
in the decoding procedure.
The qubits in the last part indicate the execution sequence of the subtasks from different

tasks. Because only binary numbers can be directly represented in QGA, a converting
mechanism is required to represent the subtask sequence. Assume that the total number
of subtasks is D, and each subtask is assigned with a one-dimensional index ranging from
0 to D − 1. The total number of qubits required in the last part is ⌈log2(D)⌉ ∗D, where
⌈x⌉ = min{z|z ≥ x, z ∈ Z+}, and each ⌈log2(D)⌉ qubit corresponds to a subtask. After
the measurement of the chromosome, the qubits in the last part will form a binary string
of length ⌈log2(D)⌉∗D. The converting mechanism works as follows. First, each ⌈log2(D)⌉

LOCATION SENSITIVE MULTI-TASK ORIENTED SERVICE COMPOSITION 1065

bit of the binary string is converted into a decimal number. In this way, a decimal string
of length D is obtained, and every decimal number in it also corresponds to a subtask.
Afterwards, the subtasks are sorted in the ascending order according to these decimal
numbers. If two subtasks have the same decimal number, we let the subtask with smaller
index in front of the other one. At last, for each task, its subtasks exchange their positions
with each other to ensure that they are accomplished in sequence.

For the example in Figure 1, Table 2 lists the tasks and CPS services, and a possible
solution to it is shown in Figure 3. Because in the example problem each subtask has
two candidate services at most, each qubit in the first (second) part corresponds to a
selected CPS service (transportation service). The third qubits in the first and second
parts collapse into |0⟩ and |1⟩ respectively. It means that S1 (the 0-th candidate service
of T2,1) and S4 (the 1st candidate transportation service) are selected to accomplish T2,1.
Each three qubits in the last part correspond to a subtask. The subtask sequence can be
determined by first sorting the subtasks in the ascending order according to the decimal
numbers converted from the formed binary string. After that, for each task the positions
of its subtasks are exchanged to ensure that these subtasks are accomplished in sequence.

Table 2. The tasks and CPS services in the motivation example. S3 and
S4 are transportation services, and they are also the candidate services of
both T1,2 and T2,3. T1,1, T2,1 and T2,2 all have only one candidate service.
Each subtask is assigned with a one-dimensional index ranging from 0 to 4.

Tasks Subtasks
Candidate services
S1 S2 S3 S4

T1(Task 1)
T1,1(RO)(0)

√

T1,2(TO)(1)
√ √

T2(Task 2)
T2,1(PF)(2)

√

T2,2(RO)(3)
√

T2,3(TO)(4)
√ √

S2

CPS service Transportation
Subtask sequenceselection service selection

0 1 0 0 0 0 1 1 0 1 4 1 0 7 4
T1,1T1,2T2,1T2,2T2,3 T1,1T1,2T2,1T2,2T2,3 T1,1 T1,2 T2,1 T2,3

S3S2S1S4
- S4

- - -

0 1 0 0 0 0 1 1 0 1 100 001 000 111 100Binary
Decimal

T2,1 T1,2 T1,1 T2,3 T2,2

T2,2

T2,1 T1,1 T1,2 T2,2 T2,3

Figure 3. A possible solution to the example problem

4.3. Initialization of SSI-IQGA. We denote the population size as G and the num-
ber of qubits required by each chromosome as L. Denote the population after the

t-th evolution iteration as Ψ [t] =
{
ψ

[t]
1 , ψ

[t]
2 , . . . , ψ

[t]
G

}
, where the i-th chromosome ψ

[t]
i

(i = 1, 2, . . . , G) is as described in (22). At the beginning of SSI-IQGA, every chromo-
some in the population is initialized by making the two states of each qubit appear with
the same probability. That is, we set

α
[0]
i,j = β

[0]
i,j = 1/

√
2, i = 1, 2, . . . , G, j = 1, 2, . . . , L, (23)

1066 Y. SUN, X. ZHOU AND G. YANG

and then obtain

ψ
[0]
i =

[
α
[0]
i,1 α

[0]
i,2 . . . α

[0]
i,L

β
[0]
i,1 β

[0]
i,2 . . . β

[0]
i,L

]
=

[
1/
√
2 1/

√
2 . . . 1/

√
2

1/
√
2 1/

√
2 . . . 1/

√
2

]
, i = 1, 2, . . . , G. (24)

