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Abstract. This paper explores the ability of reducing noise in on-demand type feed-
back control system. A controller, i.e., generalized minimum variance control (GMVC)
can be extended by using coprime factorization. The extended controller has a new de-
sign parameter, and the parameter can select the characteristic of the extended controller
without changing the closed-loop characteristic. Focusing on feedback signal, the proposed
controller can drive the magnitude of the feedback signal to zero if the control object was
achieved. In other words, the feedback signal by the proposed method can appear on de-
mand of achieving the control object. In order to consider the application in industry,
this paper newly defines the design parameter of on-demand type feedback controller to
reduce noise. A numerical example is given in order to check the characteristic of the
proposed method.
Keywords: On-demand type feedback controller, Coprime factorization, Noise reduc-
tion

1. Introduction. Generalized minimum variance control (GMVC) has been proposed by
Clarke et al. [1]. GMVC is one of the control methods for application in industry. This
control method uses generalized output which is selected to make the closed-loop system
stable. The control law is derived to minimize the variance of generalized output. Once
the generalized output is determined, the derived controller cannot be re-designed without
changing the closed-loop system. In the case of considering the application to industry, it is
desirable that both of the closed-loop system and the controller are stable in the view point
of safety. Authors have proposed the extended GMVC design method [2, 3]. The extended
method introduces a new design parameter into conventional GMVC by using Youla-
Kucera parameterization [4]. In the method, the poles of controller can be re-designed
without changing the poles of closed-loop system by its parameter. Therefore, a strong
stability system, which means that both closed-loop system and controller are stable,
can be obtained by re-designing stable controller. Although the authors have proposed
such a design method [5] and a concept of strong stability rate [6, 7], these researches
have not focused on feedback signal clearly. Under the assumption that the controlled
plant is stable, the research about strong stability rate has focused on a stable open-loop
output. For example, if the value of strong stability rate becomes one, the controlled
output becomes equal to reference signal in the steady state whether the feedback loop is
cut or not. This situation indicates that the control object is achieved and the feedback
signal is not demanded (that is, the feedback signal becomes zero) in the steady state. In
other words, new concept controller named as on-demand type feedback controller, whose
feedback signal emerges according to the demand to make the controlled output follow
the reference signal and disappears if the controlled output becomes equal to the reference
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signal, can be considered [8]. In the proposed method, the role and the benefit that the
feedback signal disappears contribute to designing safe systems because the output of the
proposed system does not diverge even if the feedback signal becomes zero by an accident.
In this paper, on-demand type feedback controller is modified for noisy environment. The
control method to construct on-demand type feedback controller is GMVC in this paper.
A numerical example is shown in order to verify the effectiveness of the proposed method.

This paper is organized as follows. Section 2 describes problem statement and con-
ventional GMVC. Section 3 extends GMVC through coprime factorization and gives the
proposed controller. Section 4 shows a numerical example to verify the effectiveness of
on-demand type feedback controller. Section 5 summarizes the result of this paper.

Notations and Assumptions. z−1 means backward shift operator z−1y(t) = y(t − 1).

A [z−1] and A (z−1) mean polynomial and rational functions with z−1 respectively. This
paper assumes that the controlled plant is stable. Steady state gain A(1) of transfer
function is calculated as z−1 = 1 under the assumption that input and output signals do
not change with regard to time t.

2. Problem Statement and Conventional GMVC. A single-input single-output sys-
tem is considered.

A
[
z−1

]
y(t) = z−kmB

[
z−1

]
u(t) + C

[
z−1

]
ξ(t) (1)

t = 0, 1, 2, . . .

u(t) and y(t) are input and output respectively. km is time delay, and ξ(t) is white
Gaussian noise with zero mean. A

[
z−1

]
, B

[
z−1

]
and C

[
z−1

]
are the polynomials with

degrees n, m and l.

A
[
z−1

]
= 1 + a1z

−1 + · · · + anz
−n

B
[
z−1

]
= b0 + b1z

−1 + · · · + bmz−m (2)

C
[
z−1

]
= 1 + c1z

−1 + · · · + clz
−l

On the system (1) the following assumptions hold.

[A.1] The degrees n, m and l, and the time delay km are known.
[A.2] The coefficients of A

[
z−1

]
, B

[
z−1

]
and C

[
z−1

]
are known.

[A.3] The polynomials A
[
z−1

]
and B

[
z−1

]
, A

[
z−1

]
and C

[
z−1

]
are coprime.

[A.4] The polynomial C
[
z−1

]
is stable.

The control object is to make the output y(t) follow the reference signal w(t). To achieve
this object, performance index J averaged over the noise is minimized.

