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ABSTRACT. Learning to rank has attracted increasing attention in recent years. Com-
pared with the existing works, which mainly focus on the dense model, it is more challeng-
ing to design the ranking model with sparsity, especially when data is of large scale. To
address the issue, in this paper, we present a mini-batch stochastic gradient method for
sparse ranking. The algorithm begins with formulating sparse learning to rank as a mini-
batch based convex optimization problem with L1 regularization. Then for the problem
that simple adding L1 term does not necessarily induce the sparsity, FTRL (Follow-The-
Regularized-Leader) method is adopted for inner optimization, which can obtain good
solution with high sparsity. A feature-wise learning rates updating strategy is also sug-
gested, and with this strategy, the performance of the proposed algorithm can be further
improved. Empirical studies on LETOR data sets demonstrate the significant advantage
of the proposed algorithm in comparison with several state-of-the-art ranking methods.
Keywords: Learning to rank, Sparse model, FTRL, Mini-batch

1. Introduction. Learning to rank has attracted the focus of many machine learning
researchers in the last decade because of its growing applications in the areas like document
retrieval [1, 2], recommendation systems [3, 4], and disease diagnosis [5]. Rank learning,
when applied to document retrieval, is a task as follows. In training, a ranking model is
constructed with data consisting of queries, their corresponding retrieved documents, and
relevance levels given by humans. In testing, given a new query, the documents are sorted
by using this trained ranking model. Due to its wide usages, various ranking algorithms
have been developed, which can be mainly divided into three categories. The pointwise
methods transform ranking into classification or regression by learning the numeric rank
value of documents as an absolute quantity [6, 7, 8, 9]. The pairwise methods, consider the
pairs of documents as independent variables and learn classification or regression models
to correctly order the training pairs [10, 11, 12, 13, 14, 15]. While the listwise methods
solve the ranking problem in a straightforward fashion, which learn the models by treating
each ranking list of documents for a query as a training instance [16, 17, 18, 19].

Those studies can achieve promising performances and obtain accurate models; how-
ever, in many ranking applications, such as computer vision [20] and disease diagnosis [5],
the number of features in training examples is large, which may cause great challenge to
the existing ranking methods. First, along with the number of available ranking features
mount up, ranking models become more complicated and worse interpretable. Secondly,
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as more and more features are incorporated into algorithms, some features may be noisy
or redundant, which results in poor generalization performance. Lastly, too many features
will make the learning procedure and the prediction procedure have more computational
cost. In machine learning area, sparse learning is an effective way to solve the prob-
lem. Thus recently, several algorithms have been proposed to tackle the issue of learning
sparse models for ranking. For example, Sun et al. were the first to propose sparse learn-
ing to rank algorithm, termed RSRank, which reduced ranking to an important weighted
pairwise classification with the L1 regularization [21]. Based on the theory of Fenchel
duality, Lai et al. developed an effective primal dual approach (FenchelRank) to solve the
sparse model for ranking [22]. Following this work, Lai et al. further presented a novel
efficient sparse algorithm, which is named SparseRank. Experimental results indicated
that SparseRank can obtain accurate model with high sparsity [23]. Different from the
works above, which all used L1 regularization, Laporte et al. got sparse ranking model
by adopting a non-convex [, (0 < p < 1) regularization [24].

Those works are worthwhile in the endeavor of achieving sparse ranking models with
competitive generalization performance; nevertheless, all of them are based on batch
learning, which means their computational costs are becoming higher with the number
of data getting larger. To tackle the issue, in this paper, we present the first work on
developing a mini-batch stochastic gradient method for sparse ranking, and the main
contributions of our work can be summarized as follows.

1) Based on the query level of learning to rank, we transform the sparse ranking into
a mini-batch based convex optimization problem with L1 regularization. For the
problem that simple adding L1 cannot necessarily lead to sparsity, FTRL technique
is adopted as the inner optimizer, which can obtain effective sparse model with
comparable results.

2) A feature-wise learning rates updating strategy is also suggested, which exploits the
knowledge of historical gradients to perform more informative learning. Specifically,
it assigns the frequently occurring features with low learning rates while the rarely
occurring features are given high learning rates. With this strategy, the performance
of the proposed algorithm can be further improved.