4.4. Measurement. Since a qubit is represented by a superposition of two basic states,
the certain state of a qubit cannot be determined until we measure it. The measurement
of a chromosome is to make each qubit of the chromosome collapse into a certain state
so that a feasible solution can be obtained. The measurement can be done in two steps.
In the first step, we generate a random number ranging from 0 to 1 for each qubit of the
chromosome, and then we compare the random number with |α|2. If the random number
is less than |α|2, the qubit collapses into |0⟩, otherwise |1⟩. In this way, a binary string of
L bits is formed at the end of the first step.
In the second step, we check whether the binary string is exactly a feasible solution and

repair it if not. What causes the generation of infeasible binary strings is that decimal
numbers cannot be directly used to represent the service selection and invocation scheme,
and in the situations where decimal numbers must be used, a decimal number can only be
expressed by a group of qubits. For a subtask with five candidate services, three qubits are
required to express the selected service, assuming that each candidate service is assigned
with an index ranging from 0 to 4. However, after each of these three qubits collapses into
a certain state, we cannot ensure that the value of the formed binary string must be less
than or equal to 4. If the value is greater than 4, an infeasible binary string is generated.
In this study, an infeasible binary string is repaired by replacing each out-of-range value
with a random but reasonable value.
We denote by Υi the feasible solution obtained after the measurement of the i-th chromo-

some: Υi = {υi,1, υi,2, . . . , υi,L}. According to the solution representation manner ahead,
a service selection and invocation scheme can be obtained from each feasible solution.

4.5. Fitness calculation. The quality of a feasible solution is usually called the fitness.
For the LSMC problem, the fitness is closely related to the makespan, since the final
objective is to optimize the makespan. Owing to it, the fitness of a feasible solution is
calculated as 1.0/Z in SSI-IQGA, assuming that the makespan of the feasible solution is
denoted by Z. Then, what becomes important is how to calculate the makespan based
on a known service selection and invocation scheme.
To facilitate us to calculate the makespan, a task sequence graph (TSG) is utilized.

In a TSG, each PE is associated with an ordered subtask set (see Figure 4). Based on
the subtask sets, the service selection conflicts can be resolved, because in essence, the
service selection conficts are caused by the contentions of PEs between CPS services. The
makespan calculation is accomplished by inserting all the subtasks into the subtask sets
of the TSG one by one according to the subtask sequence. There are two basic types of
subtask insertion procedures in total. The newly introduced symbols are listed in Table
1.
1) Type 1: For a subtask Tn,k, if the selected CPS service Sm does not need a transporta-

tion service, inserting Tn,k is the simplest. We need to check all the idle time intervals of
Ph (the PE required by Sm) according to time order. If an idle time interval, [Et

y,a, B
t
x,c],

is the earliest one that can satisfy

Bt
x,c − η >= Tn,k + δ

(
El

n,k, B
l
x,c

)
, (25)

where η = max
{
Et

n,(k−1), E
t
y,a + δ

(
El

y,a, B
l
n,k

)}
, Tn,k will be inserted into this time interval

(see Figure 4). η indicates the begin time of Tn,k, and ensures that Tn,k can only begin

LOCATION SENSITIVE MULTI-TASK ORIENTED SERVICE COMPOSITION 1067

Figure 4. A subtask insertion procedure of the first type

Figure 5. A subtask insertion procedure of the second type

to be executed after Tn,(k−1) ends. After Tn,k ends, Ph must have enough time to move to
Bl

x,c before Tx,c begins. This constraint is ensured by (25).
2) Type 2: If a transportation service St is selected to help Sm, and Sm just needs a

transportation service, inserting Tn,k is much more complex. We denote the required PEs
of Sm and St as Ph and Pg, respectively. In this situation, we not only need to find an
appropriate idle time interval for Tn,k, but also need to find appropriate idle time intervals
for the transportation subtasks of Tn,k and Tx,c (see Figure 5). Therefore, inserting Tn,k can
be accomplished by two steps. In the first step, we check all the idle time intervals of Ph

and Pg according to time order. If an idle time interval set, <
[
Et

y,a, B
t
x,c

]
,
[
Et

z,a, B
t
y,b

]
>,

can satisfy

Bt
y,b − η ≥ T r

n,k + δ
(
Bl

n,k, B
l
y,b

)
, (26)

Bt
x,c − ρ ≥ Tn,k, (27)

we proceed to the second step. If not, we continue to check the next idle time interval set.

