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Abstract. This work describes a novel method able to reduce the sway of a suspended
load during the slewing motion of a tower (or jib) crane. The proposed method is based on
an iterative calculation of the sway angle and of the corresponding applied velocity profiles
as input to the crane motors. The “command smoothing” method is used for reducing
the sway, that is an additional damping is introduced into the system in order to control
the sway, obtaining the values of the coefficients k with the observer method. A detailed
mathematical model is developed, taking account of also the non-linear components of
the forces, as centrifugal and Coriolis forces, on the system. Simulation results show
that the proposed anti-sway method is able to damp the oscillations of the suspended load
during the contemporary movement along the three perpendicular Cartesian axes, that is
the two horizontal axes (said trolley and slewing axes) and the third vertical axis (said
also hoisting axis). Furthermore, as a consequence of being an iterative method, it is
possible to obtain a complete damping of the sway at the end of the movement, also if
the velocity set is changed many times by the human operator, during the control of the
crane movement: that is possible even if the previous damping of the oscillations was
again in progress and not completely finished.
Keywords: Anti-sway, Open-loop control, Iterative method, Tower cranes

1. Introduction. In a general way, it is possible to divide cranes into two categories:
industrial cranes and slewing cranes.

For the first category of cranes, an anti-sway method is easier to develop as consequence
of the decoupling among the equations of the movement. In fact, industrial cranes (gantry
or overhead cranes) exhibit a one-degree-of-freedom sway in the solution equations.

On the contrary, slewing cranes, such as tower cranes or self-erecting cranes or harbor
cranes, are subjected to the condition that the load-line attachment undergoes to a rota-
tion. In this case, the equations of the movement are necessarily coupled. Conventionally,
point-to-point operations using slewing cranes are performed by operators with the goal
to not excite the oscillation modes of their payload and crane structure. Typically, the
pendulum modes exhibit low frequencies.

The two fundamental motions of the payload in the horizontal plane, resulting from
the operator commands produce a sway tangential to the arc of a circle defined by the tip
of the crane jib and a sway radial to the same rotation due to the centrifugal acceleration
of the payload.

Currently, speaking about slewing cranes, the swing of the payload is not compensated
in any automatic way. Only for pre-planned movements where the desired start and stop
positions of the payload are well specified it is possible to define an automatic anti-sway
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method. However, that is not the typical situation of slewing crane for the building
sector. In this case, today, only the high experience of the crane operator allows bringing
the payload to a stopping point without a swing.

The movements of the crane cause sway of the load. There are extensive researches
on anti-sway for industrial (overhead traveling) cranes. That is due, in this case, to the
possibility to decouple the movements and, as a consequence of this, to use linear models
to solve the motion equations.

Instead of that, slewing crane movements are characterized by the appearance of Cori-
olis and Centrifugal forces. So the equations become non-linear and the application of
linear control theory leads to several problems.

In this work, in order to solve this non-linear problem, we make considerations con-
cerning non-linear force interactions, using the Lagrange equations governing the physical
system given by a tower (or jib) crane.

The fundamental movements of a tower crane typically are:
1) A rotation (or slewing) of the jib. The jib is connected to the top of a vertical shaft

and has a suspension point for the payload that is suspended through cables. Jib performs
a rotation or slewing movement about a vertical axis z (slewing movement).

2) A linear movement of the suspension point of the load along the jib. This sec-
ond movement can be referred to a translation movement. The translation movement is
performed along the horizontal axis x of the jib (trolley movement).

3) A device able to hoist the load. This device is defined typically using a cable which
passes through the crane. The length of the cable is variable in order to move the load
on a vertical axis z. This third possible movement along the axis z is usually named as
the vertical movement (or hoisting movement).

It is obviously desirable to reduce the sway of the payload in order to obtain two positive
effects: increase the safety of the load transfer and reduce the operational time to the
shorter possible time.

To difference of the sway generated from linear movements (trolley movements only),
the sway due to a rotation, as a consequence of the centrifugal force, remains present even
if the tangential component of the acceleration during the rotation movement is zero.

Several solutions to the problem to reduce the swing of the suspended load were pro-
posed in the past. However, as before said, almost all the solutions are related to sway
generated by industrial cranes (that is gantry and overhead cranes), where there is not
the complication due to the slewing movement. Instead, with reference to works relative
to tower cranes, as consequence of the complication due to the coupling of movements,
not many papers were published in the past.

Some papers and patents were published, in the recent years, relatively to the solution
of the payload sway in a tower crane. However, the proposed solutions were related to
some different ways to obtaining a reduction of the swing.

The work of Abdel-Rahman et al. [1] and the recent work of Ramli et al. [2] allow
having an exhaustive literature review of the control strategies relative to the cranes.

Historically, solutions with “input shaping”, with “adaptive control” and with “model
predictive control” were investigated at first.

Particularly important for the control of slewing cranes, in the paper of Palis and Palis
[3] the method of adaptive control was developed for a tower crane. Due to the difference
in dynamics, the general motion of the crane was divided into slow and fast subsystems,
which can be optimized independently. That leads to have an approximate solution of
the anti-sway problem.