3) We empirically verify our algorithm on the LETOR data sets, and experimental re-
sults demonstrate that when compared with other state-of-the-art ranking methods,
the algorithm we proposed has superior performance in terms of accuracy, sparsity
and computational efficiency.

The remainder of the paper is organized as follows. In Section 2, the related work is
presented. Section 3 gives the details of our proposed algorithm and the empirical results
on the benchmark data sets are reported in Section 4. Section 5 concludes the paper and
discusses the future work.

2. Realted Work.

2.1. Learning to rank. The process of learning to rank can be described as follows.
Assuming that we have a collection of m queries for training, denoted by {ql, G2y -, qm} €
Q. For each query ¢ (1 < k < m), we have a collection of nj, documents {d,lg, dz,... ,dZ’“},
whose relevance to g, is given by a vector y, = { YLy ... ,yzk}, and each relevance label
yi € {ry,ra,...,m}, with r; =11 = -+ > r;. The goal is to learn from these examples
a ranking function which, given a new query ¢, can rank the documents associated with
the query such that more relevant documents are ranked higher than less relevant ones.
More formally, we denote z], = ¢ (qk,d‘;) € R? as a query-document feature, which
maps the j-th query-document pair to a d-dimensional feature vector. The ranker receives
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labeled samples of the form S = {sy, sa,...,8n}, where s, = {(z},y}), ..., (xp*, yp*)} is
1
Sk Szk

the training example associated with the k-th query. The aim of learning to rank is to
learn a function f: RY — R that ranks a document d’ associated with a future query g
higher than a document d’, if y* = 3. Following the common practice in learning to rank,
in this paper, we are interested in linear ranking function given by:

f(s1) =wh -9 (6 (am di) o) =0’ -9 (w1, 1) (1)
where ¢ represents a mapping function from input to output.

To obtain accurate ranking function, various algorithms have been proposed, which
can be grouped into three categories: pointwise methods, pairwise methods, and listwise
methods. Among them, the latter two are more popular, especially pairwise methods,
since the training data of this category can be easily obtained from the user clickthrough
data [25], they have attracted many researchers, and three classic ranking algorithms, such
as RankNet [10], RankBoost [12] and Ranking SVM (Ranking Support Vector Machine)
[13] all belong to this type.

2.2. Sparse learning to rank algorithms. Although there are many works on obtain-
ing models with high accuracy, much less effort has been made on sparse learning to rank,
which is very important in the ranking applications, whose number of features is large.

Sun et al. presented the first work on inducing sparsity into the ranking algorithm,
which is termed as RSRank [21]. Specifically, the authors reduced ranking to an im-
portant weighted pairwise classification with L1 regularization, and to achieve sparsity,
truncated gradient descent is then utilized. Experimental results on the LETOR data sets
showed that RSRank can obtain accurate model with good sparsity. Following this work,
Lai et al. presented a convergence provable primal-dual algorithm, named FenchelRank
[22]. The algorithm defined an L1 regularized pairwise ranking loss, and adopted the
properties of the Fenchel duality to solve the inner optimization. The theoretical anal-
ysis of FenchelRank proved after at most O(1/¢) iterations, the proposed algorithm can
guarantee the obtainment of an epsilon-accurate solution. Empirical evaluation on the
benchmark data sets demonstrated FenchelRank can not only provide a better accuracy
than several state-of-the-art algorithms, but also outperform RSRank in terms of sparsity.
In spite of the promising performance of FenchelRank, however, its inner iteration is com-
plex, and to further improve the computational efficiency, Lai et al. developed a simple
yet efficient algorithm (termed SparseRank) to solve the sparse learning to rank problem
[23]. It employed the gradient descent method for the optimization, and by taking a small
proper Lipschitz constant K as input, SparseRank can reduce the number of iterations
greatly. Experimental results demonstrated the competitive performance of SparseRank
in terms of both computational cost and quality of solution. Different from the sparse
ranking algorithms above, which all adopt L1 convex regularization, Laporte et al. pro-
posed a non-convex [, (0 < p < 1) regularization for the sparse model in learning to rank
(termed as MCP) [24]. Numerical results on the LETOR benchmark data sets justified
that MCP can lead to more sparsity in the ranking models while preserving comparable
prediction accuracy. It is worth noting that there are also some works on applying the
sparse ranking algorithms to different area, such as expert ranking [26] and image retrieval
[27]; however, since the focus of this paper is on the sparse algorithm itself, we omit these
applications, and interested reader can refer [26, 27].