In (26) and (27), η = max
{
Et

y,a, E
t
z,a + δ

(
El

z,a, E
l
y,a

)}
, ρ = max

{
Et

n,(k−1), η + T r
n,k

}
. η

indicates the begin time of T r
n,k (the transportation subtask that helps to complete Tn,k),

and ensures that T r
n,k can only begin to be executed after Ty,a ends. ρ indicates the begin

time of Tn,k, and ensures that Tn,k can only begin to be executed after both T r
n,k and

Tn,(k−1) end.

1068 Y. SUN, X. ZHOU AND G. YANG

We denote the transportation service that is used to transport Ph for Tx,c as St′ , and the
PE used by St′ as Pf . In the second step, we need to check whether there is an idle time
interval of Pf during which St′ can transport Ph to Bl

x,c before Tx,c begins. To achieve
it, we can first remove the existing transportation subtask of Tx,c from the subtask set of
Pf , and then check all the idle time intervals of Ph and Pf according to time order. If an
idle time interval set, <

[
Et

y,a, B
t
x,c

]
,
[
Et

z,b, B
t
w,d

]
>, can satisfy

Bt
w,d − λ ≥ T r

x,c + δ
(
Bl

x,c, B
l
w,d

)
, (28)

Bt
x,c − λ ≥ T r

x,c, (29)

it means that T r
x,c (the new transportation subtask of Tx,c) can be inserted into [Et

z,b, B
t
w,d].

At this point, the idle time intervals that are fit to Tn,k and the related subtasks are found.
In (28) and (29), λ = max

{
ρ+ Tn,k, E

t
z,b + δ

(
El

z,b, E
l
n,k

)}
, it indicates the begin time of

T r
x,c, and ensures that the begin time of T r

x,c must be later than the end time of Tn,k. (29)
ensures that T r

x,c must end before Tx,c begins to be executed.
It is worth noticing that in illustrating these insertion procedures, we only consider the

cases where the idle time intervals are between two successive subtasks, and for type 2,
we only consider the cases where Pg and Pf are different PEs. As for other cases, we only
need to make several minor modifications to these procedures.

4.6. Evolution by quantum rotation gates. The population can be evolved by quan-
tum rotation gates. Based on the quantum rotation gate Ω(θi,j), the j-th qubit of the
i-th chromosome ψi can be updated as follows:[

α′
i,j

β′
i,j

]
= Ω(θi,j)

[
αi,j

βi,j

]
=

[
cos(θi,j) − sin(θi,j)
sin(θi,j) cos(θi,j)

] [
αi,j

βi,j

]
, (30)

where α′
i,j and β

′
i,j denote the probability amplitudes of the j-th qubit after update. The

rotation angle θi,j is denoted as

θi,j = s(αi,j, βi,j) ∗∆θi,j, (31)

where s(αi,j, βi,j) determines the quantum rotation direction for the j-th qubit, and ∆θi,j
determines the magnitude of the rotation angle for the j-th qubit. In our SSI-IQGA
algorithm, to reduce the impact of the quantum rotation on the algorithm convergence
rate, the rotation angle is dynamically adjusted as the population evolves. The specific
adjustment policies are listed in Table 3, where σ is a coefficient closely related to the
evolution iteration number. Specially, σ is denoted as

σ = 0.04π

(
1− 0.5 ∗ t

tmax + 1

)
, (32)

where t is the current evolution iteration number and tmax is the maximum number of
evolution iterations.

