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Abstract. In this study, we developed variable neighborhood search (VNS) algorithm
for the two-stage assembly flow shop scheduling problem (TSAFSP) with parallel machin-
ing machines. The parallel machining machines produce various types of components
and a setup time occurs whenever the machining machine produces a new component or
produces different components in the machining stage. The types and numbers of compo-
nents can be different for each product. In the assembly stage, a single assembly machine
can start to assemble a product when the required components for the product must be
available. The main decisions are to determine the optimal component-manufacturing
and product-assembly schedules to minimize the makespan of the products. In VNS al-
gorithm, we developed two local search heuristics with a batching rule used for a schedule
of machining machine and eight types of neighborhoods used for schedules of machining
machines as well as assembly machine. The effect of setup time of the VNS algorithm is
tested in various problem sizes.
Keywords: Scheduling, Two-stage assembly, Meta-heuristic, Parallel machines, Setup
time

1. Introduction. The production scheduling is important to many companies in vari-
ous aspects such as cost minimization, compliance for due date, and service quality. Due
to this reason, many researches for production scheduling about various manufacturing
systems have been conducted. Among these many researches, the researches for TSAFSP
that was first introduced by Johnson [1] have been conducted continuously because it is
applied to many real-life industrial applications. General TSAFSP consists of two con-
secutive stages, which are a machining stage and assembly stage. In the machining stage,
there is a machining machine producing the components required to assemble the product.
When the components are available, an assembly machine can assemble these components
into the product in assembly stage. The TSAFSP is known as computationally very com-
plex and difficult to find the optimal solution. Many researchers have considered various
problem solving methodologies to solve the problem with various manufacturing process
structures and assembly process structures. Yan et al. [2] studied a TSAFSP with iden-
tical parallel machines for the three-types of objective functions which are weighed sum
of maximum makespan, earliness, and lateness. To find the near-optimal solution they
proposed a hybrid variable neighborhood search-electromagnetism-like mechanism (VNS-
EM) algorithm. Komaki and Kayvanfar [3] studied a TSAFSP with release time of jobs
and identical parallel machines. They proposed several heuristic techniques and a meta-
heuristic algorithm called Grey Wolf Optimizer. Liao et al. [4] studied a TSAFSP with
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batch setup times to minimize the makespan. They developed a mixed integer linear pro-
gramming (MILP) model, and found several optimality properties to enhance to find the
optimal solution. Furthermore, an efficient heuristic based on these optimal properties
is proposed. Komaki et al. [5] studied a two-stage hybrid flow shop scheduling problem
(HFS) followed by single assembly machine. To find the near-optimal solution they pro-
posed a local search heuristic algorithm and an artificial immune system. Deng et al. [6]
studied a distributed two-stage assembly flow shop scheduling problem with makespan
minimization criterion and they developed an MILP model. For the large-sized problem,
they proposed a competitive memetic algorithm and local search heuristic algorithm. Jung
and Kim [7] studied a TSAFSP with dynamic-component sizes, deteriorating jobs, pre-
ventive maintenance activities (PMA), and setup time. They developed an MILP model
and conducted sensitivity analysis for the deterioration rate, setup time, and PMA time.
Huang et al. [8] developed an MILP model for a TSAFSP with parallel batch-processing
machines and re-entrant jobs. For the large-sized problem, they proposed three heuristic
construction methods with polynomial complexity. Jung et al. [9] studied a TSAFSP with
setup time and dynamic-component sizes. They developed an MILP model and several
optimal properties. For the large-sized problem, they proposed three genetic algorithms
(GA).