In spite that the sparse ranking algorithms mentioned before can provide accurate
model with much less features, all of them based on the batch learning, which indicates
when the data set is of large scale, the computational cost of those algorithms may be
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expensive. Meanwhile, a fact is that in some real ranking applications, such as image
retrieval [26], the numbers of examples and features are both large. Thus, how to develop
efficient sparse ranking algorithm under this situation is an important yet challenging
issue. To address the issue, in the following, we first relate sparse learning and stochastic
learning together in approaching the problem of learning to rank, and propose a mini-
batch stochastic gradient method to obtain sparse ranker.

Before we further present the details of the proposed algorithm, we briefly review some
related works on the mini-batch stochastic gradient method. In machine learning area, it
is well known that stochastic learning is very suitable for the applications with large scale
28, 29, 30]. Compared with the traditional SGD (Stochastic Gradient Descent), which
only utilizes one example at each iteration, the mini-batch method aggregates multiple
examples during one iteration, and can simultaneously achieve good accuracy and high
computational efficiency [31, 32, 33]. Due to the merits above, the mini-batch stochastic
gradient method has been widely used in many large scale machine learning problems. For
example, Brockmeier et al., Tao et al. and Liu and Takac applied mini-batch method to
solving the different classification problems, whose data sizes are very large [34, 35, 36,
while Smith et al. and Wang et al. used it to design the efficient algorithms on the
regression problems [37, 38]. However, different from the works above, in this paper, we
firstly apply the mini-batch method to solving the sparse ranking problem.

3. The Proposed Algorithm: MinBatSRank.

3.1. The framework and objective function. The algorithm we proposed belongs
to pairwise method, which is similar to most of the existing sparse ranking algorithms
[21, 22, 23, 24]. Specifically, we transform the ranking problem to a binary classification,
and for each document pair (xz, xfc) in a given query ¢; with different relevance labels, a
binary classification example :v,(;’] )
+1, else y,(;’] ) = —1. With the pairwise data above, we adopt the mini-batch framework
used in classification. However, we shall note that different from classification, learning
to rank has the property of “query level”, which means only the examples in the same
query can be used in one batch. Based on constraint above, we consider the stream of
T pairwise examples to be composed of b batches: 7, Zs,...,7,, and any pairs in Z;

(1 <t <b) belong to the same query. Then the loss function of batch Z; can be defined

as U(Z;,w) = > l <:1c,(j’j),y,(j’j),w), and the losses of b batches are defined as
(x(ki’j),y,ii’j)>€Zt

W Zy,..., 2, w) = Zle [(Zs, w), where [(z,y,w) is a suitable function which measures

the discrepancy between a true label y and a predicted value from using parameter w,

where w € R? is the learned linear ranker. In this paper, we harness the squared hinge
loss below, which is often used in learning to rank [22, 23, 24].

l <xl(j’j), yl({”), w) = max (O, 1- yliz’])wx,gz’])> (2)

Based on Formula (2), we adopt the technique of online-to-batch conversion [39], and
define the ¢-th penalty function as:

Li(w) =UZ1,...,Z,w) = U2y, ..., 2 1,w) (3)
With Equation (3), the proposed sparse ranking model can be obtained by solving the

following optimization problem:

OP1 w1 = argmin { Ly (w) + A||w||1 } (4)

weR

is created. If yi = yi, then the label of y,(f’j ) is set as
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where A > 0 is a constant that controls the trade-off between training loss and regu-
larization term. It should be noted that for OP1, directly using traditional stochastic
optimization technique often fails to produce sparse solutions, since it belongs to black-
box method, and has limited capability of exploiting problem structure in solving L1
regularized learning problem [40].