Relevant recent studies relative to the “adaptive control” for tower cranes, recently
come from Sun et al. [4] and Fujioka et al. [5].
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Instead, the recent papers of Barisa et al. [6] and Böck and Kugi [7] developed some
“model predictive controls” for slewing cranes. Nevertheless, this last kind of method is
optimal in automatic control, but not with a manual operator, when a target position is
established before starting the movement.

Recently, it was noted for the possible excellent performances of the filtering method
for the control of slewing cranes.

Really, the first work was obtained with the U.S. Patent 5,908,122 to Robinett et al. [8],
where the sway correction was given filtering crane input signals. The filtering method
uses a model representing the dynamics of the rotary crane with a matrix of nonlinear
equations of motion, and after linearizing the matrix with respect to the radial sway angle
and to the tangential sway angle. However, in that work, the equations of the movement
were linearized. In this way, all the effects relative to the centrifugal force and to the
Coriolis force are not completely considered.

An evolution in the use of the “filtering” method was obtained in the recent European
Patent EP2896590 to Caporali [9]. In that invention the calculation of the system gain is
obtained introducing filtered inputs, being these filtered inputs used in order to produce
the damping of the profiles.

Nevertheless, the most important limitation of the filter technique is due to the fact
that it is not able to consider possible sequential commands without that the previous
damping of the sway was totally obtained.

More recently, a kind of solution was introduced in order to control the sway, pro-
viding an additional damping into the system: this method is defined also “command
smoothing”.

In this approach, the crane acceleration is typically given in the general form: ẍ =
r + k1ϑ + k2ϑ̇ or similar expression. Here above, r is a function of the time that depends
on the movement profile of the crane. The obtained system will have the wanted damping
ratio and the natural frequency using the convenient values of the coefficients k1 and k2.

For example, the “command smoothing” method was used in the U.S. Patent Applica-
tion 2011/0218714 A1 of Stanchev and Velachev [10] for a tower crane.

In this invention, the calculation step uses a mathematical model of the pendulum with
damping. However, the limit of this invention is in the fact that the correction coefficients
(necessary to define the correct damping of the sway) are defined experimentally according
to the different possible lengths of the suspension cables of the load. So, these coefficients
have to be obtained only after experimentation, without a way to have a complete theory
of their computation.

Moreover, in the same invention, the effects relative to the Coriolis force are not con-
sidered. That leads to a loose of the precision of the sway correction.

Singhose et al. [11] developed a global comparison between the input-shaped step
function and a command smoothing by using an S-curve profile for a portable tower
crane.

Also the present work is part of this set of solutions, defined as “command smoothing”.
On the one side, this actual work represents a strong evolution of the previous patent

application [9]. While in the patent the solution was obtained with the “filtering” method,
and in the present work the equation solutions are obtained using an iterative method of
calculation.

The method presented in this paper uses a kind of “command smoothing” for reducing
the sway, introducing an additional damping into the system in order to control the sway.
As a consequence of the fact that this method is iterative, it is possible to obtain the total
damping of the sway changing many times the velocity set, also if the previous damping
control of the oscillations is again in progress. In other words, it is not necessary that the
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target velocity has been reached in order to carry out a subsequent command towards a
subsequent target velocity. That is fundamental, because the usual control of the tower
crane is manual, by a human operator: he is used for changing very often the target
velocity using the remote controller.

Furthermore, in this way, the profiles of the speed can be modulated, with either smooth
or strong gradient.

The presented method can be considered innovative compared to previous works above
described in some fundamental aspects.

In this work, the cable flexibility and the relative damping are introduced: in this way,
this method allows to obtain more performances as regards to the previous methods where
these data are not taken into account. That was not considered in the previous patent
[9].

This novel work is based on the calculation of the complete dynamical equations for
the crane system. In this way, also the continuous variation of the hoisting height for
the suspension point of the payload and the variation of the corresponding velocity and
acceleration are considered.

Besides, in the present work, two fundamental effects are considered: both the cen-
trifugal and Coriolis forces that produce the non-linear terms in the movement equations.
So the present method is really able to consider all the non-linear effects of the crane
movements.

Furthermore, the mathematical model is developed without the need to obtain in an
experimental way the correction coefficients in the movement equations. So this work
is directly applicable on any length of the cable relative to the payload, considering the
continuous variation of the hoisting height for the suspension point of the payload and
the variation of the corresponding velocity and acceleration. Therefore, the application
of the method is able to eliminate sway also during a continuous variation of the length
of the pendulum.

The calculation uses the fundamental equations obtained by the Lagrange equations in
order to define the successive steps. The control process is realized by a control device
and includes a calculation step for determining the angles of oscillation of the load and
the time derivative of the sway angles. This method does not require means to measuring
the sway angle, but the control device includes means to obtaining the “effective length”
leff of the suspension cable. The values of the coefficients k, which need to introduce an
additional damping, are obtained with the observer method.

The velocities of the trolley movement and of the slewing movements are obtained
directly from the reference velocities supplied by the control device. It is assumed that
the drive controls the speed references with high rapidity.

