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Abstract. With the increase in data volume, velocity, and variety, the need for redun-
dant arrays of inexpensive disks (RAID) storage systems capacity is growing dramatically.
However, the probability of disk failures in RAID storage systems is sharply higher with
increased program/erase cycles, read cycles, and retention time. RAID storage systems
are faced with more challenges in fault tolerance, storage efficiency, computational com-
plexity, and expandability. This article presents a novel data layout scheme for RAID
storage systems using random binary extensive code (RBEC), which is designed to ensure
random expandability, high reliability, and availability of data in RAID storage systems.
RBEC is a systematic code family in which the generator matrix consists of two subma-
trices with entries over GF(2), an identity matrix on the top, and another submatrix on
the bottom. Compared with existing approaches, the attractive advantages of our scheme
include the following: (1) it is completely implemented based on simple eXclusive OR
(XOR) operations and has systematic code properties, (2) it can provide arbitrary fault
tolerance, (3) its storage efficiency is quasi-optimal, and (4) RAID storage system data
and parity disks can be randomly expanded according to the requirements of the practical
systems. Thus, our scheme is particularly suitable for RAID storage systems that need
higher reliability, availability, and expandability.
Keywords: Random matrix, Data layout, Fault tolerance, RAID

1. Introduction. Because the storage availability and reliability of redundant arrays of
inexpensive disks (RAID) [1] storage systems are seriously degraded when program/erase
cycles, read cycles, and retention time are increased, one of the most urgent challenges
is to provide sufficient availability and reliability to prevent data losses and corruption
during storage. Consequently, reliable and practical fault-tolerant technology is required
to ensure successful data recovery from several varieties of failures occurring in storage
systems. This kind of technology for protecting data from disk failures is divided into two
groups: N -way mirroring and erasure code. The N -way mirroring is widely used in actual
storage systems, such as GFS [2], Hadoop [3] and Dynamo [4], whose significance lies in
providing additional redundancy to ensure successful recovery, but the storage efficiency is
exceedingly low. Due to the low storage space utilization efficiency of the N -way mirroring
technique, erasure code is more suitable for storage systems with low redundancy and
high fault tolerance compared with the N -way mirroring technique. Because of its high
efficiency and practicality, erasure code has gradually attracted more and more attention
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from the industry and academy, and has thus become a hot research topic in the field of
data storage in recent years.

All kinds of erasure codes have been proposed for RAID storage systems after years
of painstaking research and development, especially the widely used Reed-Solomon (RS)
[5] and parity array codes, including, EVENODD [6], WEAVER [7], FENG codes [8,9],
and so forth. Each of them has obvious advantages, but none has become the perfect
standard. On the one hand, RS codes provide optimal storage efficiency and arbitrarily
high fault tolerance, but require special-purpose hardware to enable efficient computation
of the Galois field arithmetic on which the codes are based and generally have higher
computation costs and complexities. On the other hand, parity array codes are completely
based on XOR operations, but have relatively irregular geometric construction and cannot
be randomly expanded with increased RAID storage system data and parity disks in
accordance with actual requirements. Fortunately, several novel and efficient erasure
codes have also been proposed in recent two years to overcome these difficulties, for
instance, Short Codes [10], XI-Codes [11], HV Codes [12], and Elastic-RAID [13]. Short
Codes are an MDS erasure codes family which can provide satisfied performance on both
degraded reads and partial stripe writes. XI-Codes are a new family of the lowest density
MDS array codes over GF (2) without extremely strict constraints on the prime number
of code length, which makes them pretty practical. HV Codes are all-round MDS codes
by taking advantage of horizontal parity and vertical parity, which well balance the load
to the disks and offer an optimized partial stripe write experience. Elastic-RAID is a
novel RAID architecture which efficiently combines the advantages of the mirroring-based
RAID and the parity-based RAID by exploiting and utilizing the available/free space in a
parity-based RAID system itself without any additional hardware capacity. In summary,
many RS codes, parity array codes, and several novel and efficient erasure codes have also
been proposed recently; however, none is first-rank because each of them has inherent
disadvantages and a specific application scenario. Although there is extensive research on
erasure codes for RAID storage systems that involves balancing fault tolerance, storage
efficiency, and computation complexity, very few efforts have been made to improve flexible
expandability, which is important performance metric in RAID storage systems.