3.2. The optimization method. To overcome the above problem, in this paper, we
adopt the FTRL (Follow-The-Regularized-Leader) method proposed by Mcmahan [41],
which can exploit the regularization structure, and obtain sparse solutions effectively.
The idea underlying FTRL is that it regards the objective function of Formula (4) as two
parts. The first part is A||w||;, which is L1 regularization. The second part is L;(w).
During the inner optimization, FTRL only takes the derivative of the second part, while
keeping the regularization unchanged. By doing so, it can achieve both good sparsity
and desirable performance. It should be mentioned that in the original work, to stabilize
the FTRL algorithm, the author added a third component: a strong convexity Bregman
divergence function, which forces the next iteration w;,; to lie close to the first ¢ rounds
output weights, and the main update of FTRL is written as:

weR

¢ ¢
(i :argmin{ZgT-w+)\]|w||1 +ZUT'B@(7~U,7~U7)} (5)

=1 T=1

where g, = OL.(w) denotes an arbitrary (sub) gradient of L.(w). o, and B,(w,w,) are

the learning rate parameter and the Bregman Divergence function, respectively. In this
paper, for B, (w,w,), we use the same setting as in [41], where By (w, w,) = 5||w — w- ||

Then with Formula (5), we can solve OP1 effectively, and the whole algorithm is described
in Algorithm 1.

Algorithm 1 FTRL Algorithm for Solving OP1

Input: training examples: 2, Zs, ..., Zy, the regularization parameter A\, the generalized
learning rate o,, the maximum number of iterations T
Initialize: ranking model wy € R?
1: fort=1,...,T do
2:

t t
w41 = arg min {ZQT cw Afwlly +5) o flw - wTHQ} (6)
=1

d
wER =1

3: end for
Output: return wr as the final ranking model

With Algorithm 1, we can obtain a sparse ranking model effectively. Note that as a
stochastic gradient based method, the learning rate parameter o, has great influence on
1 1

the final model, and in the original FTRL work, o is suggested to be set as o, = P

<nT = %) However, by taking a closer look at o,, we can find this setting can be

further improved, since during the inner optimization, o, is equally applied to all features
(coordinates), and it is clearly not the optimal behavior. Therefore, in the following,
inspired by Adaptive Gradient Updating (AGU) proposed by Duchi et al. [42], we provide
a feature-wise learning rates updating strategy, which employs the second order gradient
optimization technique, and can yield better performance for the final ranking model.
The intuition of this updating strategy is very natural, which considers the rare oc-
curring features as more informative and discriminative than those frequently occurring
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features. Thus, these informative rare occurring features should be updated with higher
learning rates by incorporating the geometrical property of the data observed in earlier
stages. Besides, by using the previously observed gradients, the updating process can
mitigate the possible effects of noise data. Thus based on this intuition, a feature-wise
learning rates updating strategy is presented, and the detail of it is demonstrated in
Algorithm 2.

Algorithm 2 Feature-wise Learning Rates Updating Strategy
Input: v>0,p>0
Variables: 7, € R?, g. € R?, D. € R% and H, € R?
Initialize: ny =0, g0 =0, Dy =0, Hy=0

1: forr=1,...,7T do

2: Receive (sub)gradient g, = L, (w)

3: forj=1,...,ddo
4: Update 9rj = 9rj + (grfl,j)Q
5: Set H.; = \/p+ gr;
6: Nrj = HT_l =Y
1 1
T: Orj = — —
Nrj Nr—1,5
8: end for
9: end for
Output: o,

In Algorithm 2, ~ is an initial learning rate, and p is a controlling parameter, which
ensures the early learning rate not to be too high.
According to Algorithm 2, the solution of Equation (6) is presented in Theorem 3.1.

Theorem 3.1. The solution of Equation (6) is wir1 = [Wip11, .., Wip14), and for j €
{1,...,d}
0 if Jorsl < A
Wip1j =& — (H;l .fy) (vp;—A) ifo; > A (7)

_ (Ht_l . /Y) (Ut,j + )\) Zf 'Ut,j < —)\
where vy j = Zizl (grj — Orj - wrj).

Proof: We can re-write Equation (6) as:

t t
v = i (3= 3o )
T=1 T=1

weRY

t t
1 o 1 2
+§ ZUT wllz + B ZUT ) ”wT”Q}
=1 T=1

which can be further simplified as:

weERY

t
) 1 2
Wit :argmm{vt-w—i—)\Hle-ir52107' ”sz} (9)

where vy = Y0, (g — 07y - Wr ).
For a solution vector wiy1 = [Wit11,. .., Wer1,4] € R? we can compute each Wit
independently, where j € {1,...,d}. Thus, we begin the analysis by rewriting Formula
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t
. 1
Wiy j=argmin | vy j - wj+ A |w;|+= Z o, (w;)? (10)
’u}jeRd 2 ~—1
We take the derivative of Equation (10) with respect to w to zero and denote sgn(w)
as the sub-gradient of |wl;, and then have
t
v + A - sgn(w;) +ZUT-wj =0 (11)

T=1

{fweR -1<w<1} ifw=0
sgn(w) =4 1 ifw>0 (12)
-1 ifw<0

In the following, we will further discuss three cases for finding the solution of Equation
(11).