Φ(t + km) = P
[
z−1

]
y(t + km) + Q

[
z−1

]
u(t) − R

[
z−1

]
w(t) (3)

J = Ex
[
Φ2(t + km)

]
(4)

Φ(t + km) means generalized output. P
[
z−1

]
, Q

[
z−1

]
and R

[
z−1

]
are polynomials with

degrees of np, nq and nr. These polynomials are selected to obtain stable closed-loop
poles. In the conventional GMVC, Diophantine equation is given for the solutions E

[
z−1

]
and F

[
z−1

]
.

P
[
z−1

]
C

[
z−1

]
= A

[
z−1

]
E

[
z−1

]
+ z−kmF

[
z−1

]
(5)

where

E
[
z−1

]
= 1 + e1z

−1 + · · · + ekm−1z
−(km−1) (6)

F
[
z−1

]
= f0 + f1z

−1 + · · · + fn1z
−n1 (7)

n1 = max{n − 1, np + l − km} (8)
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The solution E
[
z−1

]
of Diophantine equation is used to calculate the following polynomial

G
[
z−1

]
. T

[
z−1

]
gives the closed-loop characteristics.

G
[
z−1

]
= E

[
z−1

]
B

[
z−1

]
+ C

[
z−1

]
Q

[
z−1

]
(9)

T
[
z−1

]
= P

[
z−1

]
B

[
z−1

]
+ Q

[
z−1

]
A

[
z−1

]
(10)

From (5) and (9), the generalized output and its prediction Φ̂(t + km|t) can be given.

Φ(t + km) = Φ̂(t + km|t) + E
[
z−1

]
ξ(t + km) (11)

Φ̂(t + km|t) =
(
F

[
z−1

]
y(t) + G

[
z−1

]
u(t) − C

[
z−1

]
R

[
z−1

]
w(t)

)
/C

[
z−1

]
(12)

Since Φ̂(t + km|t) and the noise term E
[
z−1

]
ξ(t + km) have no correlation each other, the

control law u(t) minimizing J can be obtained by the following equation.

Φ̂(t + km|t) = 0 (13)

Then the control law is obtained as,

u(t) =
C

[
z−1

]
R

[
z−1

]
G

[
z−1

] w(t) −
F

[
z−1

]
G

[
z−1

]y(t) (14)

The closed-loop system for (14) can be given as,

y(t) =
z−kmB

[
z−1

]
R

[
z−1

]
T

[
z−1

] w(t) +
G

[
z−1

]
T

[
z−1

] ξ(t) (15)

where T
[
z−1

]
is defined in (10).

3. Extension of GMVC through Coprime Factorization.

3.1. Coprime factorization of controlled systems. For coprime factorization, the
family of stable rational functions RH∞ is considered,

RH∞ =

{
G

(
z−1

)
=

Gn

[
z−1

]
Gd

[
z−1

]}
(16)

where Gd

[
z−1

]
is stable polynomial. Transfer function Gp

(
z−1

)
of the system (1) from

u(t) to y(t) is given in the form of a ratio of rational functions in RH∞,

y(t) =
z−kmB

[
z−1

]
A

[
z−1

] u(t) = Gp

(
z−1

)
u(t) = N

(
z−1

)
D−1

(
z−1

)
u(t) (17)

N
(
z−1

)
and D

(
z−1

)
are rational functions in RH∞ and coprime each other. In the next

step, the following Bezout identity is considered.

X
(
z−1

)
N

(
z−1

)
+ Y

(
z−1

)
D

(
z−1

)
= 1 (18)

The solutions X
(
z−1

)
and Y

(
z−1

)
of Bezout identity are in RH∞. Then all the stabilizing

controller is given in Youla-Kucera parameterization [4] from (17) and (18).

u(t) = C1

(
z−1

)
w(t) − C2

(
z−1

)
y(t) (19)

C1

(
z−1

)
=

(
Y

(
z−1

)
− U

(
z−1

)
N

(
z−1

))−1
K

(
z−1

)
(20)

C2

(
z−1

)
=

(
Y

(
z−1

)
− U

(
z−1

)
N

(
z−1

))−1(
X

(
z−1

)
+ U

(
z−1

)
D

(
z−1

))
(21)
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U
(
z−1

)
, K

(
z−1

)
∈ RH∞ are free parameters and w(t) is reference signal. Then the closed-

loop system is given as follows.

y(t) = N
(
z−1

)
K

(
z−1

)
w(t) +

C
[
z−1

]
T

[
z−1

](
Y

(
z−1

)
− U

(
z−1

)
N

(
z−1

))
ξ(t) (22)

If the controller is designed for settling control, the output y(t) converges to w(t) as time
progresses. It means that the steady-state gain of closed-loop system (22) is designed to
be N(1)K(1) = 1. Here it is noticed that the closed-loop transfer function from w(t) to
y(t) is independent of design parameter U

(
z−1

)
.