4.7. Quantum variation and quantum crossover. Quantum variation and quantum
crossover can produce new generation populations, thus increasing the probability of SSI-
IQGA to escape from local optimality. In this study, quantum variation works as follows.
First, we select a small number of chromosomes from the population with the variation
probability pv. Afterwards, for each chromosome that is selected, we pick up a random
variation position from all the qubits, and then exchange the probability amplitudes α
and β in the variation position.
Quantum crossover produces new child chromosomes by swapping the qubits of parent

chromosomes. By inheriting good qubits, child chromosomes tend to be better than
their parents. In this study, we adopt the two-point crossover [29], which is achieved

LOCATION SENSITIVE MULTI-TASK ORIENTED SERVICE COMPOSITION 1069

Table 3. Adjustment policies for the rotation angle. Υ b denotes the cur-
rent best solution, and υbj is the j-th bit of Υ b. Υi denotes the i-th feasible
solution, and υi,j is the j-th bit of Υi. F (·) means the fitness value.

υi,j υbj F (Υi) ≥ F (Υ b) ∆θi,j
s(αi,j, βi,j)

αi,jβi,j > 0 αi,jβi,j < 0 αi,j = 0 βi,j = 0
0 0 False 0 0 0 0 0
0 0 True 0 0 0 0 0
0 1 False 0 0 0 0 0
0 1 True σ −1 1 ±1 0
1 0 False σ −1 1 ±1 0
1 0 True σ 1 −1 0 ±1
1 1 False σ 1 −1 0 ±1
1 1 True σ 1 −1 0 ±1

Algorithm 1: SSI-IQGA

Input: Task set, CPS service set, Environmental information, Population size G,
Variation probability pv, Crossover probability pc, Maximum evolution
iteration number tmax

Output: Service selection and invocation scheme
1 Set the evolution iteration number t = 0;

2 Generate the initial population Ψ [0] =
{
ψ

[0]
1 , ψ

[0]
2 , . . . , ψ

[0]
G

}
;

3 Measure every chromosome in the population Ψ [t] and obtain a set of solutions

O[t] = {Υ1, Υ2, . . . , ΥG};
4 foreach Υi ∈ O[t] do
5 Calculate the fitness F (Υi);

6 Set Υ b = argmaxΥ∈O[t] F (Υ);
7 while t <= tmax do
8 Set t = t+ 1;
9 Evolve the population by quantum rotation gates;

10 Perfrom steps 3 to 5;

11 Set Υ b,c = argmaxΥ∈O[t] F (Υ);

12 if F (Υ b) < F (Υ b,c) then
13 Υ b = Υ b,c;

14 if Υ b does not change during ⌊tmax/10⌋ evolution iterations then
15 Do quantum crossover with the probability pc for Ψ [t];

16 Do quantum variation with the probability pv for Ψ [t];

17 Obtain the service selection and invocation scheme from Υ b;

by first generating two random crossover points. Afterwards, the parent chromosomes
exchange the qubits between the crossover points with each other, and then two children
chromosomes are produced.

4.8. Implementation of SSI-IQGA. Although the main steps of SSI-IQGA are de-
tailed above, there are still some points worthy of notice. Firstly, in each evolution
iteration, after all the fitness values are calculated, we need to find the best solution in

1070 Y. SUN, X. ZHOU AND G. YANG

all the solutions just obtained and check whether the best solution is better than the old
one. If it is true, the old best solution needs to be replaced with the new one. Secondly,
if the best solution does not change during ⌊tmax/10⌋ evolution iterations, we consider
that the population is very likely to be trapped into local optimality. Therefore, quantum
crossover and quantum variation need to be conducted to produce new generation popu-
lations. Thirdly, SSI-IQGA terminates when the maximum evolution iteration number is
achieved. The maximum evolution iteration number is determined by experiments, which
is detailed in Section 5.2. The pseudo code of SSI-IQGA is presented in Algorithm 1.
Fourthly, one advantage of QGA is that it can be easily transformed into a parallel

algorithm that can effectively take the advantage of current multi-core CPUs to reduce the
computation time. The basic idea behind the parallelization of the algorithm is splitting
the (global) population into a set of local populations and allowing each local population
evolve independently. In this study, parallel versions of our SSI-IQGA algorithm are
also implemented. The workflow of the parallel SSI-IQGA algorithm (SSI-IQGA-P) is
shown in Figure 6. In each evolution iteration two synchronization operations need to be
conducted. The first one is to make all local populations share the same best solution.
The last one is to migrate chromosomes between different local populations. Although
only two threads are drawn in Figure 6, the parallel SSI-IQGA algorithm can utilize any
number of threads to speed up the computation.