(1) If |ug ;| < A, w; = 0 satisfies the equality of Equation (12), when let sgn(w;) =
—2d e [-1, 1].

(2) If v; > A, then w; < 0. If not, assume that w; > 0, we have sgn(w;) = 1.
Substituting sgn(w;) = 1 into Equation (11), we obtain v, j+ A+ " _, o,-w; > v; -+ > 0.
This is a contradiction. Again assume that w; = 0, according to Equation (11), we have

sgn(w;) = —=L < —1, and this is a contradiction with sgn(w;) > —1. So we must have
w; < 0. According to Algorithm 2, the solution is w; = — (H; ' - ) (v; — A).
(3) Likewise, when v,; < —, we must have w; > 0. The solution is w; = — (H; ' - )
(V1 + A)-
Combining the three cases, we obtain
0 if |Ut,j’ S A
W1 =4 — (Ht_1 -'y) (v, —A) ifvg; > A

— (H;l . ’y) (Ut,j + /\) if Vg < —A

This concludes the proof.

With Algorithms 1 and 2, we can solve the OP1 efficiently. We name the proposed
mini-batch sparse ranking method as MinBatSRank, and in the next section, we will
evaluate MinBatSRank with other state-of-the-art methods on the benchmark data sets.

4. Experiments. In this section, we conduct a series of experiments based on LETOR
set to validate the performance of the proposed MinBatSRank by comparing it with several
representative baseline ranking algorithms. More specifically, we first present the experi-
mental setting (including data sets, comparison algorithms and evaluation metrics), and
then report the comparison results between the proposed algorithm and other baselines
(including dense and sparse ranking algorithms). Finally, we discuss the effectiveness of
feature-wise learning rates strategy in the proposed algorithm.

4.1. Experimental setting.

4.1.1. Data sets. The experimental sets are chosen from LETOR3.0 [43], which are con-
sidered as the benchmark data sets in learning to rank. In LETORS3.0, there are seven
data sets collected for four different search tasks of document retrieval: Topic Distilla-
tion (TD2003, TD2004), Home Page finding (HP2003, HP2004), Named Page finding
(NP2003, NP2004) and medical document retrieval (OHSUMED). In this work, to make
a fair comparison, we select one set from each search task. Specifically, we use TD2004,
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TABLE 1. Characteristics of experimental sets

Data set Queries | Features | Rel.levels | Query-document pairs
TD2004 75 64 2 74146
HP2004 75 64 2 74409
NP2004 75 64 2 73834
OHSUMED 106 45 3 16140

HP2004, NP2004 and OHSUMED as the experimental sets. Among them, the first three
are two-level set, and the last one (OHSUMED) is three-level ranking set. The detailed
characteristics of those four sets are depicted in Table 1.

For each set above, LETORS3.0 divides it into five folds and each fold contains a train-
ing/validation/test set, respectively. In the following experiments, we adopt the same
splits as LETOR 3.0 provides, and report the results by averaging on the five folds.

4.1.2. Comparison algorithms. In this paper, five representative algorithms are chosen
to compare with MinBatSRank. More specifically, we evaluate our algorithm from two
aspects. First, MinBatSRank is compared with three dense (L2 based) ranking algorithms,
which are ListNet [18], AdaRank-NDCG (Adaptive Rank-NDCG) [17], and RankSVM-
Struct [11]. The reason we choose them lies in the fact that they are all well-known
baselines in learning to rank. The former two belong to listwise method, and optimize
cross-entropy loss and NDCG criteria respectively. The third one RankSVM-Struct is a
pairwise approach, which defines pairwise loss function with structural SVM. Then we
compare MinBatSRank with two sparse ranking algorithms, i.e., SparseRank [23] and
FenchelRank [22], which are recently proposed methods with both high accuracy and
sparsity.