3.2. Concept of on-demand type feedback controller. In the previous research [9],
the authors have proposed a design method of strong stability system and defined the
selection method of design parameter U

(
z−1

)
, which can equate steady state gains of

the closed-loop system and the open-loop system. Through this research, it was found
that the derived closed-loop system allows that the feedback signal becomes zero in the
steady state because the controller is designed to make the open-loop gain equal to the
closed-loop gain. It means that the feedback signal appears so as to achieve the control
object, and the feedback signal becomes zero when the control object was achieved in the
steady state. Therefore, this research calls such a controller as on-demand type feedback
controller.

In this subsection, the concept is described briefly. It assumes that there is no noise
and the feedback signal C2

(
z−1

)
y(t) in the stabilizing controller (19) becomes zero. Con-

sidering the open-loop system for the closed-loop system (22), the controller (19) is given
as follows.

u(t) =
(
Y

(
z−1

)
− U

(
z−1

)
N

(
z−1

))−1
K

(
z−1

)
w(t) (23)

Because of Y
(
z−1

)
D

(
z−1

)
= 1 − X

(
z−1

)
N

(
z−1

)
, the open-loop system can be obtained

as the following equation.

y(t) = N
(
z−1

)
D−1

(
z−1

)
u(t)

=
{
1 −

(
X

(
z−1

)
+ U

(
z−1

)
D

(
z−1

))
N

(
z−1

)}−1
N

(
z−1

)
K

(
z−1

)
w(t) (24)

The steady state output y(t) of the open-loop system is given.

y(t) = {1 − (X(1) + U(1)D(1))N(1)}−1N(1)K(1)w(t) (25)

If the design parameter U
(
z−1

)
is selected as,

U
(
z−1

)
= −D−1(1)X(1) (26)

then the steady state output y(t) in (25) can be expressed as follows.

y(t) = N(1)K(1)w(t) (27)

From (27), the steady state gain of open-loop system becomes equal to the closed-loop’s
one, even if the feedback signal C2

(
z−1

)
y(t) in (19) becomes zero. In other words, the

open-loop system’s output becomes equal to the reference signal w(t) in the steady state
because N(1)K(1) is designed to be 1. This means that the feedback signal of the closed-
loop system becomes zero in the steady state. That is, on-demand type feedback controller
can be obtained.
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3.3. Consideration of noise. As shown in (22), when the design parameter U
(
z−1

)
is

selected as (26), the closed-loop transfer function from ξ(t) to y(t) is determined uniquely.
In order to enable the on-demand type feedback controller to reduce the noise influence
on output, the design parameter in this paper is newly given as the following rational
function [2].

U
(
z−1

)
=

βT
[
z−1

]
C

[
z−1

]
H

[
z−1

] (28)

where H
[
z−1

]
is a stable design polynomial, and β is newly defined as the following

equation.

β = −C[1]H[1]

T [1]
D−1(1)X(1) (29)

In the steady state, U(z−1) can be given as,

U(1) = −C[1]H[1]

T [1]
D−1(1)X(1) · T [1]

C[1]H[1]
= −D−1(1)X(1) (30)

This implies that the proposed controller given by (28) becomes the on-demand type
feedback controller.

3.4. Controller design for GMVC. In the case that P
[
z−1

]
and Q

[
z−1

]
in the gener-

alized output Φ(t + km) are chosen for T
[
z−1

]
to be stable, comparing transfer function

(17) to (15), N
(
z−1

)
and D

(
z−1

)
can be chosen as follows.

N
(
z−1

)
=

z−kmB
[
z−1

]
T

[
z−1

] (31)

D
(
z−1

)
=

A
[
z−1

]
T

[
z−1

] (32)

Substituting (31) and (32) into Bezout identity (18) and comparing it to Diophantine
Equation (5), the solutions X

(
z−1

)
and Y

(
z−1

)
of Bezout identity are given.

X
(
z−1

)
=

F
[
z−1

]
C

[
z−1

] (33)

Y
(
z−1

)
=

G
[
z−1

]
C

[
z−1

] (34)

Then the control law (14) can be expressed as Youla-Kucera parameterization (19), (20)
and (21) by selecting the following free parameters.