This paper is organized as follows.
The dynamic model of the tower crane is presented in Section 2, describing in detail

the geometric representation of the tower crane and the cable flexibility. From Lagrange
equations, the dynamical equation relative to the sway angle is obtained, where the func-
tional dependence by the acceleration of both the slewing and trolley movements and the
coupling of the two equations relative to the sway angles are highlighted. The equation
solutions are obtained with an iterative method, where the estimated values of the sway
angles and the slewing and trolley acceleration are obtained step by step. The need to
have a trolley movement, also in absence to a corresponding trolley command, in order
to compensate the centrifugal effect of the slewing movement, is highlighted. After that,
designing an observer method, it is possible to synchronize this estimated model with the
real crane, verifying that the system is observable.
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In Section 3 an implementation of the method and the most relevant results of the
model simulation are presented, with particular emphasis to the fact that total damping
is obtained changing many times the velocity set, also during the previous ramp.

At the end, in Section 4 concluding remarks are given.

2. Dynamic Model of the Tower Crane System and Solution Description. The
goal of this method is to assist the control of the hoisting machine able to perform a
translation movement along an axis x and a rotation movement of the suspension point
together with the hoisting movement of the load along the axis z.

Referring to Figure 1, a slewing crane includes a multi-body system with three inde-
pendent degrees-of-freedom for positioning a spherical-pendulum as the payload of mass
m. Specifically, the slewing crane includes a translating load-line, having length L and a
payload of mass m attached to a translating trolley with mass M . A crane operator or
a computer positions the payload using some available commands and changing the load
length L.

Figure 1. Geometric description of the tower crane system. The jib is
connected to the top of a vertical shaft that represents the vertical structure
of the crane. The trolley (with mass M) moves on the direction x and has
a suspension point for the payload with mass m. It is suspended through
a cable of length L. Jib performs a rotation about a vertical axis z that
corresponds to the vertical shaft of the crane.
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The crane configuration is characterized by one vertical axis (in Figure 1, axis z), a
first horizontal axis, the radial axis (in Figure 1, axis x) in the direction of the trolley
displacement, and a second horizontal axis, perpendicular to the radial axis x (in Figure 1,
axis y). There are three controlled motions for slewing crane corresponding to these three
axes: a trolley translation along the axis x, a rotation of the crane about his vertical axis
z (slewing motion) and a vertical motion along the axis z with a variation of the length
L.

In order to describe the motion of the slewing crane, an equivalent kinematics scheme
with concentrated masses is represented in Figure 1.

Dynamics of the generalized slewing crane is represented as a multi-body system with
5 independent degrees of freedom, described by 5 Lagrangian coordinates qi:

q1 = r: radial position of the mass center of the trolley on the axis x
q2 = φ: slewing angle (rotation around the z axis)
q3 = l: hoisting position of the crane (along the z axis)
q4 = φx: sway angle tangential to the radial direction
q5 = φy: sway angle normal to the radial direction
If we refer to the energy, the following balance can be defined.

2.1. Potential energy. The potential energy of the load with mass m is given:

Vm = −mg · z + C (1)

where z is the position along the vertical, g is the gravity acceleration and C is an arbitrary
constant. Therefore, we have (with reference to Figure 1):

z = l cos φx cos φy (2)

And, therefore, it is obtained:

Vm ≡ δL = −mgl cos φx cos φy (3)

Um = −Vm = mgl cos φx cos φy (4)

2.2. Kinetic energy. The kinetic energy of the slewing crane is the sum of the corre-
sponding terms for the tower TT (with momentum of inertia JT ), for the boom (said also
“jib”) TB (with mass mB and position of the mass center rB), for the trolley TR (with
mass mR and position of the mass center r) and for the payload TL (with mass mL and
velocity of the mass center vL)

T = TT + TB + TR + TL (5)

TT =
1

2
JT φ̇2 (6)

TB =
1

2
mBr2

Bφ̇2 (7)

TR =
1

2
mR

(
r2φ2 + ṙ2

)
(8)

TL =
1

2
mLv2

L (9)

In order to simplify the final system of Lagrange equations, we take account of only
small sway angles. That means the following assumptions:

sin φx ≈ φx, sin φy ≈ φy, cos φx ≈ 1, cos φy ≈ 1 (10)
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With this assumption, the velocity vL of the payload can be obtained defining his
expression in terms of the Lagrangian coordinates. In this way, it is possible to obtain,
for the term TL, the following expression:

TL =
1

2
mL


φ̇2 (lφx + r)2 +

(
φxl̇ + φ̇xl + ṙ

)2

+ (lφ̇φy)
2 +

(
l̇φy + lφ̇y

)2

+ l̇2

+ (lφ̇xφx)
2 + (lφ̇yφy)

2 + 2φ̇ (lφx + r)
(
l̇φy + lφ̇y

)
−2φ̇

(
φxl̇ + φ̇xl + ṙ

)
(lφy) − 2φ̇xφxll̇ − 2φ̇yφyll̇ + 2φ̇xφ̇yφxφyl

2

 (11)

2.3. Lagrange equations. Establishing the Lagrange function as:

L = T + U (12)

it is possible to apply the Lagrange equations

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi

= Qi (13)

Defining the five components for the generalized forces Qi in the following way:

Q1 = Fr, Q2 = M, Q3 = Fz, Q4 = Fx, Q5 = Fy (14)

where Fr, M , Fz, Fx, Fy are the generalized, non-conservative, dissipative and active
forces working on the system. Particularly Fx and Fy represent the components, on the
axes x and y, of air resistance forces acting on the payload and on the hoisting system,
the components of the wind force, the components of the forces due to the damping of
the rotation movement and due to the structure’s elasticity of the hoisting system.