Motivated by the fact that RAID storage system data and parity disks cannot be
randomly expanded according to actual requirements, we present a randomly expandable
method for RAID storage system data layout adopting random binary extensive code
(RBEC) [14] to encode and decode data. Compared with the existing approaches, the
attractive advantages of our scheme include the following: (1) it is completely implemented
based on simple XOR operations and has systematic code properties which are more
efficient than traditional RS codes in terms of computational complexity, (2) it can provide
arbitrary fault tolerance, (3) its storage efficiency is quasi-optimal, and (4) RAID storage
system data and parity disks can be randomly expanded according to actual requirements.
The advantages of adopting a randomly expandable method are obvious. This is a kind of
probabilistic methods over simple XOR operations which ensure the successful recovery
of original data at a sky-high probability. The deterministic methods, however, pay such
a huge price over complex Galois field arithmetic for successful recovery. Thus, all these
advantages make our scheme rather suitable for RAID storage systems that need high
reliability, sufficient availability, and flexible expandability.

This article is organized as follows. In the next section, we briefly review previous
research work related to erasure codes. In Section 3, we propose the preliminaries used in
the construction of our randomly expandable method. Section 4 describes our proposed
scheme. Section 5 provides performance analysis, comparisons, and implementation of
the proposed scheme. Finally, conclusions are given in Section 6.
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2. Related Work. In this section, we divide the existing erasure codes into three fun-
damental categories and cite some instances visually referring to Plank and Huang [15].

Reed-Solomon (RS) Codes: A widely used code developed by Reed and Solomon is
based on the Vandermonde matrix. RS codes [5] are a family of MDS codes that provide
optimal storage efficiency and arbitrarily high fault tolerance. However, RS codes are
over Galois field GF (2w), so they require special-purpose hardware to enable efficient
computation of the Galois field arithmetic and generally have higher computation costs
and complexities. Subsequently, Cauchy RS Codes [16] are represented via the Cauchy
matrix using XOR-based operations in the form of a GF (2w) by w × w matrix over
GF (2) instead of complicated Galois field arithmetic over GF (2w). Derived from RS
Codes, FENG codes [8,9] include Reed-Solomon-Like Code and Rabin-Like Code. To
reduce the complexity of the Galois field arithmetic operation, the cyclotomic fast Fourier
transform algorithm is also presented in the implementation of RAID based on RS codes,
which is much lower than the existing MDS array codes [17].

Parity Array Codes: There are at least three types of parity array codes: (1) horizontal
codes, such as Row Diagonal Parity [18], EVENODD [6] and generalized X-Code [19];
(2) vertical codes, such as WEAVER [7], CCode [20], X-Code [21] and P-Code [22];
and (3) 2-dimensional (or higher N-dimensional) horizontal and vertical code, such as
HoVer codes [23] and GRID codes [24]. A general characteristic of parity array codes is
that they are implemented based on simple XOR operations. This is more efficient than
traditional RS codes using complicated Galois field operations for encoding and decoding
processes in terms of computational complexity. Although we have many parity array
codes, none is optimal because each of them has inherent disadvantages and a specific
scope of application. Obviously, parity array codes have relatively irregular geometric
construction and cannot be randomly expanded with the increased RAID storage system
data and parity disks according to actual requirements.

New Codes: In addition, more and more innovative approaches have been presented
recently, for example, low density parity codes (LDPC) [25], CRC-Detect-First-LDPC
(CDF-LDPC) [26], Regenerating codes [27], Sector Disk (SD) codes [28], STAIR codes
[29], HACFS codes [30], and Random RAID codes [31]. LDPC are linear codes that are
completely XOR-based defined by bipartite graphs with data elements on the left and
parity elements on the right. LDPC include Tornado codes [32], LT codes [33] and their
improvement, Raptor codes [34]. The CDF-LDPC algorithm is a new error correction
method for Solid-State Drive (SSD) that combines error detection code (EDC, such as
cyclic redundancy code, and parity check code) with error correction code (ECC, such
as LDPC) to improve the read performance of SSD. Regenerating codes are designed to
decrease bandwidth for recovery by increasing more element blocks than before that each
storage node holds. SD codes and STAIR codes are invented to tolerate mixed failure
models and concurrent sector and disk failures, and are more efficient than the traditional
codes that solely tolerate whole disk failures. HACFS is a novel erasure-coded storage
system that uses a fast code to optimize recovery performance and a compact code to
reduce the storage overhead instead of using two different erasure codes. Random RAID
is a new kind of fault-tolerance method that uses a probabilistic approach to achieve high
fault-tolerance and flexible scalability.

