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Abstract. In this paper, we investigate the multiple attribute decision making (MADM)
problems with the hesitant fuzzy information based on a new aggregation operator. To be-
gin with, we present the new hesitant fuzzy Muirhead mean operator to deal with MADM
problems with hesitant fuzzy information, including the hesitant fuzzy Muirhead mean
(HFMM) operator, the hesitant fuzzy weighted Muirhead mean (HFWMM) operator, the
main advantages of these aggregation operators are that they can capture interrelation-
ships of multiple attributes among any number of attributes by a parameter vector P and
make information aggregation process more flexible by the parameter vector P , whilst,
HFMM and HFWMM are also a generalization of hesitant fuzzy Maclaurin symmetric
mean (HFMSM) operator. In addition, some properties of these new aggregation opera-
tors are obtained and some special cases are discussed where the parameter vector takes
some different values. Moreover, we present a new method to solve the MADM problems
with hesitant fuzzy information. Finally, an illustrative example is provided to show the
feasibility and validity of the new method, the influences of parameter vector P on the
decision making results are investigated and the advantages of the proposed methods by
comparing with the other existing methods are also analyzed by the example.
Keywords: Hesitant fuzzy set, Murihead mean, Aggregation operator, Multiple at-
tribute decision making

1. Introduction. Multiple attribute decision making (MADM), as an effective frame-
work for comparison, has always been used to find the most desirable one from a finite
set of alternatives on the predefined attributes. An important problem of decision process
is to express the attribute value. However, due to the intrinsic complexity of natural
objects, there exists much uncertain information in many real-world problems. So, it is
difficult for experts or decision makers (DMs) to give their assessments on attributes by
crisp numbers. In 2010, Torra [1] introduced an important extension of fuzzy sets named
hesitant fuzzy sets (HFSs) which permit the membership degree of an element to a set to

DOI: 10.24507/ijicic.14.04.1223

1223



1224 Y. QIN, Y. LIU, Z. HONG AND H. JIA

be represented as several possible values between 0 and 1, human beings hesitate among
a set of membership degrees and they need to represent such a hesitation. Rodriguez
et al. [2, 3, 4] recently provided a position and perspective analysis of HFSs in decision
making, which gave a detailed review on HFS and its application in decision problems,
especially pointed out some important challenges. Since HFS was proposed, a lot of re-
search achievements about theory and methods have been made, and it has the following
aspects: (A) the basic theory, such as distance and similarity degree [5, 6, 7, 8], entropy
and cross entropy [9]; (B) the decision methods [10, 11, 12, 13, 14, 15, 16, 17, 20] based
on some hesitant fuzzy aggregation operators.

In the field of information fusion, information aggregation is an important research topic
as it is a critical process of gathering relevant information from multiple sources. However,
aggregation operator as a tool to aggregate relevant information has been focused on and
also used in many decision making problems. In real decision making, there exist the
interrelationships among the attributes in MADM or MAGDM problems. For example, a
company wants to choose a supplier. Suppose that some suppliers which are regarded as
the alternatives and C = {c1, c2, c3, c4, c5} is a group of attributes, (c1, c2, c3, c4, c5) stand
for ‘production cost’, ‘production quality’, ‘supplier’s service performance’, ‘the profile
of supplier’ and ‘risk factor’, respectively. In the process of decision, the interrelation-
ships of the five attribute should be considered, usually, we use the parameter vector
P = (p1, . . . , p5) to control this interrelationship, for example, P = (p1, . . . , p5) (where
pi ̸= 0, i = 1, 2, . . . , 5) means that the interrelationship of five attributes is considered,
P = (1, 1, 0, 0, 0) means that the interrelationship between only two attributes can be
considered, of course, P = (1, 0, 0, 0, 0) means that the interrelationship of attributes is
not considered. Actually, the parameter vector P can be regarded as a utility measure
which helps the DM to obtain the compromise solution by assigning appropriate values
of the parameters, the quality, and flexibility of decision making can be improved by this
investigation. Muirhead mean (MM) [18] is a well-known aggregation operator for it can
consider the interrelationships among any number of aggregation arguments and the main
advantage of the MM is exactly that it can capture interrelationships among many argu-
ments. Whilst, MM is also a universal operator since it contains other general operators
by assessing different parameters and MM is also a generalization of Maclaurin symmetric
mean (MSM) [19]. When the parameter vector is assessed of different values, MM will re-
duce to some existing operators, such as arithmetic and geometric operators which do not
consider the interrelationships of aggregation arguments, intuitionistic fuzzy and hesitant
fuzzy Maclaurin symmetric mean [21, 22, 23, 24], were the special cases of MM operators
and applied to solving the some decision making problems. In current hesitant fuzzy aggre-
gations operators, it can be divided into two categories from the interrelationships of the
attributes: (1) some hesitant fuzzy aggregation operators in which the interrelationships of
the attributes are not considered, such as hesitant weighted averaging operator (HFWA),
hesitant weighted geometric operator (HFWGA), hesitant fuzzy Hamacher weighted ag-
gregation operators (HFHWA); (2) some hesitant fuzzy aggregation operators in which
the interrelationships of attributes are considered, such as, hesitant fuzzy geometric Bon-
ferroni mean (HFGBM) [15], hesitant fuzzy Bonferroni mean (HFBM) operator [14] and
hesitant fuzzy Heronian mean (HFHM) operator [27], hesitant fuzzy Maclaurin systems
mean (HFMSM) operator [23, 24]. However, although HFGBM, HFBM and HFHM oper-
ators can capture the interrelationship of aggregation arguments, they can only consider
the interrelationship between any two arguments. As far as HFMSM is concerned, since
MM is a generalization of MSM, it is meaningful to extend HFMSM to hesitant fuzzy
Murihead mean (HFMM) despite the fact that HFMSM is capable of capturing the inter-
relationships of multiple attributes. Therefore, it is necessary and significant to develop
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some new aggregation operators based on MM that not only accommodate hesitant fuzzy
information but also can capture the interrelationships among multi-input arguments.