Based on the aforementioned studies, no studies considered TSAFSP with identi-
cal parallel machining machines for manufacturing various components with dynamic
component-sizes and a uniform setup time occurring when different components are man-
ufactured in one of machining machines in the machining stage. In this paper, we consider
TSAFSP with identical parallel machining machines requiring a uniform setup time con-
sidering dynamic component-sizes in the machining stage and a single assembly machine
in the assembly stage. In the machining stage in TSAFSP, parallel machining machines
produce various types of components to assemble products. During machining process, a
setup time occurs whenever the machining machine produces a new component or pro-
duces different types of components. This is the same for all the machining machines.
When the required components are available for the associated product, a single assem-
bly machine can assemble these components into the product. A uniform setup time
occurs whenever different components are manufactured in one of machining machines.
The problem should be to determine the three main decisions, which are the optimal
component-manufacturing sequence, the product-assembly sequence, and the number of
setups to minimize the makespan assembled to the last product of the assembly stage.
Since the machining machines with general purpose are popular in a real-life manufactur-
ing environment, we adopted identical parallel machines to handle various components in
the machining stage with dynamic component sizes. In the assembly stage, the type of
the components and the number of the components being different in each product can be
assembled when the required components have been ready in the machining stage. For an
illustrative example of the dynamic component-sizes, three products, P0, P1, and P2 with
dynamic component-sizes are given in Figure 1. P0 has 3 components with two C1 and
one C3. P1 has 5 components with one C0, two C2, and two C3. P2 has 3 components with
two C2 and one C3. Thus, the component size of each product is dynamically changed
depending upon the product.

The paper is organized as follows. Section 2 describes the procedure of VNSs with two
local search heuristic algorithms and various neighborhood structures applied to VNSs. In
Section 3, the computational experiments are executed to present the influence of setup
time on makespan of VNSs by using randomly generated test problems. Finally, the
conclusions and future studies are discussed in Section 4.
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Figure 1. An example of dynamic component sizes

2. Developed Heuristics and VNS. In this section, we describe a basic procedure of
VNS and propose two local search heuristics in VNS. VNS is different from a conventional
local search heuristic in that it sequentially uses two or more neighborhood sets, in its
structure. In particular, VNS is based on the principle of systematic change of neighbor-
hood sets during the search procedure. The procedure of the basic VNS is presented in
Figure 2. It starts with a feasible solution, x. The k is index of neighborhood sets. In
each iteration, the solution is randomly determined by the shake procedure obtaining a
new solution, x′. And then a local search procedure is applied to x′, obtaining a better
solution x′′. If x′′ is better than x, x is updated into x′′ as the best solution found and k
is set to 1. Otherwise, k is incremented for executing another local search using the next
neighborhood set. This process is repeated until a termination criterion is met.

Procedure VNS
1: begin 7: if f(x′′) ≤ f(x) then
2: k ← 1; 8: x← x′′;
3: x = initial solution; 9: k ← 1;
4: repeat 10: end if
5: Shake procedure: find a random 11: k = k + 1;

solution x′ ∈ Nk(x); 12: until termination criterion is met
6: Perform a local search on Nk(x

′) 13: end
to find a solution x′′;

Figure 2. The pseudo-code of basic VNS

The solution representation of machining stage consisting of component manufactur-
ing sequence and machine index is represented in 2-dimensional string array. And the
assembly stage consisting of product assembly sequence is represented in 1-dimensional
string array. Figure 3 shows the example of solution representation for specific complete
solution.

In batching manufacturing processing, the reduction for number of setups potentially
leads to a decrease in the makespan. Due to this point, we propose a knowledge-based
heuristic namely batching local search heuristic (BLS) as a local search in VNS. Also, we
propose popular local search heuristics in VNS for parallel-machine scheduling namely
neighborhood-based local search heuristic (NLS).

To improve the exploration of VNS, we generate 8 neighborhood combinations (Nk, k =
1, . . . , 8) using 4 operators, that is, within transfer (WT), within swap (WS), between
transfer (BT), and between swap (BS). WT is an operator to transfer a component or a
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Figure 3. The example of solution representation for specific complete solution

product to a random location in the sequence of selected machine. WS is an operator that
swaps the positions of two products in a sequence of selected machines. BT is an operator
that randomly selects component from one of two randomly selected machines and then
randomly transfers the selected components to another machine. BS is an operator that
selects one component from each sequence of two selected machines and then interchanges
the component. In this paper, N1 applies WT to the machining stage and WT to the
assembly stage called (WT, WT ). The rest of neighborhood combinations from N2 to N8

are (WT,WS ), (WS ,WT ), (WS ,WS ), (BT, WT ), (BT,WS ), (BS, WT ), and (BS,WS ).
In the NLS, we repeat the generating method for each neighborhood until the objective
function value is not improved. For instance, the local search for N1 is conducted WT
to the machining stage and WT to the assembly stage until all possible combinations are
searched. The procedure of NLS is presented in Figure 4.