3. Preliminaries. In this section, we will briefly introduce the coding model and ter-
minologies of erasure codes, and define the random matrix used in the RBEC code [14].
Finally, RBEC code will be presented for the construction of our scheme.
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3.1. Coding model and terminologies. The basic idea of erasure codes is to encode
the k original data blocks into n encoded data blocks. When t pieces of these blocks
are lost, the original data blocks can be totally reconstructed from the remaining n − t
pieces, such an erasure code is called an (n, k) coding model as represented in Figure 1.
If t = n−k, this can be called a maximum distance separate (MDS) code, which provides
optimal storage efficiency [35].

Figure 1. The (n, k) coding model

The encoding process can be regarded as a sort of mathematical transform. Generally,
it can be realized by a few classic means such as the Vandermonde matrix, which is
widely used in RS codes. In terms of coding theory, the encoding and decoding of the
(n, k) coding model can be equivalently expressed as two specific matrices, namely, the
generator matrix and the parity-check matrix. The former is used to generate the n
encoded data blocks, and the latter is for reconstructing the k original data blocks. The
successful recovery of original data blocks lies in the orthogonality of the generator matrix
and the parity-check matrix.

To avoid possible confusions, some terminologies on erasure codes and RAID storage
systems are enumerated [36]. And some of them will be used throughout this paper to
describe and evaluate our scheme.

• Parity: bits, bytes or blocks that carry generated redundant parity blocks for recov-
ery.

• Element: the basic building block of erasure codes usually referring to a unit of data
or parity. In coding theory, this is a bit within a code symbol.

• Stripe: a connected set of data and parity elements that are dependently related by
coding. In coding theory, this is a codeword, and its length is usually defined as the
number of disks over which it stretches, i.e., the i-th codeword component is stored
on the i-th disk.

• Strip: a stripe unit or a maximal set of continuous elements in a stripe that are
stored on the same disk. In coding theory, this is a code symbol.

• Array: a collection of disks on which one or more stripes are implemented.
• Stack: a collection of stripes in an array that are related by a maximal set of per-

mutations of logical mappings of strip number to disk.
• Systematic Code: its codeword is divided into two parts: the data part and parity

part. The data part is not modified after encoding and can be directly read if there
are no errors.

• Vertical Code: a kind of erasure code in which a strip contains both data elements
and parity elements.

• Horizontal Code: a kind of erasure code in which a strip contains either data elements
or parity elements, but a stripe contains both data elements and parity elements.
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• Storage Efficiency: the proportion of a stripe that contains data elements known
as the number of data elements divided by the total number of data and parity
elements.

• Fault Tolerance: the maximum number of lost strips that can be accurately recon-
structed by erasure codes.

• Complexity: the computational costs of encoding, decoding and updating.

To visually conceptualize the terminologies and structure of RAID storage systems,
Figure 2 represents the data layout of elements, strips, stripes, stacks, and arrays in the
typical horizontal codes of RAID storage systems [36].

Figure 2. The data layout of horizontal codes in RAID storage systems

3.2. Definition of the random matrix.

Definition 3.1. Let M = (mi,j)n×n be a random n× n matrix over GF (2) whose entries
are independently and identically distributed. The random matrix is defined by

Pr (mi,j = r) =

{
1 − p, r = 0
p, r = 1,

(1)

where p denotes the probability of an entry being 1.

For simplicity, let us suppose that p = 0.5 and Pr (mi,j = 0) = Pr (mi,j = 1) = 0.5,
such that all matrix elements are uniformly random. The elaborate generating process is
described by Algorithm 1.

3.3. The properties of the random matrix. From previous work [37], we can easily
derive the probability of the generated random matrix being nonsingular.

Lemma 3.1.