K
(
z−1

)
= R

[
z−1

]
(35)

U
(
z−1

)
= 0 (36)

To extend the controller (14), instead of choosing U
(
z−1

)
as 0, on-demand type feedback

controller uses (28) and (29). Then the extended controller through U
(
z−1

)
is obtained

as follows. (
H

[
z−1

]
G

[
z−1

]
− z−kmβB

[
z−1

])
u(t)

= C
[
z−1

]
H

[
z−1

]
R

[
z−1

]
w(t) −

(
H

[
z−1

]
F

[
z−1

]
+ βA

[
z−1

])
y(t) (37)
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To calculate this control law, the polynomial operating on u(t) in the left side of (37) is
divided by the leading term g0 and the remaining term.

H
[
z−1

]
G

[
z−1

]
− z−kmβB

[
z−1

]
= g0 + z−1G′[z−1

]
(38)

Therefore, the control law (37) is calculated by

u(t) =
1

g0

{
C

[
z−1

]
H

[
z−1

]
R

[
z−1

]
w(t) −

(
H

[
z−1

]
F

[
z−1

]
+ βA

[
z−1

])
y(t)

−G′[z−1
]
u(t − 1)

}
(39)

From (22), the closed-loop system can be given as the following equation.

y(t) =
z−kmB

[
z−1

]
R

[
z−1

]
T

[
z−1

] w(t) +
H

[
z−1

]
G

[
z−1

]
− z−kmβB

[
z−1

]
H

[
z−1

]
T

[
z−1

] ξ(t) (40)

It is noticed that the transfer function from reference signal w(t) to output y(t) is inde-
pendent of U

(
z−1

)
. On the other hand, the transfer function from noise ξ(t) to output

y(t) can be changed through H
[
z−1

]
in U

(
z−1

)
. The poles of controller can be given by

the following equation.

H
[
z−1

]
G

[
z−1

]
− z−kmβB

[
z−1

]
= 0 (41)

4. Numerical Example. The following controlled system described in (1) is given [9].

A
[
z−1

]
= 1 − 0.998775z−1

B
[
z−1

]
= 14.4

C
[
z−1

]
= 1, km = 1

Simulation steps are 4000, the initial values of output and input are assumed to be
zero. The disturbance is set to be white Gaussian noise with the variance σ2 = 0.00052.
In order to design the closed-loop characteristic to be stable, the generalized output is
given so as to make the controlled output y(t) follow the reference signal w(t).

Φ(t + 1) = y(t + 1) + 1350u(t) + 1.1148w(t)

The amplitude of reference signal w(t) is 1 from the beginning of simulation to 2000th step,
and 1.5 after 2001th step. The closed-loop pole is 0.9882. Therefore, the derived closed-
loop system is designed to be stable. By using H

[
z−1

]
= 1 − 0.998z−1 and β = −1.6307,

the new design parameter U(z−1) in (28) is defined as follows.

U
(
z−1

)
=

−2224.9 + 2198.7z−1

1 − 0.998z−1

Then the controller’s pole is 0.9808. That is, the strong stability system is obtained
by the proposed controller. If the parameter is selected as U

(
z−1

)
= −D−1(1)X(1)

of the previous method [9], then the controller’s pole is 0.887 and the closed-loop pole
becomes equal to the proposed one. Although the proposed method can give a strong
stability system, it is noticed that the new design parameter does not always provide
strong stability system because it depends on the given system in (1) and the conventional
controller.

Figure 1 and Figure 2 show the plant outputs by the previous method and the proposed
one respectively. The dashed lines mean the reference signals w(t). The solid lines show
the plant outputs y(t). From these figures, it can find that each output can track to
reference signal. Each variance of the previous method’s output and the proposed one
is 0.0122 and 0.012 respectively. That is, the proposed controller can reduce the noise
influence on output, compared to the previous method.
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Figure 1. Previous method [9] (output)
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Figure 2. Proposed method (output)
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Figure 3. Previous method [9] (input)
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Figure 4. Proposed method (input)
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Moreover, Figure 3 and Figure 4 show the control inputs u(t) (upper figure of each fig-
ure), the feedforward signals (middle ones), which are expressed as C1

(
z−1

)
w(t) described

in (19), and the feedback signals C2

(
z−1

)
y(t) (lower ones). In Figure 4, the proposed con-

troller shows that the feedback signal appears in order to follow the reference signal, and
disappears (becomes almost zero) when the control object was achieved. These figures
show that the on-demand type feedback controller is effective in noisy environment.

5. Conclusion. This paper studied on-demand type feedback control system under noisy
environment. A new design parameter to reduce the noise influence was considered. The
numerical example was given to verify the effectiveness of the proposed method, whose
feedback signal appears in order to follow the reference signal, and disappears when the
control object was achieved. As future works, there is an extension to multi-input multi-
output systems using the proposed method. Moreover, a selection method of design
polynomial H

[
z−1

]
will be considered.
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