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ABSTRACT. In the modern world totally dependent on electric power, stable operation
of the electrical system is absolutely necessary. Hence, optimal utilization of the existing
power resources has become absolutely necessary. In this work, a procedure of optimal
tuning of generators with harmony search algorithm in the existence of UPFC has been
presented. The UPFC has been placed based on an index which is a composition of L-index
and LUF index. A multi objective function has been chosen for tuning the generators.
The multi-objective function consists of voltage deviation, generation cost and power loss.
The presented technique has been examined and implemented on an IEEE 30 bus system
for normal and for contingency condition.
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1. Introduction. Optimal power flow or optimal reallocation of generators consists of
optimizing an objective function in the presence of operational constraints. Many meth-
ods have been developed so far to solve the OPF problem. In [1], Zhang et al. have pro-
posed a modified multi-objective evolutionary algorithm based decomposition (MOEA /D)
method to solve OPF. A modified Tchebycheff decomposition method has been utilized
to obtain uniformly distributed Pareto-optimal solution. A solution to the OPF problem
of the power systems has been obtained using various methods like improved colliding
bodies optimization algorithm [2], particle swarm optimization [3], adaptive group search
optimization [4], gray wolf optimizer [5], quasi-oppositional teaching learning based op-
timization [6], differential evolution optimization algorithm [7], and improved harmony
search method [8].

FACTS devices play a very important role in further enhancing the effect of the solution
to OPF problem of the power systems. Mahdad and Srairi [9] used adaptive flower
pollination algorithm in combination with SVC for solving the OPF problem in case of
faults in the generating units. Rao and Vaisakh [10] presented a result to multi-objective
optimal power flow (MOOPF) problem utilizing an adaptive clonal selection algorithm
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(ACSA) to reduce generation cost, transmission loss and voltage stability index (L-index)
with multi-type FACTS devices. Different voltage source converter (VSC) based multi-
type FACTS devices like UPFC, IPFC and GUPFC are studied and inserted as power
injection models in multi-objective optimization problem formulation. Huang and Huang
[11] propose a hybrid optimization method for optimal power flow utilizing a flexible
AC transmission system (FACTS). To determine the optimal solutions to the FACTS
allocation problem, a hybrid optimization method that incorporates a harmony search
algorithm and an ant system is presented. UPFC is one of the most powerful and flexible
FACTS devices and has been used for various power system issues like minimization of
transmission loss and operating cost of the system [12], system security [13], available
transfer capability [14], total transfer capability [15], social welfare [16], power system
loadability [17], multi-area economic dispatch performance utilizing swarm intelligence
technique [18] and various other applications.

In this paper, UPFC is placed based on multiple index which is a combination of L-
index as well as LUF index. UPFC sizing is done employing harmony search algorithm for
optimal power flow. The optimal sizing of generators has been used for a multi-objective
function, especially, minimization of voltage deviation, minimization of generation cost
and minimization of transmission line loss. The results of optimal sizing without and with
UPFC have been compared to prove the effectiveness of the proposed method. Results
are also compared with genetic algorithm.

Optimal generation reallocation with optimal placement of UPFC using multiple index
and optimal tuning of UPFC with HS algorithm are the advantages of the proposed
method.

Abbreviations

FACTS | Flexible AC transmission system
OPF Optimal power flow
UPFC | Unified power flow controller

HS Harmony search

GA Genetic algorithm

Py, active power loss

Pei active power generated at bus ¢
Pp; power demand at bus ¢

2. Method of Placement and Algorithm for Sizing.
2.1. L-index.

L-index =

Y
1— ZFazvj (1)
=1

L-index lies between 0 and 1. Lesser the value of index remains system stable. V; indicates
magnitude of voltage at bus ¢, V; indicates magnitude of voltage at bus j and F}; indicates
complex elements.

Line utilization factor (LUF) is an index used for determining the congestion of the
transmission lines as given in Equation (2).

(2)

LUF is the ratio of apparent power flow in the line to the maximum LUF of the line.
When the power flow in the line is within its maximum limits, the system is said to be
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stable and the value of LUF is less than 1. MVAi™* is the highest MVA rating of the
line linking bus i and bus j, and MVAij is actual MVA rating of the line linking bus i
and bus J.

The UPFC has been positioned on the basis of an index which is a combination of
L-index and LUF index. A multi-objective function given in Equation (3) including fuel
cost, real power loss and voltage deviation is utilized for the optimal tuning of generators.

MZnF:MZn(Wl*F1+W2*F2+W3*F3) (3)

where F) is the generation cost given by

ng
Fy, = Min (Z [ai + biPe; + cz'PéJ) (4)

i=1
The fuel cost coefficients are a, b, ¢ and the number of generators in the power system is

ng.
I35 is the real power loss

ntl
Fy = Min (Z real (Sk, + S,%)) (5)

i=1
where S, gives the complex power flows from bus j to bus k in line ¢ and no. of trans-

mission lines is ntl.
I3 is the voltage deviation

Nbus
ngMm(VD):Mm (Z |Vk—vkref‘2> (6)
k=1

The actual value of voltage at bus k is V}, and the reference value of voltage at the bus is
Vzef ]

Power balance constraint

N N
ZPGi:ZPDz’“‘PL (7)
i=1 i=1

where ¢ = 1,2,..., N and N = number of buses.
Voltage balance constraint

Vszmmum < VG' < Vgla:cimum (8)
i = Vai = Vg
where Gt = 1,2,...,ng and ng = number of generator buses.
Real power generation limit
szmzmum S PGi S sziaa:imum (9)

where Gi =1,2,3,...,ng.
Number of generators is ng.
Generator buses voltage limits lie between 0.9 p.u. and 1.1 p.u.