Figure 6. The workflow of the parallel SSI-IQGA algorithm. The rectan-
gles with dashed borders represent the synchronization operation.

LOCATION SENSITIVE MULTI-TASK ORIENTED SERVICE COMPOSITION 1071

5. Performance Evaluation.

5.1. Experiment settings and baselines.
1) Experiment Settings: To evaluate the performance of the proposed algorithm, we

carry out simulations on smart emergency response scenarios. Similar to the motivation
example in Section 1, a number of valuable objects need to be transferred to a safe
place under each of these scenarios. In the simulations, the tasks and their subtasks are
generated based on the Gehring-Homberger benchmark [30]. The benchmark consists of
300 problem instances in total, and a set of physical locations is defined for every problem
instance. These physical locations are used as the begin and end locations of the subtasks.
A task has 2 to 3 subtasks. For some subtasks, their begin and end locations are the same,
while for the others, their begin and end locations are different. The physical location
number of a problem instance varies from 200 to 1000 based on the scale of the working
area. These sets of physical locations have three types of spatial distribution in total:
clustered distribution, scattered distribution, and hybrid distribution.

The CPS services in the simulations are randomly generated. Only a part of the CPS
services need a transportation service. If a CPS service is not a transportation service, its
operating time is set as d∗e, where d indicates the service time defined in the benchmark,
and e is randomly selected from the set {0.5, 0.8, 1, 1.2, 1.5}. In terms of functional ability,
there are three types of CPS services in total. The candidate services of a subtask are
randomly selected from all the CPS services according to its functional requirement, and
a subtask has four candidate services at most.

The moving time between two locations is defined as the Euclidean distance between
them. The operating time of a transportation service is defined as the moving time plus
a quarter of the service time defined in the benchmark.

2) Baselines: Two algorithms are used as baselines in our experiments. The first one
is the basic quantum genetic algorithm (QGA). The second one is the greedy algorithm
(GR). The proposed algorithm and baselines are implemented in C++ language.

5.2. Evaluation of makespan.
1) Impact of algorithm parameters: There are four parameters to be adjusted to improve

the performance of SSI-IQGA: (1) the maximum evolution iteration number (tmax); (2) the
population size (G); (3) the variation probability (pv); and (4) the crossover probability
(pc). To evaluate the impact of each parameter, we generate four groups of parameters
configuration as in Table 4. For each configuration, we tune one parameter and fix the
other parameters, and the simulations are conducted 100 times in order to obtain the
average value.

Table 4. Parameters of configuration

Configuration tmax G pv pc

Config1 20-180 50 0.1 0.8
Config2 100 10-90 0.1 0.8
Config3 100 50 0.02-0.5 0.8
Config4 100 50 0.1 0.5-0.9

Figure 7 shows the results of tuning different algorithm parameters. We can find that
the performance of SSI-IQGA increases as the maximum evolution iteration number (or
population size) goes up. Meanwhile, when the maximum iteration number (or population
size) exceeds a certain value (e.g., tmax = 100, G = 50 in Figure 7), the performance
improvement of SSI-IQGA is not significant. However, it is not the same case for the

1072 Y. SUN, X. ZHOU AND G. YANG

Figure 7. Impact of different algorithm parameters

variation probability. When the variation probability exceeds a certain value (e.g., pv

= 0.1 in Figure 7), the makespan achieved begins to rise. It indicates that too many
quantum variations are not good for the performance improvement of SSI-IQGA. The
last observation is that the crossover probability does not impact the performance of SSI-
IQGA significantly as the other three parameters do. However, in the whole, raising the
crossover probability is still useful to slightly improve the performance of SSI-IQGA.
According to these findings, the maximum evolution iteration number, the population

size, the variation probability and the crossover probability are set as 100, 50, 0.1 and 0.8
respectively in the following evaluations.
2) Different types of spatial distribution: In Figure 8 we compare the performance of

the proposed algorithm and baselines in terms of makespan using 30 problem instances
with three types of spatial distribution. Each problem instance used is constructed using
a problem instance in the Gehring-Homberger benchmark. For each problem instance, we
conduct 100 times of experiments to get the average value. We can see that SSI-IQGA
outperforms QGA and GR under all types of spatial distribution. The parallel SSI-
IQGA algorithm (SSI-IQGA-P) achieves the similar performance of SSI-IQGA in terms
of makespan.
3) Different number of CPS services and tasks: We also evaluate the performance of