Procedure NLS
01: begin 08: x← x′;
02: k ← 1; 09: end if
03: set a neighborhood Nk; 10: until all possible combinations are
04: x = a complete initial solution; searched;
05: repeat 11: k ← k + 1;
06: x′ = local search for Nk(x); 12: end
07: if f(x′) ≤ f(x) then

Figure 4. The pseudo-code of NLS

The NLS starts with a feasible solution, x in neighborhood Nk. The k is neighborhood
index and in each iteration, a local search procedure is applied to x for obtaining a better
solution x′. If x′ is better than x, x is updated into x′ as the best solution found. When
the iteration is finished, k is incremented for executing another local search using the
next neighborhood combination. This process is terminated until all neighborhood com-
binations, Nk, k = 1, . . . , 8 are processed. The NLS provides a good solution because the
neighborhood combinations can explore a huge search space. However, the computation
time is longer due to the neighborhood combinations in NLS. Furthermore, we found that
NLS is difficult to escape a local search once the search falls into the local optima. Due to
this reason, we propose BLS to be able to reduce the computation time and to search the
global optimal solution by focusing on the idea of aggregating the same components as
many as possible to reduce the setup time in machining stage because the setup time has
a significant effect on the makespan of assembly stage. To apply the BLS, we propose two
neighborhoods (SNk, k = 1, 2) for effectively aggregating components in the machining
stage. The neighborhoods, SNk are generated by applying BLS to machining stage and
applying within transfer (WT ) and within swap (WS ) to assembly stage. Like the NLS,
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Procedure BLS
01: begin has the same requirement then
02: k ← 1; select a component having
03: set a neighborhood SNk; bigger processing time;
04: x = a complete initial solution; 11: end if
05: select one of machines randomly; 12: schedule as many as required
06: m = a partial solution of # selected component;

component scheduling for the 13: remove the selected component
selected machine; from unscheduled components;

07: count the number of each 14: until all components are rescheduled;
component (m); 15: m′ = a partial solution of component

08: repeat scheduling after BLS;
09: select a component having the 16: x′ = a complete initial solution

largest requirement among after BLS;
unscheduled components; 17: k ← k + 1;

10: if there is component that 18: end

Figure 5. The pseudo-code of BLS

the local search for each neighborhood is conducted until the objective function value is
not improved. The procedure of BLS for all neighborhood SNk is presented in Figure 5.

3. Computational Result. In order to compare the performance of NLS to that of
BLS and identify the effect of setups on NLS and BLS, two computational experiments
are conducted using randomly generated test instances. All experiments were executed
on a PC with Intel core i7-4770 CPU, 12GB RAM and Windows 10 operating system.
We executed computational experiments dividing into two instance cases, which are 100
setup time as small-setup case and 1000 setup time as large-setup time case. For com-
paring small-setup case with large-setup case, the manufacturing time of components and
assembly time of products are randomly generated from U [10, 30] and U [50, 100]. The
complexity of this problem depends on the schedule of the machining stage due to the
number of parallel machines and products. As the number of products increases, the com-
plexity of the machining stage is increased. Thus, the number of types for component, the
number of machines, and required number of components for product were gradually in-
creased as the number of products is increased. All the experiments were executed with 30
replications. The test results of developed algorithm are summarized in Tables 1 and 2. It
shows the mean of the objective function value (Mean), mean absolute deviation (MAD),
relative percentage deviation (RPD) calculated by Equation (1), and computation time
(Time) according to changing the number of products (P ).

RPD(%) =
obj −G best

G best
× 100, (1)

where obj is the objective function value obtained by developed algorithms and G best is
the best solution of all the experiments for each test problem.

The RPD is a measure of the deviations between G best and objective function value
for each instance and the MAD is a measure of the deviation between G best and Mean.