At the end of our calculations, we are able to obtain the five Lagrange equations in the
corresponding five Lagrangian coordinates and their derivative with respect to time:

(mR + mL) r̈ − mLlφyφ̈ + mLφxl̈ + mLlφ̈x

−φ̇2
[
mRr + mL (r + lφx)

2] + 2mL

(
φ̇xl̇ − φy l̇φ̇ − φylφ̇

)
= Fr

(15)

JT φ̈ − mLlφyr̈ + mLrφy l̈ + mLrlφ̈y

+2
{

mL

(
lφxṙφ̇ + lφ̇xrφ̇ + l̇φxrφ̇ + rṙφ̇ + l̇φ̇yr

)
+ mRrṙφ̇

}
= M

(16)

φxr̈ + l̈ + rφyφ̈ − rφxφ̇
2 + 2ṙφ̇φy − g = Fz/mL

(17){
r̈ − lφyφ̈ + lφ̈x − (r + lφx) φ̇2 + 2

(
l̇φ̇x − lφ̇yφ̇ − l̇φyφ̇

)
+ gφx

}
−

(
l̇2φx

)/
l = Fx/mL

(18)

{
(r + lφx) φ̈ + lφ̈y − lφyφ̇

2 + 2
(
l̇φ̇y + ṙφ̇ + lφ̇xφ̇ + l̇φxφ̇

)
+ gφy

}
−

(
l̇2φy

)/
l = Fy/mL

(19)

So, the multiple degrees of freedom rotary crane system results defined by the five dif-
ferential equations where the terms relative to the centrifugal and Coriolis forces logically
appear.
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2.4. Pendulum with cable flexibility. Although the model of the pendulum is able
to describe the real physical situation of the payload attached to the slewing crane, this
model is not able to perform really well if compared with the realistic situation. Typically,
this model estimates again the period time too low for all cable lengths. A too small period
time can be the cause of too small cable lengths and very responsive cable forces.

It is therefore likely that the assumption of an infinite stiffness of the cable is the major
factor to consider for this difference.

In general, considering the equations of the motion modeling the crane dynamics, there
exist some damping in the response of the model. When we take a look at the non-
linear equations of motion, velocity dependent terms can be seen in the second order
time-derivatives of the constraint equations, which are part of the system. These terms
are the cause of the damping. However, this damping is relatively small and not a good
approximation of the damping in a real crane.

We must switch to another model, that is exactly the same as the one presented in the
previous section but now extended with a certain stiffness k and damping b of the cable
material, as represented in Figure 2 where the cable has a parallel spring and damper. In
this case, the period time T of the pendulum is increased compared to the model without
cable flexibility. Part of this increase is due to the elongation of the cable introduced by
the finite cable stiffness. The cable stiffness and damping are given by:

kcable =
k

L
(20)

bcable =
b

L
(21)

Being the cable stiffness and damping dependent from the length, the correction on
the period time T is not the same for every length. When the cable length is short, the
stiffness will be larger and the model will approximate the model without cable flexibility.

Figure 2. Representation of the cable flexibility. The cable has cable
stiffness k, damping b, and length L. φ is the sway angle (tangential or
radial) with respect to the vertical.
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However, the elongation of the cable is not the only cause of the increase in period
time. Typically, the elongation of the cable with classic load parameters at a length of 20
m is only 0.15 m.

Therefore, the biggest part of the increase in period time comes from the phase delay
introduced by the cable stiffness. That is due to the fact that, as a consequence of the
inclination of the cable, it also exerts a horizontal force on the load. When the cable has
a finite stiffness, this force will be applied with a phase delay that will cause an increase
of the period time with respect to an infinite cable stiffness.

Also the damping parameter of the cable is an important factor in the total damping
of the movement and has to be absolutely considered.

Relative to the term of the potential energy corresponding to the contribution of the
elongation, we can obtain, in the first approximation of a linear pendulum (being k the
cable stiffness coefficient and u the cable elongation due to the finite stiffness):

∂Vu

∂φ
≡ 1

2
ku2 = kl2φ (22)

2.5. Equations solution. Because the goal is to obtain a strategy in order to reduce
the oscillatory motion of slewing crane payload, we will concentrate on the last Equations
(18) and (19) involving the two variables φx and φy corresponding to the two oscillatory
degrees of freedom.

In fact, in contrast to the linear movements, a rotation movement generates two com-
ponents of sway. This sway angle exhibits non-zero components φx and φy corresponding
to the two oscillatory degrees of freedom in the two perpendicular directions x and y.
The second component φy along the axis y is generated by the variation of the velocity of
the suspension point and can be eliminated by acting only on the control of the rotation
movement. Instead of this, the other component φx along the axis x is generated by
the centrifugal force. This force causes a movement of the load that is directed along
a perpendicular plane xz. Therefore, the component φx cannot be eliminated by acting
on the control of the rotation movement, but it involves acting also on the control the
translation movement along the axis x, that is acting on the trolley movement.

As consequence of that, the centrifugal force produces the movement of the load along
the axis x, even when the rotation movement takes place at a constant velocity.