Pr (Rank(Mn×n) = n) =
n∏

i=1

(
1 − 1

2i

)
. (2)

Proof: Let Mn×n = (η1, η2, . . . , ηn) be a random matrix consisting of n columns and
let ηi be the i-th column, where 1 ≤ i ≤ n. Rank(Mn×n) = n ⇔ Each i-th column cannot
be linearly combined with the first i − 1 columns, denoted by

L(i) = 1 − 2i−1

2n
, 1 ≤ i ≤ n (3)
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where 2n is the totality of the i-th column constitution over GF (2), 2i−1 is the first

i − 1 columns combination, and 2i−1

2n is the probability of the i-th column being linearly
combined by the first i − 1 columns. So,

Pr (Rank(Mn×n) = n) =
n∏

i=1

L(i) =

(
1 − 20

2n

)(
1 − 21

2n

)
. . .

(
1 − 2n−1

2n

)
=

(
1 − 1

2n

)(
1 − 1

2n−1

)
. . .

(
1 − 1

2

)
=

n∏
i=1

(
1 − 1

2i

)
= S(n, n).

(4)

∏n
i=1

(
1 − 1

2i

)
is simply expressed in terms of S(n, n) which denotes the probability of the

generated random matrix Mn×n being nonsingular. The explicit value of S(n, n) has not
been solved by the scientific community so far, but we find that the function tends to

Algorithm 1. Construction of {0, 1} random matrix
1: Input: Size of random matrix;
2: Output: The generated n × n random matrix composed of {0, 1}
3: repeat
4: for i from 1 to n step by 1 do
5: for j from 1 to n step by 1 do
6: Generate a random floating number between 0 and 1;
7: Rnd i,j = Rand()/Double(RAND MAX );
8: if (0 ≤ Rnd i,j ≤ 0.5)
9: mi,j = 0;
10: else
11: mi,j = 1;
12: endif
13: end
14: end
15: until i = n and j = n;

Figure 3. The tendency of S(n, n)
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a constant of 0.28879 when n ≥ 10 through computational simulation. The tendency of
S(n, n) is revealed in Figure 3 in which the x-axis represents n, and the y-axis refers to
the approximate tendency of S(n, n).

On the basis of the construction of a random n× n matrix and its probability of being
nonsingular, the random (n + k) × n matrix, called the high matrix G(n+k)×n, can be
easily inferred and the probability of G(n+k)×n being full column rank is also defined by
the following.

Lemma 3.2.

Pr
(
Rank

(
G(n+k)×n

)
= n

)
=

n+k∏
i=k+1

(
1 − 1

2i

)
. (5)

Proof:
Pr (Rank(G(n+k)×n) = n)

=
n−1∏
i=0

(
1 − 2i

2n+k

)
=

(
1 − 20

2n+k

)(
1 − 21

2n+k

)
. . .

(
1 − 2n−1

2n+k

)
=

(
1 − 1

2k+1

)(
1 − 1

2k+2

)
. . .

(
1 − 1

2n+k

)
=

n+k∏
i=k+1

(
1 − 1

2i

)
= S(n + k, n).

(6)

From
∏n+k

i=k+1

(
1 − 1

2i

)
we can easily conclude that n has little effect on the trend of

S(n + k, n) with an increase in k. The value of S(n + k, n) is extremely close to 1 when
k ≥ 10, and the tendency of S(n + k, n) is clear as Figure 4 illustrates.

Figure 4. The tendency of S(n + k, n)

3.4. RBEC. RBEC is a systematic code family that can be represented by a generator
matrix consisting of two submatrices with entries over GF (2), an identity matrix on the
top, and another random submatrix on the bottom. The successful decoding of RBEC
code primarily lies in the high probability of being full column rank of the random matrix.
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RBEC Encoding: The purpose of RBEC encoding is to generate a codeword combined
with original data blocks and encoded parity blocks. RBEC encoding is actually a more
efficient process which is a product of original data blocks and the RBEC generator matrix
as shown in Equation (8). For example, G ·D = C, where D is original data with k blocks,
Gn×k is the RBEC generator matrix, and C is the codeword with n blocks. Let Ik×k be
a k × k identity matrix and R(n−k)×k be an (n − k) × k random matrix. Now, we define
Gn×k as follows:

Gn×k =

[
Ik×k

R(n−k)×k

]
=



1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

r1,1 r1,2 · · · r1,k

r2,1 r2,2 · · · r2,k
...