SSI-IQGA, QGA and GR under different number of CPS services and tasks. We show
the results in Figures 9 and 10 respectively. We use three instances in the comparisons:
c101, r105, rc104, and the experiments are also conducted 100 times in order to obtain
the average value. From the results, we can see that the makespan of SSI-IQGA is still
lower than that of QGA and GR under different situations.

LOCATION SENSITIVE MULTI-TASK ORIENTED SERVICE COMPOSITION 1073

Figure 8. Makespan under different types of spatial distribution. The
CPS service number M is 40, and the task number N is 200. The physical
location number of each instance is 200.

Figure 9. Makespan under different number of CPS services. The task
number N is 200. The physical location number for each instance is 200.

For a given number of tasks, with the rising of the CPS service number, there will be
more candidate services for tasks. Owing to it, for each task, its completion time is also
very likely to decrease because its probability of contending with other tasks for CPS
services will become smaller. Therefore, with the increasing number of tasks that can be

1074 Y. SUN, X. ZHOU AND G. YANG

Figure 10. Makespan under different number of tasks. The CPS service
number M is 40. The physical location number for each instance is 200.

Figure 11. Makespan under different number of physical locations. The
CPS service number M is 40, and the task number N is 200.

completed earlier, there is a huge possibility that the makespan will reduce. The finding
can be seen from Figure 9. On the contrary, for a given number of CPS services, the
probability of contending for CPS services between tasks increases with the number of
tasks rising. As a sequence, the makespan is most likely to go up (see Figure 10).
4) Different number of physical locations: Afterwards, we evaluate the impacts of the

physical location number on the performance of the proposed algorithm and baselines.
For each problem instance, we keep unchanged all the attributes of each CPS service and
each task under different number of physical locations except the task locations and the
operating time of transportation services. We run each of these algorithms 100 times to
get the average value. We show the results in Figure 11. We can find that SSI-IQGA can
also find better service selection and invocation schemes than baselines under different
situations.
In general, the more physical locations there are, the larger the working area is. It also

means the moving time between two locations is very likely to increase. Therefore, there
is a huge possibility that the makespan will go up. We can also see this finding from
Figure 11.
5) Summary: SSI-IQGA outperforms QGA and GR in terms of effectiveness. The

superiority of SSI-IQGA to QGA also demonstrates that the search performance of SSI-
IQGA is enhanced by such improvements as dynamic rotation angle mechanism, quantum
variation and quantum crossover. Specifically, with dynamic rotation angle mechanism,
SSI-IQGA can adjust the rotation angle to enhance population diversity and reduce the
influence of the rotation angle on its convergence rate; with quantum variation and quan-
tum crossover, SSI-IQGA can produce new generation populations when necessary, thus
increasing the probability of SSI-IQGA to escape from local optimality.

LOCATION SENSITIVE MULTI-TASK ORIENTED SERVICE COMPOSITION 1075

5.3. Evaluation of consumed time. The consumed time of the proposed algorithm and
baselines is shown in Figure 12. The experiments are conducted on a workstation with
Intel Xeon(R) 2.0GHz 8 processors, 64 GB RAM and 64-bit Ubuntu operating system.
We run each of these algorithms 100 times to get the average value. As shown, with the
increasing number of CPS services and tasks, the time cost of both QGA and SSI-IQGA
raises more slowly than GR. It can be seen that QGA has lower computation time than
SSI-IQGA. The reason for it is that the improvements of SSI-IQGA to QGA (dynamic
rotation angle mechanism, quantum variation and quantum crossover) incur extra time
consumption.

We also find that the parallel SSI-IQGA algorithm (SSI-IQGA-P) can effectively utilize
the potential of current multi-core CPUs to save the computation time (see Figure 12).
In SSI-IQGA-P, local populations evolve independently. In general, the computation
workload for evolving each local population of SSI-IQGA-P decreases with the number
of local populations rising. Therefore, the overall time cost also decreases as the number
of local population increases. This finding can be seen from Figure 13, which shows the
speedup ratio achieved under different number of local populations. Another observation
from Figure 13 is that the speedup ratio increases almost linearly as the number of local
population goes up.