Disregarding the terms of superior order in (18) and (19) and considering all the trigono-
metric terms, we obtain:

φ̈x = 1/l

{
−g sin φx − r̈ cos φx + φ2 · (r + l sin φx) cos φx

+
(
l̇ − kf

)
· φ̇x + kl sin φx + [(kw,x · ṙ)/ml]

}
(23)

φ̈y = 1/l

{
−g sin φy − rφ̈ cos φy + φ2 · (l sin φy) cos φy

+
(
l̇ − kf

)
· φ̇y + kl sin φy + [(kw,y · rφ̇)/ml]

}
(24)

where kf is the friction coefficient with a fixed value, at prior fixed depending on the
considered axis. k is the cable stiffness coefficient. kw,x is the wind coefficient (positive
or negative) due to the force of the wind in the x direction. kw,y is the wind coefficient

(positive or negative) due to the force of the wind in the y direction. l̇ is the derivative
of the length l (that is the velocity of the vertical movement along the axis Z). r̈ is the
acceleration of the trolley movement along the axis x, φ̈ is the angular acceleration of the
slewing movement along the axis y. ṙ is the acceleration of the trolley movement along
the axis x, and φ̇ is the angular velocity of the slewing movement along the axis y. g
obviously is the gravity acceleration and ml is the mass of the payload.
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In order to obtain the control of the load sway, this method requires a control device.
This control device calculates the angles φx and φy of the oscillation of the load in the
directions x and y, and the angular velocities φ̇x and φ̇y of the same angles of sway. In
order to obtain them, the control device uses only the information of the length of the
pendulum, the information of the speed and acceleration of the trolley movement along
the axis x, the information of the speed and acceleration of the slewing movement along
the axis y and the information relative to the wind speed.

The control process is realized by the control device and includes a calculation step
for determining the angles of oscillation of the load and the velocities of the sway angles,
starting from the knowledge only of the information above described.

Practically, the control method calculates the described data through an iterative pro-
cess using the velocity and acceleration of the sway angles.

The calculation uses (23) and (24) in order to define the successive step. This method
does not require means to measuring the sway angle.

The control device includes means to obtaining the length l of the suspension cable and
means to obtaining information relative to the distance r between the suspension point
of the load and the rotation axis z. As a first option, the distance r can be obtained by
integration starting from the reference velocity VRef (x) that is the input to the drive able
to control the motor causing the movement of the trolley in the direction x. Obviously, it
is assumed that the drive is able to control the speed reference with high rapidity. As a
second option, the distance r can be obtained by means of a sensor as a rotating encoder
on the shaft of the translation motor, or as an absolute encoder, or as a potentiometer
along the jib.

The control device also includes means to obtaining information relative to the velocity
φ̇ of the movement of the slewing along the direction y. As a first option, the velocity
φ̇ of the movement of the slewing can be obtained directly from the reference velocity
VRef (y) that is the input to the drive able to control the motor causing the movement of
the slewing in the direction y. Obviously, it is assumed that the drive controls the speed
reference with high rapidity. As a second option, the velocity φ̇ of the movement of the
trolley can be obtained by a velocity estimation generated in the variable speed drive
responsible to control the motor causing the movement of the slewing in the direction y.
As a third option, the velocity of the movement of the trolley φ̇ can be obtained by a
measurement of the real translational velocity of the slewing. However, this option needs
the use of a motion sensor.

The device is able to regulate the system and must include an estimator module and a
correction module.

The estimator module receives as input the length l of the cable, the velocity φ̇ of the
movement of the slewing relative to the y direction (velocity of the angular rotation) and
the distance r between the suspension point of the load and the rotation axis z.

In order to compute the sway angle and the velocity of the sway angle, this method uses
(23) and (24) representing a mathematical model of a rotational pendulum with damping.

Starting from (23), φx, φ̇x and φ̈x are internal variables which are obtained with an
iterative method that can be represented, at any time t, in the following way:

ṙt = (rt − rt−1) · ∆t (25)

r̈t = (ṙt − ṙt−1) · ∆t (26)

l̇t = (lt − lt−1) · ∆t (27)

φ̈x,t = 1/lt

{
−g sin φx,t − r̈t cos φx,t + φ2

t · (rt + lt sin φx,t) cos φx,t

+
(
l̇t − kf

)
· φ̇x,t + klt sin φx,t + [(kw,x · ṙt)/ml]

}
(28)
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φ̇x,t = φ̇x,t−1 + φ̈x,t−1 · ∆t (29)

φx,t = φx,t−1 + φ̇x,t−1 · ∆t (30)

In these equations, φx,t and φx,t−1 represent the sway angles along the x direction
respectively at the time t and at the previous time t − 1. φ̇x,t and φ̇x,t−1 represent the
velocities of the sway angle along the x direction respectively at the time t and at the
previous time t − 1. φ̈x,t and φ̈x,t−1 represent the accelerations of the sway angle along
the x direction respectively at the time t and at the previous time t− 1. r̈t represents the
acceleration of the movement of the trolley relative to the x direction at the time t. ṙt

and ṙt−1 represent the velocities of the movement of the trolley relative to the x direction
respectively at the time t and at the previous time t − 1. l̇t represents the velocity of
the movement of the hoisting relative to the z vertical direction at the time t. lt and lt−1

represent the length of the cable respectively at the time t and at the previous time t− 1.
∆t represents the time difference between the instant t and the instant t − 1.