...
. . .

...
rn−k,1 rn−k,2 · · · rn−k,k


, (7)

where rij ∈ GF (2) for 1 ≤ i ≤ k and 1 ≤ j ≤ n.
RBEC Decoding: The RBEC decoding process can be briefly summarized as the process

of reconstructing the original data D by the parity-check matrix Hk×(n−k) which can be
derived from Gn×k and defined as:

Hn×(n−k) =

[
RT

k×(n−k)

I(n−k)×(n−k)

]
=



r1,1 r2,1 · · · rn−k,1

r1,2 r2,2 · · · rn−k,2
...

...
. . .

...
r1,k r2,k · · · rn−k,k

1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1


, (8)

where RT
k×(n−k) is the transpose of R(n−k)×k. In addition, it can be easily checked that

GT
k×n × Hn×(n−k) = 0k×(n−k), where 0k×(n−k) is a k × (n − k) all-zero matrix. Thus, we

have HT
(n−k)×n × Cn×1 = 0(n−k)×1, and the decoding process can be reduced to a solving

system of equations. For more details, please see [14].

4. Our Proposed Scheme. In this section, we present a novel data layout scheme for
RAID storage systems that can randomly expand RAID data and parity disks according to
actual requirements. Before presenting our basic data layout scheme, we firstly introduce
some corresponding justifications in this subsection to make the setting of the data layout
feel more reasonable. On the one hand, the codeword length can be dynamically adjusted
by folding a one-dimensional codeword into a two-dimensional array placed in RAID
storage system data and parity disks according to actual requirements. On the other
hand, the granularity of error correction (the size of one strip which is protected together
by an erasure code) can be dramatically decreased from one entire disk to some sectors
or blocks of the one disk.

4.1. A basic data layout scheme. The above observations motivate us to propose a
basic data layout scheme, which utilizes the RBEC codes to encode and decode data
in RAID storage systems. It provides higher reliability, availability, and expandabil-
ity by introducing a new data layout scheme. Suppose that there exist such a RAID
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storage system containing five data disks numbered 1 through 5 and three parity disks
numbered 1, 2, and 3. We first need to initialize a 40 × 25 generator matrix G40×25

with a 25 × 25 identity matrix on the top and another 15 × 25 random submatrix on
the bottom based on RBEC code. Then, we regard the original data with 25 blocks
(D1, D2, D3, . . . , D24, D25) as the message D that needs to be encoded. We will use mes-
sage D to generate codeword W with the generator matrix G40×25, defined by W =
G40×25 · D. Because the upper part of G40×25 is a 25 × 25 identity matrix, the former
components of the codeword W are identical to message D, so the codeword W can
be denoted as W = (D1, D2, D3, . . . , D24, D25, P1, P2, P3, . . . , P14, P15). Finally, for array
reasons, the generated one-dimensional codeword W itself will be arranged into a 5 × 8
two-dimensional array placed in RAID storage system data and parity disks, as Figure 5
illustrates.

Figure 5. The two-dimensional data array layout

In practical applications, the RAID storage system data and parity disks can be ran-
domly expanded according to actual requirements. RAID storage systems can be ex-
panded by adding disks, and disks can be removed when they fail.

4.2. The random expansion of data disks. In this case, the number of data disks is
dynamically adjusted to meet actual requirements with the growth of data volume. We
assume that only one data disk is added or removed. The diagram in Figure 6 shows the
general data/parity disks layout. We have two cases.

Removing: When one data disk is removed, the corresponding generator matrix is
dynamically adjusted, and the data and parity disks need to be updated accordingly.
Assume that the data disk numbered 2 is removed. Then, the 5 rows numbered 6 through
10, and the 5 columns numbered 6 through 10 in generator matrix G40×25 will be removed.
The original generator matrix G40×25 will be converted into a newly generated matrix
Ḡ35×20 with a 20× 20 identity matrix on the top and another 15× 20 random submatrix
on the bottom. The original data with 25 blocks (D1, D2, D3, . . . , D24, D25) as the message
D needs to be cut into D̄ with 20 blocks again. Meanwhile, message D̄ needs to be stored
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Figure 6. The expansion of data disks

in the remaining 4 data disks numbered 1, 3, 4, and 5. Finally, the parity disks numbered
1, 2, and 3 need to be updated accordingly to D̄ and Ḡ35×20 defined by W̄ = G35×20 · D̄.