2.2. Algorithm. Harmony search (HS) is a population based algorithm influenced from
the musical procedure of searching for an ideal state of harmony, presented by Geem et
al. in 2001 [19]. In the HS algorithm,

e musician is equivalent to decision variable.
e plays is equivalent to global optimum.
e pitch is considered as fitness value.
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2.3. HS algorithm parameters. HMS is the harmonic memory size, HMCR (Harmony
Memory Considering Rate) is rate of electing a value against the harmony memory, PAR
(Pitch Adjustment Rate) = rate of selecting a neighboring value, § = amount linking two
neighboring values in discrete candidate set and fw (fret width) = maximum change in
pitch adjustment.

TABLE 1. Harmony search algorithm parameters

Parameters Optimal range
Pitch adjustment rate (PAR) 0.1-0.5
Harmony memory size (HMS) 1-100
Harmony memory considering rate (HMCR) 0.7-0.99
Fret width (fw) 0.1

3. Results and Discussion. The presented technique is examined on an IEEE 30 bus
system. The NR load flow analysis for the IEEE 30 bus system is done. It is identified
from Figure 1 that bus no. 30 has the highest L-index value of 0.0895 p.u. and hence
is considered to be the feeble bus of the system. Two lines have been connected to bus
number 30, namely, 27-30 and 29-30. It is identified from Figure 2, that the line 27-30
has the highest LUF value of 0.0367 p.u. Therefore, UPFC positioned at bus 30 and line
27-30 in the IEEE 30 bus system.
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F1GURE 1. Weak bus in IEEE 30 bus system

Various combinations of HMCR and PAR are employed as well as fitness function values
secured are furnished in Figure 3. It is identified: PAR = 0.35 & HMCR = 0.7 that is
employed to study, extends the lowest objective function value. Various mixes of the
objective function weights are employed as well as objective function values are identified
and organized in Table 2. It is identified that W7 = 0.7, W5 = 0.15, W3 = 0.15 presents
the lowest value of objective function. Therefore, it is being studied.

Voltage profile for OPF excluding as well as including UPFC is contrasted within Figure
4. OPF in the availability of UPFC along with HS algorithm enhances voltage profile.

The real power generation regarding the system as well as at each single generator,
real and reactive power deprivation, voltage divergence and real power production cost
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FIGURE 3. Multi-objective function value with change in HS algorithm
parameters: PAR — pitch adjustment rate & HMCR — harmony memory

considering rate
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TABLE 2. Non dominant solutions for cost, losses and voltage deviation objectives

Solution number Weight
W, | W,y | W3 | F; (Objective function value)

1 0.7 10.15(0.15 192.3
2 0.55| 0.3 [0.15 379.52
3 0.4 [0.45(0.15 567

4 0.25] 0.6 [0.15 773.56
5 0.1 10.7510.15 958.9
6 03104103 509.2
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11 Lower Curve : HS-OPF without UPFC —— Upper Curve : HS-OPF with UPFC
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F1GURE 4. Comparison of voltage magnitude of optimal power flow without
and with UPFC
TABLE 3. Comparison of OPF solution for 30 bus system employing HS-
OPF without and with UPFC
S ‘fcati HS without | GA without | HS with| GA with
pecriication UPFC UPFC | UPFC | UPFC
P 135.55 126.6 133.833 | 131.398
Peo 32.689 27.33 32.6893 | 12.9481
Real power Pes 29.415 27.33 20415 | 23.945
seneration (MW) Pes 42.808 21.32 12.8081 | 19.1834
Pe11 40.558 84.82 40.5583 | 96.9945
Pes 10 3.992 10 5.0686
Total power generation-Real (MW)| 291.0275 291.4713 289.303 | 289.538
Power loss-Real (MW) 7.627 8.071 5.9039 6.138
Power loss-Reactive (MVAR) 19.38 35.35 7.74 25.14
Voltage deviation (p.u.) 1.9507 2.501 0.2851 0.2859
Real power generation cost ($/hr) 1360 1366 1254.2 1260
Value of objective function (p.u.) 209.7 211 192.301 | 193.34

for HS-OPF excluding UPFC, GA-OPF excluding UPFC, HS-OPF alongside UPFC and
GA-OPF alongside UPFC are contrasted within Table 3. It has been identified — harmony
search algorithm stands far apt in regards to multi-objective optimization problem selected
in contrast to GA. And it is identified that OPF in the availability of UPFC stands far
efficient in contrast to without UPFC. In this way, the device stands highly efficient in
regards to optimization of generators.