The iterative process starts with the hypothesis that at the initial instant the values
of the sway angle φx, the velocity of the sway angle φ̇x and the acceleration of the sway
angle φ̈x are equal to zero, that is the pendulum is initially in quiet conditions.

Therefore, for t = 0, we have:

φx,0 = φ̇x,0 = φ̈x,0 = 0 (31)

The considerations defined for (23) can be repeated for (24) relative to the tangential
sway angle φy.

In fact, starting from (24), φy, φ̇y and φ̈y are internal variables which are obtained with
an iterative method that can be represented, at any time t, in the following way:

φ̈t = (φ̇t − φ̇t−1) · ∆t (32)

l̇t = (lt − lt−1) · ∆t (33)

φ̈y,t = 1/lt

{
−g sin φy,t − rtφ̈t cos φy,t + φ2

t · (lt sin φy,t) cos φy,t

+
(
l̇t − kf

)
· φ̇y,t + klt sin φy,t + [(kw,y · rtφ̇t)/ml]

}
(34)

φ̇y,t = φ̇y,t−1 + φ̈y,t−1 · ∆t (35)

φy,t = φy,t−1 + φ̇y,t−1 · ∆t (36)

In these equations, φ̇y,t and φ̇y,t−1 represent the velocities of the sway angle along the y
direction respectively at the time t and at the previous time t−1. φ̈y,t and φ̈y,t−1 represent
the accelerations of the sway angle along the y direction respectively at the time t and
at the previous time t− 1. φ̈t represents the angular acceleration of the movement of the
slewing axis relative to the y direction at the time t. φ̇t and φ̇t−1 represent the angular
velocities of the movement of the slewing axis relative to the y direction respectively at
the time t and at the previous time t−1. l̇t represents the velocity of the movement of the
hoisting relative to the z vertical direction at the time t. lt and lt−1 represent the length
of the cable respectively at the time t and at the previous time t − 1. ∆t represents the
time difference between the instant t and the instant t − 1.

The iterative process starts with the hypothesis that at the initial instant the values
of the sway angle φy, the velocity of the sway angle φ̇y and the acceleration of the sway
angle φ̈y are equal to zero, that is the pendulum is initially in quiet conditions.

Therefore, for t = 0, we have:

φy,0 = φ̇y,0 = φ̈y,0 = 0 (37)

The control device is able to control, at the same time, the movements along the axes
x, y and z, being the axis z the vertical axis relative to the hoisting movement.
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It must be underlined that (23) contains a specific important term:

φ2 · (r + l sin φx) cos φx.

As it can be seen, this term is always positive when the angular velocity φ is different from
zero. This term corresponds to the physical fact of the existence of the centrifugal force.
Therefore, as soon as a rotation is affected (also when the angular acceleration φ̈ is equal
to zero) a sway angle φx is obtained in direction x perpendicular to the direction of the
instantaneous angular rotation. It is important to establish that the goal of the control
is not to eliminate this sway during the rotation movement because this perpendicular
sway is a natural part of the rotational movement, but to arrive at an equilibrium position
with a non-zero sway (in x direction) of the load corresponding to a non-zero angle during
the rotation. Obviously, at the end of the rotational movement, the sway angle φx must
be equal to zero. Therefore, during the rotational movement, we will have a φx,eq angle
with a non-zero value. The goal will be to not cancel this angle but to stabilize the load
without oscillations with a fixed inclination corresponding to the φx,eq angle.

In a first approximation, this equilibrium angle is obtained as:

φx,eq = rφ2
/(

g − lφ2
)

(38)

As described above, the iterative method allows to the estimator module to calculate
in real time the estimated values of the sway angle and of the velocity of the sway angle.

To be able to synchronize this model with the real crane an observer has to be designed,
in order to verify that the system is observable.

Using the observer method (see, i.e., Srivastava et al. [12]) applied to (23) and (24),
we can determine the eigenvectors and corresponding eigenvalues. As consequence, the
observer gain matrix can be obtained.

Specifically, using an explicit form of control, we obtain the correction ∆ṙ of the velocity
of the movement along the axis X according to the following equation:

∆ṙ = K0,r · (φx − φx,eq) + K1,r · φ̇x (39)

wherein K0,r and K1,r are the observer gains applied respectively to the effective sway
angle (φx − φx,eq) and to the velocity φ̇x of the sway angle along the axis x, and ∆ṙ is
the correction signal that is added to the velocity set-point ṙset along the axis x.

In other words, ẋset is the set-point velocity defined either by the crane’s operator during
a manual controlled movement or by the automatic definition of the velocity during an
automatic controlled movement.

Therefore, the reference of velocity applied as an input to the inverter driving the motor
relative to the axis x is the velocity set ṙref , that is obtained in the following way:

ṙref = ṙset + ∆ṙ (40)

The K0,r and K1,r observer gains are functions of the cable length, in order to optimize
the velocity corrections according to the length of the pendulum.