Adding: In contrast, when one data disk is added, the corresponding generator matrix
is dynamically adjusted, and the data and parity disks need to be updated accordingly.
Assume that the data disk numbered 2 is added. Then, the 5 rows numbered 6 through
10, and the 5 columns numbered 6 through 10 in generator matrix Ḡ35×20 will be added.
The original generator matrix Ḡ35×20 will be converted into a newly generated matrix
G40×25 with a 25× 25 identity matrix on the top and another 15× 25 random submatrix
on the bottom. The original data with 20 blocks (D1, D2, D3, . . . , D19, D20) as the message
D̄ needs to be cut into D with 25 blocks again. Meanwhile, message D needs to be stored
in the 5 data disks numbered 1 through 5. Finally, the parity disks numbered 1, 2, and 3
need to be updated accordingly to D and G40×25 defined by W = G40×25 · D.

4.3. The random expansion of parity disks. This case is similar to the random
expansion of data disks. The number of parity disks is dynamically adjusted to provide
reliability of customer data in RAID storage systems. We assume that only one parity
disk is added or removed. The diagram in Figure 7 shows the general data/parity disk
layout. We also have two cases:

Removing: Once one parity disk is removed, the corresponding generator matrix will be
dynamically adjusted, but the data and parity disks do not need to be updated. Assume
that in this example the parity disk numbered 3 is removed. Then, the 5 rows numbered
36 through 40 in generator matrix G40×25 will be removed. The original generator matrix
G40×25 will be converted into a newly generated matrix Ḡ35×25 with a 25 × 25 identity
matrix on the top and another 10 × 25 random submatrix on the bottom.

Adding: In contrast, when one parity disk is added, the corresponding generator matrix
will be dynamically adjusted, and only the parity disks need to be updated. Assume that
in this example the parity disk numbered 3 is added. Then, the 5 rows numbered 36
through 40 in generator matrix G35×25 will be added. The original generator matrix
G35×25 will be converted into a newly generated matrix Ḡ40×25 with a 25 × 25 identity
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Figure 7. The expansion of parity disks

matrix on the top and another 15 × 25 random submatrix on the bottom. Meanwhile,
the data disks numbered 1 through 5 do not need to be updated. The parity disks are
computed independently but only parity disks numbered 3 need to be updated accordingly
to D and Ḡ40×25 defined by W̄ = Ḡ40×25 · D.

5. Performance and Implementation. In this section, we summarize some primary
features and the performances of our scheme, and then compare them with some other
existing codes in terms of fault tolerance, storage efficiency computational complexity and
expandability. Besides, the implementation of our scheme will also be included.

5.1. Fault tolerance. From Section 4.1 and previous works [14,30], we can easily find
that the fault tolerance t of our scheme is approximately close to n − k − 10, where n is
the total number of data and parity disks, and k is the number of data disks. This further
shows that its fault tolerance can be dynamically adjusted according to actual require-
ments at the cost of only 10 redundant parity disks. Table 1 gives the fault tolerance of
our scheme compared with other schemes. From this table, we can see that it can provide

Table 1. Comparison of features with other schemes

Schemes Fault Tolerance
Storage

Efficiency
Computational

Complexity
Expandability

RS Arbitrary Optimal Galois field Yes
EVENODD 2 Optimal XOR No

X-Code 2 Optimal XOR No
HoVer Code 4 Quasi-optimal XOR No

GRID
Up to 15 or
even higher

Non-optimal XOR No

LDPC Arbitrary Quasi-optimal XOR No
Our Scheme Arbitrary Quasi-optimal XOR Yes
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up to arbitrary fault tolerance. Especially when applied to the storage of big data which
has dramatic increase in data volume, velocity, and variety, our scheme is particularly
suitable for large-scale RAID storage systems in which the possibility of concurrent disk
failures and multiple unrecoverable sector errors is noteworthy. In addition, our scheme
is completely XOR-based code, and it is more efficient and economical to deploy our
scheme to distribute data over multiple nodes in distributed storage systems than naive
replications.