For fair comparison, all parameters of the five compared algorithms are set to the
recommended values from their work. While for the proposed method, we set p = 1,
and the parameters v, A are chosen from {2',...,271%} and {25,... 272}, respectively.
All the experimental results reported in this work are conducted on an PC with an Intel
Core i5-4590 CPU 3.30GHz, 4G internal storage and the Windows 7 SP1 64 bit operating
system.

4.1.3. FEwaluation measures. In this paper, we use two popular ranking metrics to evaluate
the effectiveness of the proposed method. The first one is NDCG (Normalized Discounted
Cumulative Gain) [44], which is the most common measure in learning to rank. It works
for the case with multi-level relevance judgments, and for a query ¢, DCG score at position
k is formally defined as:

k .
or(i) — 1
DCGQk = ; s (077 (13)

where 7(j) is the relevance label of the j-th document in the sorted list. Then Normalized
DCG score at position k in the ranking list of documents can be calculated by the equation
as follows:
r(@) — 1
- 14
g(1+7) o
where Z is the normalization constant so that the value of NDCG ranges from 0 to 1. In
the rest of this paper, we use N@Qk as the abbreviation of NDCG@k (which means the
NDCG value at position k).

k
NDCGQk = Z - Z 1
(0]
j=1
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Another evaluation metric is MAP (Mean Average Precision) [45], which deals with
binary relevance judgments: relevant and irrelevant. First, we shall introduce the defini-
tion of Precision at k, which denotes the proportion of relevant documents in the first &
positions:

PreQk =

| =

K
ZCj (15)

where (; is an indicator function. If the document at position j is relevant, (; = 1, else (;
is 0. Then the average precision of a given query ¢ is defined as the following equation:

i PreQk x
AP(q) = = (16)

where n and n,., represent the total numbers of documents and relevant documents asso-
ciated with query ¢, respectively. Based on Equations (10) and (11), MAP can be formally
defined as:

MAP = = > AP(g) (17)
10 e

where () is the set of all queries.
4.2. Experimental results.

4.2.1. Comparison results between MinBatSRank and dense baselines. In the first set of
experiments, we are concerned about how our algorithm performs, when compared with
dense (non-sparse) ranking methods. Thus, we evaluate MinBatSRank with ListNet [18],
AdaRank-NDCG [17] and RankSVM-Struct [11] on four experimental sets. The results are
measured in terms of NQ1 to NQ@Q10, and Figure 1 presents the performances of different
algorithms in detail.

From Figure 1, we can find that three compared algorithms perform variously from one
data set to another. For example, ListNet achieves a good performance on NP2004, while
performs poorly on OHSUMED. AdaRank-NDCG performs well on TD2004 and HP2004,
but yields a poor result on NP2004. RankSVM-Struct can obtain a better performance
on OHSUMED, but fails to deliver accurate ranking results on HP2004 and TD2004.
However, different from those algorithms, our MinBatSRank algorithm appears to be
more stable, and is always the best one on all the data sets. We would like to point out
a few statistics. On HP2004 data set, MinBatSRank performs 0.7200 at NQ1, a 20%
increase in performance, compared to ListNet, the second best algorithm. On NP2004
set, this value for MinBatSRank is 0.5867 that shows a 4.77% increasement, compared
with RankSVM-Struct (0.5600), the second best approach. On TD2004 and OHSUMED
data sets, the corresponding improvements of the proposed method compared with those
of the second best one are 18.73% and 3.42%, respectively.

The empirical results in Figure 1 have demonstrated the superior performance of the
proposed MinBatSRank, when compared with dense baselines. In the following, we will
further compare our algorithm with other sparse ranking methods.