In Table 1, the computation time of NLS is dramatically increased by increasing in
number of products. This result indicates that the NLS is not suitable for solving the
large-sized problems. Also, RPD and MAD of NLS are lower than BLS.
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Table 1. The test result of NLS and BLS

NLS BLS
P Mean MAD RPD Time Mean MAD RPD Time
7 985.20 6.84 7.57 106.78 780.50 1.67 4.78 0.01
8 974.00 3.37 13.65 268.17 812.13 2.55 4.71 0.03
9 1227.97 3.44 10.33 648.98 850.07 5.8 8.61 0.04
10 1148.40 5.68 6.73 1097.46 822.23 2.66 3.69 0.06
11 1461.13 5.8 6.65 1912.42 977.80 3.7 7.57 0.12

Avg. 5.03 8.99 806.76 848.55 3.28 5.87 0.05

Table 2. The test result of developed algorithm

Small-setup Large-setup
P Mean MAD RPD (%) Time (sec.) Mean MAD RPD (%) Time (sec.)
21 1589.00 4.66 6.86 1.62 5673.37 0.86 2.54 2.47
22 1673.77 4.18 7.71 1.66 5776.37 0.84 2.33 3.06
23 1670.57 3.38 6.07 2.16 5799.53 0.93 1.78 3.70
24 1883.70 4.99 10.29 2.97 5861.90 0.90 1.73 5.34
25 1849.27 3.93 8.40 3.04 5724.73 1.40 2.12 4.61
26 1675.90 2.40 3.32 3.65 5720.20 0.80 1.46 6.42
27 2046.13 3.17 4.18 4.41 5849.87 0.91 2.02 8.59
28 2040.57 4.51 7.12 4.94 5845.07 0.68 1.39 8.35
29 2026.73 3.17 4.96 5.84 5708.80 1.00 1.80 10.87
30 2145.30 1.78 1.77 6.09 5755.13 1.11 1.63 13.43
31 2186.97 1.86 1.62 7.77 5729.03 1.04 1.51 12.82
32 2298.70 1.12 0.73 9.44 5787.43 1.00 1.89 17.25
33 2339.00 4.47 6.90 10.83 5754.13 1.95 2.88 18.87
34 2362.70 3.38 3.81 11.97 5957.87 0.87 2.21 23.69
35 2555.17 3.21 5.19 13.45 5946.23 1.79 2.61 20.37
36 2492.87 3.30 3.91 18.40 5812.33 1.07 1.99 31.22
37 2687.37 3.11 5.30 18.93 5874.57 0.92 2.40 33.95
38 2666.03 1.65 1.45 19.86 5806.67 1.00 2.86 39.45
39 2651.87 2.64 2.23 23.39 6043.63 0.85 1.71 41.83
40 2711.90 1.70 1.53 24.96 5948.83 1.04 1.97 41.79

Avg. 3.13 4.67 9.77 1.05 2.04 17.40

In Table 2, the differences in RPD values of the proposed algorithm for each case
are interesting and statistically significant. We found three interesting insights during
the experiments. Firstly, RPD and MAD in all cases were generally low. These results
indicate VNS with BLS is robust in various problem environments. Secondly, the RPD
and MAD of large-setup (1.05 and 2.04) case are lower than those of small-setup case
(3.13 and 4.67). This phenomenon indicates that the VNS with BLS is more effective
in large-setup case so that the effectiveness of the VNS with BLS can be expected in
manufacturing systems with very high setup times. Finally, VNS with BLS expects to
efficiently apply in manufacturing systems, because the computation times of all cases are
less than 20.

4. Conclusions. In this paper, TSAFSP with identical parallel machining machines re-
quiring a uniform setup time considering dynamic component-sizes in the machining stage
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and a single assembly machine in the assembly stage is considered. We proposed VNSs
with two local searches: NLS and BLS. The test results showed that VNS with BLS shows
effective and efficient. Furthermore, the algorithm provides robust results in various prob-
lem environments in TSAFSP. In the future studies, we will propose a meta-heuristic as
a local search heuristic to compare with BLS. Also, we have to develop a mixed integer
linear programming (MILP) model for developed problem. Finally, we can extend our
current study into sequence-dependent setup and parallel assembly machines.
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