5.2. Storage efficiency. From the preceding discussions, we can see that our scheme
can provide quasi-optimal storage efficiency, and that storage efficiency can reach up to
e = k

n
= k

k+t+10
, where k is the number of data disks and t is the fault tolerance. It should

be noted that the storage efficiency increases with the growth of data disks number k
and can increase to a very high level; however, only 10 more redundant parity disks are
additionally needed to be provided. It is clear that our scheme with higher fault tolerance
always has lower storage efficiency than that with lower fault tolerance. This shows a
trade-off between fault tolerance and storage efficiency. From what we have discussed in
this subsection, we can see that our scheme can provide high storage efficiency, and in
some scenarios their storage efficiency can reach up to quasi-MDS with the increase of
data disks number k. This advantage can become very remarkable when they are applied
to large-scale distributed storage systems.

5.3. Computational complexity. Our scheme is completely based on XOR operations
over Galois field GF (2) and does not need special-purpose hardware to enable efficient
computation of encoding and decoding over the complex Galois field GF (2w). Table 1
gives the computational complexity of our scheme compared with other schemes. From
this table, we can see that it is XOR-based scheme when compared with expandable
method. The computational complexity of encoding and decoding directly depends on
the number of 1s in generator matrix Gn×k and parity-check matrix Hk×(n−k). Thus, we
can easily deduce that our scheme has an encoding complexity of O(nk) and a decoding
complexity of O(k3). From Figure 8, it can be found that our scheme has a signifi-
cant advantage over the two kinds of widely used expandable methods, RS code [5] and
Cauchy RS code [15], in terms of computation time for encoding and decoding.

(a) (b)

Figure 8. The computation time for encoding and decoding of some ex-
isting schemes: (a) encoding time, (b) decoding time
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5.4. Expandability. The main difference between our scheme and other existing ap-
proaches is that RAID storage system data and parity disks can be randomly expanded
according to actual requirements. It is generally known that RS code and its genera-
tions are the unique expandable codes which also can provide optimal storage efficiency;
however, they need special-purpose hardware to enable efficient computation of encoding
and decoding over the complex Galois field GF (2w). On the contrary, our scheme is also
expandable code and also can provide quasi-optimal storage efficiency without special-
purpose hardware to accelerate computation. Compared with parity array codes based
on XOR operations, our scheme has relatively regular geometric construction and can
be randomly expanded with increased RAID storage systems data and parity disks in
accordance with actual requirements. Furthermore, the original data and parity disks do
not need to be completely updated when adding or removing some parity disks. With
this capability, we can insert a new disk by hot plugging into an available slot while the
RAID storage system is still running.

5.5. Comparisons. In this subsection, we will compare our scheme with other existing
codes. Some of these codes are widely used in storage systems and communication fields.

RS: Both RS codes and our scheme can provide arbitrarily high fault tolerance and can
be randomly expanded according to actual requirements. However, RS codes and their
generations are based on Galois field arithmetic over GF (2w), which requires special-
purpose hardware to enable efficient computation of the Galois field arithmetic on which
the codes are based and generally has higher computation costs and complexities. And
they are obviously not suitable for the large-scale RAID storage systems and distributed
storage systems which have huge demands in data volume, velocity, and variety. Further-
more, our scheme is completely implemented based on simpler XOR operations instead
of complicated Galois field arithmetic. Therefore, our scheme can have much better per-
formance and easier implementation than traditional RS codes and their generations.

Parity Array Codes: Both parity array codes and our scheme are completely based
on XOR operations. However, parity array codes have relatively irregular geometric con-
struction and cannot be randomly expanded with the increased RAID storage system data
and parity disks according to actual requirements. In our scheme, however, RAID storage
system data and parity disks can be randomly expanded. Compared with EVENODD
[6], X-Code [21], and generalized X-Code [19], which are MDS codes and are completely
based on simple XOR operations, our scheme can provide arbitrarily higher fault toler-
ance. Compared with WEAVER [7] and GRID codes [24], which are completely based on
simple XOR operations and can provide high fault tolerance, our scheme can provide ex-
pandability and also arbitrarily higher fault tolerance. Compared with FENG codes [8,9],
which are MDS codes as the generalizations of RS codes [5] and can provide high fault
tolerance, our scheme requires simpler operations and thus can have better performance.
Thus, all these advantages make our scheme rather suitable for RAID storage systems
that need flexible expandability.