4.2.2. Comparison results between MinBatSRank and other sparse baselines. As the pro-
posed MinBatSRank is a stochastic sparse algorithm, in this section, we compare MinBat-
SRank with other state-of-the-art sparse ranking methods in terms of accuracy, sparsity
and computational efficiency. Specifically, we choose the SparseRank [23] and Fenchel-
Rank [22] as the comparison methods, which are well known for their efficiency and good



1216 F. CHENG, D. WANG, L. ZHANG, Y. SU, J. QIU AND Y. SUO

0.9 T T T T T T T T 0.9

0.851

0.81

0.751

0.7

—%— MinBatSRank
—%— MinBatSRank 0.65- ListNet
ListNet —6— AdaRank-NDCG
0.65F —6— AdaRank-NDCG 06 RankSvm-Struct
RankSvm-Struct e’
0.6 ] 0.55}/
0.55 . . . . . . . . 0. . . . . . . . .
N@1 N@2 N@3 N@4 N@5 N@6 N@7 N@8 N@9 N@10 N@1 N@2 N@3 N@4 N@5 N@6 N@7 N@8 N@9 N@10
NDCG NDCG
(a) NDCG at top 10 on HP2004 data set (b) NDCG at top 10 on NP2004 data set
0.55 T T T T T T T T T T T
—*— MinBatSRank 058 —*— MinBatSRank
ListNet ListNet
—6— AdaRank-NDCG —©6— AdaRank-NDCG
RankSvm-Struct 0.56 RankSvm-Struct |4

0541

0.52F

0.5r

048
046 o—e— 4
j’\e\e
044} <
N@1 N@Z N@3 N@4 N@S N@G N@7 N@B N@Q Nélo N@1 N@Z N@3 N@4 N@S N@G N@7 N@S N@Q N@10
NDCG NDCG
(¢c) NDCG at top 10 on TD2004 data set (d) NDCG at top 10 on OHSUMED data set

F1GURE 1. The performances between MinBatSRank and dense baselines
on LETOR data sets

performances. It should be noted that we do not include RSRank [21] and MCP [24], since
RSRank has been proven to be outperformed by SparseRank in terms of accuracy and
sparsity [22, 23]. While for MCP; in spite of its high sparsity, it is a non-convex algorithm,
which only guarantees local optima, to obtain better performance, MCP often needs a
proper initialization, and this operation will increase its computational cost greatly.

The experimental results are reported from following aspects. Firstly, we list the ac-
curacy of different algorithms in terms of NDCG and MAP, and the results are shown
in Table 2. It should be noticed that since OHSUMED is a 3-level set (0, 1 and 2), to
compute the MAP value on OHSUMED, we regard the examples with label 2 as relevant,
and other labels as non-relevant examples.

As shown in Table 2, with all the data sets, MinBatSRank performs best on 15 of
20 statistical points, and the second best is on 4 of 20 statistical points. This statistics
proves the superior ranking accuracy of MinBatSRank, when compared with other sparse
ranking methods.

Secondly, we evaluate the sparsity and training time between our algorithm and Sparse-
Rank, FenchelRank. To measure the sparsity, we adopt the sparsity ratio defined in [22],

which has the form of %, where |w|, presents the number of nonzero coefficients in
model, and m is the number of total dimensions in w. Lower ratio means better sparsity.



TABLE 2. Ranking accuracy of different sparse algorithms on LETOR data sets

A MINI-BATCH STOCHASTIC GRADIENT METHOD

Na1 Na3 N@5| Na@l10| MAP
HP2004
SparseRank 0.6799 | 0.7687 | 0.8098 | 0.8135 | 0.7435
FenchelRank 0.6800 | 0.7880 | 0.8123 | 0.8239 | 0.7475
MinBatSRank | 0.7200 | 0.8213 | 0.8321 | 0.8474 | 0.7795
NP2004
SparseRank 0.6133 | 0.7734| 0.7972| 0.8180 | 0.6837
FenchelRank 0.5600 | 0.7752 | 0.7905| 0.8148 | 0.7144
MinBatSRank | 0.5867 | 0.7855 | 0.8103 | 0.8282 | 0.7059
TD2004
SparseRank 0.3867 | 0.3523 | 0.3263 | 0.3151 | 0.2362
FenchelRank 0.3866 | 0.3763 | 0.3524 | 0.3214 | 0.2241
MinBatSRank | 0.5066 | 0.4253 | 0.3583 | 0.3291 | 0.2139
OHSUMED
SparseRank 0.5671 | 0.5000 | 0.4764 | 0.4563 | 0.4489
FenchelRank 0.5453 | 0.5131 | 0.4879 | 0.4608 | 0.4480
MinBatSRank | 0.5704 | 0.5030 | 0.4816 | 0.4663 | 0.4511
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TABLE 3. Sparsity ratios of different algorithms on LETOR data sets