Contingency examination for IEEE 30 bus system is executed as well as it is discovered
that omission of line 27-28 leads to the highest pressure on bus 30 pointed out by the
highest L-index of 0.4522 p.u. in Table 4. It is indicated from Table 5 that line 27-30
is the severe-most line for line 27-28 contingency. Therefore, n — 1 contingency for line
27-28 and UPFC at bus 30 and line 27-30 is taken for examination and observation.

The real power generation of the system as well as at each single generator, real and
reactive power deprivation, voltage divergence and real power production cost for HS-OPF
excluding UPFC, GA-OPF excluding UPFC, HS-OPF alongside UPFC and GA-OPF
alongside UPFC are contrasted within Tables 6 and 7. It has been identified — harmony
search algorithm stands far apt in regards to multi-objective optimization problem selected
in contrast to GA. And it is identified that OPF in the availability of UPFC stands far
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TABLE 4. Severe bus identification in IEEE 30 bus system

Rank | Bus No | Line outage | L-index
1 30 27-28 0.4522
2 19 9-10 0.1918
3 30 27-30 0.1793
4 29 27-29 0.1613
5 14 4-12 0.1591
6 21 10-21 0.1416
7 26 25-27 0.1375
8 20 10-20 0.1341
9 30 6-28 0.1298
10 19 19-20 0.117
11 17 10-17 0.1167
12 30 29-30 0.1163
13 30 3-4 0.1151
14 30 4-6 0.1041
15 26 10-22 0.102
16 26 22-24 0.102
17 30 6-10 0.0938
18 30 12-15 0.0938
19 30 23-24 0.0934
20 30 21-23 0.0921
21 30 12-14 0.0907
22 30 12-16 0.0904
23 30 15-18 0.0902
24 30 14-15 0.0898
25 30 18-19 0.0898
26 30 15-23 0.0898
27 30 16-17 0.0894
28 30 6-7 0.0867
29 30 6-9 0.0857
30 30 24-25 0.0823

TABLE 5. Severe line in IEEE 30 bus system

i
Rank I]I_:‘% conner;’]c?’ed LUF value
1 27 30 0.0379
2 29 30 0.0191

efficient in contrast to without UPFC. In this way, the device stands highly efficient in
regards to optimization of generators.

Voltage profile for OPF excluding as well as including UPFC is contrasted within Figure
5. OPF in the availability of UPFC along with HS algorithm enhances voltage profile.
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TABLE 6. Comparison of objective function parameters for 27-28 contin-
gency with UPFC placed at 27-30
System Svstem parameters HS algorithm-OPF HS algorithm-OPF
condition Y P without UPFC with UPFC
P 139.4716 135.9548
Peo 32.6893 32.6893
Real power Pas 20415 29.415
seneration (MW)|__ Pos 12.8081 12,8081
Pe11 40.5583 40.5583
With 27-28 Total power fo = =
contingency generation-Real (MW) 294.9423 291.4255
Power loss-Real (MW) 11.5423 8.0255
Power loss-Reactive (MVAR) 31.84 13.06
Total generation cost ($/hr) 1275.7 1262.2
Deviation in voltage (p.u.) 3.5378 0.4166
Objective function value 199.9636 195

TABLE 7. Parameters comparison employing HS & GA with 27-28 contingency

OPF Power Voltage Real power

Power flow loss-Real . generation

employed (MW) deviation (p.u.) cost ($/hr)
Without UPFC 14.1453 4.9205 1290.5
GA-OPF With UPFC 9.9524 0.4194 1192
HS.OPF Without UPFC 11.5423 3.5378 1275.7
) With UPFC 8.0255 0.4166 1262.2

=== |nside Circle: Voltage HS
without UPFC (p.u.)

=== Quter Circle : Voltage
HS-OPF with UPFC (p.u.) 23

22

FiGure 5. Comparison of bus voltages for 30 bus system using HS-OPF
without and with UPFC
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Conclusions. A correct strategy is the need of the current power systems for the

optimal utilization of the power system resources and to provide stability to the systems
as well. In this paper,

[1]

2]

e OPF method in the existence of UPFC has been presented for controlling the insta-
bility in voltage issues and minimization of power losses.

e A multi-objective function, namely, reduction of real power loss, voltage deviation,
and reduction of fuel cost has been considered for the purpose.

e The UPFC has been optimally placed in the system on the basis of L-index and
LUF.

e HS algorithm has been presented for the optimization of the UPFC and generator
parameters. The results obtained have been verified with that of GA to prove the
efficacy of the proposed method.

e The presented technique has been examined for an IEEE 30 bus system for normal
and network contingency condition.

e OPF in the existence of UPFC has been established to be an optimal technique for
the power system performance improvement as depicted by the improvement in the
values of the power system parameters.

e In this paper, all loads are assumed as constant power type. More practical load
models, considering their voltage and frequency dependency may be considered in
future study.

e In this paper, cost of the FACTS devices has not been included in the OPF formu-
lation. This may be included, while studying its impact on the system performance.
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