New Codes: Newly invented codes are designed for some special cases in storage systems,
which have no universality. The structures are too irregular to implement efficiently,
and they are not well suited to RAID storage systems that need flexible expandability.
However, our scheme has very regular structures and thus can be more easily implemented
in RAID storage systems.

Table 1 compares our scheme with some other schemes in terms of fault tolerance,
storage efficiency, computational complexity, and expandability. From this table, we can
see that no matter which scheme we pick for the evaluation, our scheme has attractive
advantages over it from some of the above-mentioned perspectives. Thus, it is worth
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noting that our scheme is relatively suitable for RAID storage systems that need flexible
expandability, arbitrary fault tolerance, and efficient computation costs. Furthermore,
there will always be ample scope for our scheme’s abilities in the field of large-scale
distributed storage systems that greatly need flexible expandability.

5.6. Implementation. The implementation of our scheme is straightforward, and simply
follows the procedure described in Section 4. Experiments are conducted to compare the
encoding and decoding complexity of our proposed scheme with the only two existing
kinds of expandable schemes: RS code [5] and Cauchy RS code [15]. Both of them are
widely used codes that can provide arbitrarily high fault tolerance without any restriction
on the parameter settings. To make the comparison as fair as possible, we employ the
Jerasure 2.0 package [38], an open source library that is a widely adopted and highly
optimized software-based erasure coding implementation. The experiments are run on a
single Intel Core i3 2.10-GHz machine with a 4GB memory running Linux Ubuntu 16.04.

For the RS code [5], Cauchy RS code [15], and our scheme, we test all values of data
block size from 100 MB to 1000 MB at intervals of 100 MB. The results are presented in
Figure 8 which shows the computation time of data encoding and decoding using different
schemes under different data block sizes. We plot the speed of encoding and decoding,
which are measured as the amount of time per data block whose sizes are roughly from
100 MB to 1000 MB at intervals of 100 MB. For example, when the data block whose size
is 500 MB, it takes an average of 1.85 seconds and 0.32 seconds to encode and decode
this data block. Comparatively speaking, it takes about 6.94 seconds and 1.08 seconds
for RS code, and 21.74 seconds and 5.26 seconds for Cauchy RS code, respectively. It is
clear that the proposed scheme still outperforms the two widely used expandable schemes
in terms of computation time of data encoding and decoding by a significant margin.

6. Conclusions. In this article, we presented a novel data layout scheme using RBEC,
which is designed to ensure random expandability, high reliability and availability of data
in RAID storage systems. Compared with the existing approaches, our scheme has these
attractive advantages: (1) it is completely implemented based on simple XOR operations
and has systematic code properties ensuring easy implementations; (2) it can provide
arbitrary fault tolerance only if providing 10 more redundant parity disks; (3) its storage
efficiency is quasi-optimal with the growth of RAID storage system data disks, (4) RAID
storage system data and parity disks can be randomly expanded according to the require-
ments of the practical systems. In addition, there is no any restriction on the parameters
of our scheme. Our scheme provides RAID storage systems designers with good tradeoffs
between fault tolerance and storage efficiency with continuous increase of RAID storage
systems disks. All these advantages make our scheme particularly suitable for large-scale
RAID storage systems that need higher reliability, availability, and expandability.

As detailed in article, at present we have only been able to implement our scheme. In
the future, we will move to optimize the decoding algorithm by replacing the previous
Gaussian elimination technique for better computational efficiency of speed. However,
most of erasure codes are merely designed to tolerate the failures of entire disk at first.
Thus, such a kind of erasure codes that can efficiently tolerate both disk and sector failures
should be taken into consideration. It is also to be noted that besides the applications
of our scheme in RAID storage systems, the distributed storage systems will extensively
deploy erasure codes today for lower storage overhead instead of naive replication. Some
attractive research directions of erasure codes in distributed storage systems will also be
promoted, for example, generating code, data failure prediction, and updating efficiency.
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