HP2004 | NP2004 | TD2004 | OHSUMED
FenchelRank | 0.2031 | 0.2625 | 0.4875 0.2844
SparseRank 0.3906 | 0.6406 | 0.5875 0.2978
MinBatSRank | 0.3469 | 0.3781 | 0.4625 0.2311

TABLE 4. Training time (Seconds) of different algorithms on LETOR data sets

HP2004 | NP2004 | TD2004 | OHSUMED
FenchelRank 26.97 48.45 | 1585.03 254.97
SparseRank 15.33 8.61 33.02 18.89
MinBatSRank 0.68 0.08 0.53 0.04

Tables 3 and 4 present the sparsity ratios and the training time of three algorithms on
the LETOR data sets.

From Table 3, we can find that sparsity ratios of MinBatSRank are optimal on TD2004
and OHSUMED sets, and is the second best on HP2004 and NP2004, which indicates the
promising performance of SminBatRank, when measured by sparsity. Meanwhile, Table 3
also shows that FenchelRank can also produce good sparse model on the LETOR sets. The
main reason is attributed to the fact that during the inner iterations, FenchelRank greedily
selects a feature to achieve the largest absolute ranking value, which may result in the final
ranker learned by FenchelRank can obtain comparable accuracy with much less features.
However, this greedy operation will increase computational cost, and as shown in Table
4, the training time of FenchelRank is much longer than SparseRank and MinBatSRank,
especially for our MinBatSRank. Table 4 demonstrates that its computational efficiency
outperforms other two algorithms greatly, which confirms that the algorithm we proposed
is very suitable for the data set with large scale. Finally, we note that SparseRank also has
less computational cost than FenchelRank. Further analysis reveals that in SparseRank,
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there is a Lipschitz constant K controlling the number of iterations, and in the suggested
setting, K is set with a small value, which will decrease the running time.

Combining Tables 2, 3 and 4, we can empirically conclude that MinBatSRank is a
promising sparse ranking algorithm on LETOR data sets, in terms of both accuracy,
sparsity and computational efficiency.

4.2.3. Effectiveness of feature-wise learning rates updating strategy. As mentioned before,
in the proposed MinBatSRank, a feature-wise learning rates updating strategy is proposed
at each iteration, and in the following, we will empirically investigate the influence of this
strategy on the performance of MinBatSRank for LETOR data sets. To be specific,
we modify our algorithm with the updating strategy used in original FTRL, which sets
or = % — \/% This algorithm is termed MinBatSRank-Nonfea, and adopted as the
compared baseline. The experimental results are also reported in terms of NQ1 to N@10,
and Figure 2 below plots the results in detail.
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FIGURE 2. The performances between MinBatSRank and MinBatSRank-
Nonfea on LETOR data sets

As can be seen from Figure 2, on all the experimental sets, the algorithm we pro-
posed outperforms MinBatSRank-Nonfea significantly, which proves the effectiveness of
our feature-wise learning rates updating strategy. This strategy is also theoretically sound,
since it takes full advantages of historical gradient information available in learning phase.
Based on this previous information, the feature with large gradient has small learning rate,
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and the one with small gradient has large rate, which can speed up the convergence, and
improve the performance of MinBatSRank greatly.

5. Conclusion and Future Work. In this paper, we have proposed a mini-batch sto-
chastic gradient method named MinBatSRank for sparse ranking. First of all, an objective
function composed of mini-batch based pairwise loss and L1-norm regularization penalty
is defined. Then to obtain sparse solution, FTRL optimization method is adopted. We
also suggested a feature-wise learning rates updating strategy, which can further improve
the performance of the proposed MinBatSRank. Experimental results on benchmark col-
lections demonstrated the superior performance of the proposed algorithm in terms of
accuracy, sparsity and efficiency.

There still remain some interesting works related with sparse learning to rank that
deserve to be further investigated. For example, same with most of the sparse ranking
algorithms (such as RSRank, FenchelRank and SparseRank), MinBatSRank is a pairwise
algorithm; however, it is well known that in the real world, listwise approaches also have
many applications. How to design a sparse stochastic ranking approach based on listwise
method is one of our future works. Moreover, as far as we know, the existing sparse ranking
algorithms all solve the problem with the technique of single objective optimization. In
the future, it is desirable to produce a sparse ranker from the aspect of multi-objective
optimization [46].
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