Figure 12. Comparison of consumed time of different algorithms. The
number of local populations in SSI-IQGA-P is eight. Left – The task number
N is 200. Right – The CPS service number M is 80.

Figure 13. Speedup achieved under different number of local populations

1076 Y. SUN, X. ZHOU AND G. YANG

In summary, the advantage of the proposed algorithm is clear, and it can be used to
efficiently find superior service selection and invocation schemes.

6. Conclusion. In this paper we investigate the location sensitive multi-task oriented
CPS service composition problem. Since the core mission of the problem is to find a service
selection and invocation scheme than can optimize the makespan as much as possible, a
heuristic approach based on the improved quantum genetic algorithm is presented to
address it. The simulation results show that the proposed method outperforms other
methods under different situations, and can be used to efficiently obtain superior service
selection and invocation schemes. In the future, we will consider other characteristics of
CPSs that might influence existing CPS service composition approaches, such as more
general transportation services.

REFERENCES

[1] E. A. Lee, Cyber physical systems: Design challenges, Proc. of the 11th IEEE Int. Symp. on Obj. &
Compo.-Orient. Real-Time Distrib. Comput., pp.363-369, 2008.

[2] L. Sha, S. Gopalakrishnan, X. Liu and Q. Wang, Cyber-physical systems: A new frontier, Proc. of
IEEE Int. Conf. on Sens. Netw. Ubiquit. & Trus. Comput., pp.1-9, 2008.

[3] R. R. Rajkumar, I. Lee, L. Sha and J. Stankovic, Cyber-physical systems: The next computing
revolution, Proc. of the 47th Des. Automat. Conf., pp.731-736, 2010.

[4] I. L. Yen, G. Zhou, W. Zhu, F. Bastani and S. Y. Hwang, A smart physical world based on service
technologies, big data, and game-based crowd sourcing, Proc. of IEEE Int. Conf. on Web Serv.,
pp.765-772, 2015.

[5] S. K. Khaitan and J. D. McCalley, Design techniques and applications of cyberphysical systems: A
survey, IEEE Syst. J., vol.9, no.2, pp.350-365, 2015.

[6] K. Kamei, S. Nishio, N. Hagita and M. Sato, Cloud networked robotics, IEEE Network, vol.26, no.3,
pp.28-34, 2012.

[7] A. Taherkordi and F. Eliassen, Towards independent in-cloud evolution of cyber-physical systems,
Proc. of IEEE Int. Conf. on Cyb.-Phys. Syst. Netw. & Appl., pp.19-24, 2014.

[8] B. Kehoe, S. Patil, P. Abbeel and K. Goldberg, A survey of research on cloud robotics and automa-
tion, IEEE Trans. Autom. Sci. Eng., vol.12, no.2, pp.398-409, 2015.

[9] J. M. Mendes, P. LeitAco, F. Restivo and A. W. Colombo, Composition of petri nets models in
service-oriented industrial automation, Proc. of the 8th IEEE Int. Conf. on Ind. Inform., pp.578-
583, 2010.

[10] D. Guinard, V. Trifa, S. Karnouskos, P. Spiess and D. Savio, Interacting with the SOA-based Internet
of things: Discovery, query, selection, and on-demand provisioning of web services, IEEE Trans. Serv.
Comput., vol.3, no.3, pp.223-235, 2010.

[11] R. Seiger, C. Keller, F. Niebling and T. Schlegel, Modelling complex and flexible processes for smart
cyber-physical environments, J. Comput. Sci., vol.10, pp.137-148, 2015.

[12] W. Zhu, G. Zhou, I. L. Yen and F. Bastani, A PT-SOA model for CPS/IoT services, Proc. of IEEE
Int. Conf. on Web Serv., pp.647-654, 2015.

[13] Y. Cai, Z. Tang, Y. Ding and B. Qian, Theory and application of multi-robot service-oriented
architecture, IEEE/CAA J. Autom. Sin., vol.3, no.1, pp.15-25, 2016.