Exactly the same considerations can be applied to the correction ∆φ̇ of the angular
velocity of the movement along the axis y according to the following equation:

∆φ̇ = K0,φ · φy + K1,φ · φ̇y (41)

wherein K0,φ and K1,φ are the observer gains applied respectively to the sway angle φy

and to the velocity φ̇y of the sway angle along the axis y, and ∆φ̇ is the correction signal
that is added to the velocity set-point φ̇set along the axis y.

Therefore, the reference of velocity applied as an input to the inverter driving the motor
relative to the axis y is the angular velocity set φ̇ref , that is obtained in the following way:

φ̇ref = φ̇set + ∆φ̇ (42)
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The K0,φ and K1,φ observer gains are functions of the cable length, in order to optimize
the velocity corrections according to the length of the pendulum.

In a general way, as previously described, during the rotational movement more than the
tangential sway angle φy, also a sway angle φx in a direction perpendicular to the slewing
movement is obtained; this angle in direction x can be deleted only by acting on the
translation movement of the trolley. However, if no translation movement is requested,
the final position of the suspension point in direction x should be equal to the initial
position. In order to obtain that, it can be possible to memorize the initial position r
of the trolley. After that, we could define a correction velocity to the trolley in order to
come back the suspension point of the payload on the trolley to the initial position. That
is important, above all, in the automatically controlled movements.

3. Implementations and Results. As consequence of his simplicity, the control device
can be integrated in a Plc.

This iterative method does not require any preliminary stage of modeling in order to
know parameters as a measure of the sway angle or a measure of the current flux of the
motor, with the aim to define a transfer function between the velocity of the crane and
the sway angle.

Only, the correction method uses the calculated values of the sway angles and of the
sway angles velocities in order to compute the correction at the trolley and slewing velocity
to add to the set-point velocities (arriving from the operator or defined in an automatic
way), obtaining the speed profiles.

A drive controller generates the speed profiles of the movements relative to the trolley
(trolley movement) and relative to the slewing (slewing movement) and it supplies the
information of the speed profile to the drive able to control the corresponding motor.

Figure 3 shows a simplified diagram of the control device according to this method
relative to the movement of a load along the horizontal axis (trolley or/and slewing axes).
In general the control device 10 is made with an estimator module 11 connected with an
input-output module 12. Practically, the estimator module 11 receives the inputs from
the input-output module 12. These inputs are the length l of the cable, the vertical
velocity of the cable, the information relative to the non-conservative component of the
generalized force Qφ (for example, the kf friction coefficient), the speed reference of the
trolley VSet Trolley and of the crane slewing VSet Slew from the operator or from the controller.
After that, the estimator module 11 computes the speed profile to be supplied to the
motors in order to obtain the anti-sway functionality.

The estimator module was practically realized with a Plc. In fact, in order to verify
the theoretical results of the investigation, the whole system of governing equation was
simulated in Codesys V3.5 SP7. That is because Codesys, in structured language, is
actually the most common way to realizing function blocks in industrial motion control
environment.

The cyclic task, where the function block of the used Plc was realized, had a time of
updating equal to 30 ms.

The Function Blocks (FB’s) used were two: the first FB computes the speed profiles
necessary to obtain the anti-sway functionality and the corresponding actual sway angles,
and the second FB is used to compute the actual length l of the cable and the correspond-
ing vertical speed using the data coming from an external unit (i.e., encoders) connected
to the motor of the corresponding movement.

The speed reference is the target value to which the speed must reach, defined from the
crane operator or from the automatic control. Usually, it is defined in Hz, as a consequence
of the way in which the electric motors are defined. At the speed in Hz on the fast shaft
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Figure 3. Diagram describing the control device, the input-output, the
drives and corresponding motors controlled by the control device

(that is on the motor) a velocity corresponds on the slow shaft (that is on the wheels
moving on the rails of the trolley or on the shaft controlling the slewing motion of the
jib), depending on the reduction gearing from the motor to the wheel. Typically, the max
speed of a trolley can be from 0.2 m/s to also more 2 m/s. The max speed of a slewing
motion (measured in rad/s) can arrive to 0.5 rad/s.

The ramp set is the value of the time that would be necessary for the linear motor
ramp to reach the speed reference. Based on the speed reference, the estimator module
computes the real speed profile in order to have the anti-sway effect. Obviously, the speed
profile is longer of the linear ramp set.

The cable length has a very important influence on the speed profile, because the greater
the height is (and so the cable length), the greater the time of the speed profile is. In a
general way, it is very important to reduce the time of the speed profile in order to obtain
a fast answer to the commands of the tower crane movement.

In Figure 4, we can see the profiles of the angular velocity profile for the slewing
movement and the corresponding profile of the tangential sway angle.

Instead, in Figure 5, the profiles of the velocity profile of the radial movement and the
corresponding profile of the perpendicular sway angle are shown. That in correspondence
of the same basic data describes in the figures. In this way, a fundamental difference
stands out: we can see in Figure 5 that the perpendicular sway angle φx does not go to
zero, but tends to a constant value, the φx,eq angle, as described previously. In fact, the
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Figure 4. A graph relative to the angular velocity profile φ̇ref of the slew-
ing movement and the corresponding profile of the tangential sway angle
φy. That is in correspondence to a command relative to the only slewing
movement. The specific values are: speed reference = 30 Hz, ramp set =
1.5 s, cable length = 10.5 m, cycle time of the Plc = 30 ms.

goal of the control is not to eliminate this sway during the rotation movement, because
this perpendicular sway is a natural part of the rotational movement, but to arrive at an
equilibrium position with a non-zero sway (in x direction) of the load, corresponding to
a non-zero angle.