[14] J. Huang, F. Bastani, I. L. Yen and J. J. Jeng, Toward a smart cyber physical space: A context-
sensitive resource-explicit service model, Proc. of the 33rd Annu. IEEE Int. Comput. Softw. & Appl.
Conf., pp.122-127, 2009.

[15] I. L. Yen, W. Zhu, F. Bastani, Y. Huang and G. Zhou, Rapid service composition reasoning for agile
cyber physical systems, Proc. of IEEE Symp. on Serv.-Orient. Syst. Eng., pp.442-449, 2016.

[16] J. Huang, F. B. Bastani, I. L. Yen and W. Zhang, A framework for efficient service composition in
cyber-physical systems, Proc. of IEEE Symp. on Serv.-Orient. Syst. Eng., pp.291-298, 2010.

[17] T. Wang, L. Cheng and K. Zhang, Automatic and effective service provision with context-aware
service composition mechanism in cyber-physical systems, Adv. Inform. Sci. & Serv. Sci., vol.4,
no.11, pp.151-160, 2012.

[18] D. A. Menasce, QoS issues in web services, IEEE Internet Comput., vol.6, no.6, pp.72-75, 2002.

LOCATION SENSITIVE MULTI-TASK ORIENTED SERVICE COMPOSITION 1077

[19] J. Huang, F. Bastani, I. L. Yen, J. Dong, W. Zhang, F. J. Wang and H. J. Hsu, Extending service
model to build an effective service composition framework for cyber-physical systems, Proc. of IEEE
the 7th Int. Conf. on Serv.-Orient. Comput. & Appl., pp.1-8, 2009.

[20] D. Martin, M. Paolucci and S. McIlraith, Bringing semantics to web services: The OWL-S approach,
Proc. of Int. Workshop on Seman. Web Serv. & Web Proc. Compos., pp.26-42, 2005.

[21] X. Jin, S. Chun, J. Jung and K.H. Lee, IoT service selection based on physical service model and
absolute dominance relationship, Proc. of IEEE the 7th Int. Conf. on Serv.-Orient. Comput. & Appl.,
pp.65-72, 2014.

[22] K. Wan, V. Alagar and Y. Dong, Specifying resource-centric services in cyber physical systems, Proc.
of Int. MultiConf. of Eng. & Comput. Sci., pp.83-97, 2014.

[23] A. W. Mohammed, Y. Xu, H. Hu and B. Agyemang, Markov task network: A framework for service
composition under uncertainty in cyber-physical systems, Sensors, vol.16, no.9, p.1542, 2016.

[24] K. H. Han and J. H. Kim, Quantum-inspired evolutionary algorithm for a class of combinatorial
optimization, IEEE Trans. Evol. Comput., vol.6, no.6, pp.580-593, 2002.

[25] A. Malossini, E. Blanzieri and T. Calarco, Quantum genetic optimization, IEEE Trans. Evol. Com-
put., vol.12, no.2, pp.231-241, 2008.

[26] D. Konar, S. Bhattacharyya, K. Sharma, S. Sharma and S. R. Pradhan, An improved hybrid
quantum-inspired genetic algorithm (HQIGA) for scheduling of real-time task in multiprocessor
system, Appl. Soft Comput., vol.53, pp.296-307, 2017.

[27] J. Gu, X. Gu and M. Gu, A novel parallel quantum genetic algorithm for stochastic job shop
scheduling, J. Math. Anal. Appl., vol.355, no.1, pp.63-81, 2009.

[28] T. Ning, H. Jin, X. Song and B. Li, An improved quantum genetic algorithm based on MAGTD for
dynamic FJSP, J. Amb. Intel. Hum. Comp., pp.1-10, 2017.

[29] M. Watanabe, K. Ida and M. Gen, A genetic algorithm with modified crossover operator and search
area adaptation for the job-shop scheduling problem, Comput. Ind. Eng., vol.48, no.4, pp.743-752,
2005.

[30] D. S. Vianna, L. S. Ochi and L. M. A. Drummond, A parallel hybrid evolutionary metaheuristic for
the period vehicle routing problem, Proc. of the 10th Symp. on Paral. & Distrib. Proces., pp.183-191,
1999.