Some subsequent commands (4 commands) are shown to go to different velocities (but
not to zero velocity) for the slewing movement in Figure 6. We can see that the corre-
sponding sway angles, at the end of the movement, go to zero.

Therefore, we see that, with this method, it is possible to obtain the total damping of
the sway changing many times the velocity set, also if the previous damping control of
the oscillations is again in progress (see Figure 6). That is fundamental because the usual
control of the tower crane is typically manual, by a human operator: typically, he will
change often the target velocity with his command.

This characteristic is typical of the “command profile” method, as the method developed
in this work. For example, the works of Barisa et al. [6] or of Böck and Kugi [7], using
the “model predictive control”, are optimized for the automatic control, where there is a
pre-defined position target. However, when the control is manual, the method defined in
this work is preferable.

An important characteristic is to be highlighted in Figure 7. Varying the basic pa-
rameters for the profiles, the same profiles for the velocity can be very fast, particularly
corresponding to a very fast stop with anti-sway. This is a relevant result in order to
control the crane with high performance for the answer to the command. It is possible
to note that, in order to obtain the wanted fast stop profile, the trolley speed has to
take negative values. That corresponds to little slow movements in opposite direction to
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Figure 5. A graph relative to the velocity profile ṙref of the radial move-
ment and the corresponding profile of the perpendicular sway angle φx.
That is in correspondence to a command relative to the only radial move-
ment. In other words, only a trolley command is given. The specific values
are: speed reference = 35 Hz, ramp set = 1.5 s, cable length = 10.5 m,
cycle time of the Plc = 30 ms.

that of the commanded movement, necessary so that the corresponding sway angle profile
reduces to zero in a fast way (as it is possible to see in Figure 7).

Also in the work of of Stanchev and Velachev [10], the “command smoothing” method
was used. Nevertheless, in that work, profiles for the velocity were not defined as very
fast. In fact, in that work the possibility to have a negative velocity for the trolley or for
the slewing (with the goal to have a very fast stop) was not hypothesized. Nevertheless,
this characteristic is highly important for tower cranes.

A further relevant aspect can be considered examining Figure 8. In that figure, not
only the profile for the slewing velocity is very short (that is with a few times, as in the
previous Figure 7), but, above all, the trolley velocity (despite being little, only some Hz)
is not zero, although the trolley speed reference is zero: that is, also without a trolley
command by the operator. That corresponds to the fact described previously: during the
rotational movement, beyond that the tangential sway angle φy, also a sway angle φx in
a direction perpendicular to the slewing movement is formed. This angle in direction x,
due to the tangential acceleration caused by the variation of the slewing speed, can be
deleted only by acting on the translation movement of the trolley.

4. Conclusions. In this paper, the sway control for a tower (jib) crane was investigated.
A solution for the effective non-linear equations of motion is obtained defining an iterative
method for the solution of the movement equation. It was considered also the cable
flexibility and stiffness that cause a sensible variation of the period time for the pendulum
relative to the oscillations of the payload.
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Figure 6. A graph relative to the angular velocity profile φ̇ref of the slew-
ing movement and the corresponding profile of the tangential sway angle
φy. That is in correspondence to some subsequent commands of the slewing
movement by the operator. The specific values are: initial slewing speed
reference = 30 Hz, final slewing speed reference = 10 Hz, ramp set = 1.5 s,
cable length = 10.5 m, cycle time of the Plc = 30 ms.

Figure 7. A graph relative to the angular velocity profile φ̇ref of the slew-
ing movement and the corresponding profile of the tangential sway angle
φy. That is in correspondence to a command relative to the only slewing
movement. The specific values are: speed reference = 30 Hz, ramp set =
3.0 s, cable length = 10.5 m, cycle time of the Plc = 30 ms.
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Figure 8. A graph relative to the angular velocity profile φ̇ref of the slew-
ing movement and the velocity profile ṙref of the radial movement. That
is in correspondence to only a command of the slewing movement. The
specific values are: slewing speed reference = 30 Hz, trolley speed reference
= 0 Hz, ramp set = 3.0 s, cable length = 10.5 m, cycle time of the Plc = 30
ms. There is also a command to stop the movement (Final slewing speed
reference = 0 Hz).

Besides, the present work considered also the continuous variation of the hoisting height
for the suspension point of the payload and the variation of the corresponding velocity
and acceleration.

A detailed mathematical model is developed which considered also the non-linear com-
ponents of the forces, as centrifugal and Coriolis forces on the system.

The obtained velocity profile can generate a very fast stop while the anti-sway func-
tionality is activated: that allows fast control from the operator in case of manual control.

Possible future developments of this work may concern two fundamental aspects. On
the one side, it should be important to obtain a solution that takes account of, in some
way, the most important vibrational modes of the tower structure: they can influence
the sway of the payload, at least in certain situations. On the other side, the effect of
external disturbances such as wind is to be studied in a deep way, because they have very
significant effects on the tower crane’s performances.
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