The goal of this paper is to develop a method for MADM problems with hesitant fuzzy
information based on new hesitant fuzzy MM (HFMM) operators by combining MM and
hesitant fuzzy information. To begin with, we present a new hesitant fuzzy Muirhead mean
operator to deal with MADM problems with hesitant fuzzy information, including the
hesitant fuzzy Muirhead mean (HFMM) operator, hesitant fuzzy weighted Muirhead mean
(HFWMM) operator. In addition, some properties of these new aggregation operators
are obtained and some special cases are discussed. Finally, a new method is presented
to solve an MADM problem with hesitant fuzzy information. To do so, the rest of the
paper is organized as follows. In Section 2, we review some definitions on HFSs, HFEs and
Muirhead mean, which are used in the analysis throughout this paper. Section 3 is devoted
to the main results concerning HFMM operator along with their properties. Section 4
focuses on HFWMM operator along with their properties. In Section 5, we construct an
MADM approach based on HFWMM operator proposed in Section 4. Consequently, a
practical example is provided in Section 6 to verify the validity of the proposed methods
and to show their advantages. In Section 7, we give some conclusions of this study.

2. Preliminaries. In this section, some basic concepts related to hesitant fuzzy set and
Muirhead mean are recapped, which are the basis of this work.

2.1. Hesitant fuzzy set.

Definition 2.1. [1] Let X = {x1, x2, . . . , xn} be a reference set. A hesitant fuzzy set
(HFS) F on X is defined in terms of a function hF (x) that returns a subset of [0, 1] when
it is applied to X, i.e., F = {⟨x, hF (x)|x ∈ X⟩} where hF (x) is a set of some different
values in [0, 1], representing the possible membership degrees of the element x ∈ X to F .
hF (x) is called a hesitant fuzzy element (HFE), a basic unit of HFS.

Definition 2.2. [12, 17] Let h1 and h2 be two HFEs, and some operations on the h1 and
h2 are defined as follows:

(1) h1 ∪ h2 =
∪

γ1∈h1,γ2∈h2
max{γ1, γ2};

(2) h1 ∩ h2 =
∩

γ1∈h1,γ2∈h2
min{γ1, γ2};

(3) hc
1 =

∪
γ1∈h1

{1 − γ1};
(4) h1 ⊕ h2 =

∪
γ1∈h1,γ2∈h2

{γ1 + γ2 − γ1γ2};
(5) h1 ⊗ h2 =

∪
γ1∈h1,γ2∈h2

{γ1γ2};
(6) λh1 =

∪
γ1∈h1

{
1 − (1 − γ1)

λ
}
, where λ > 0;

(7) hλ
1 =

∪
γ1∈h1

{
γλ

1

}
, where λ > 0.

Definition 2.3. [12] Let h be an HFE, and

s(h) =
1

n(h)

∑
γ∈h

γ (1)

is called the score function of h, where n(h) is the number of values of h.
For any two HFEs h1 and h2, if
s(h1) > s(h2), then h1 > h2;
s(h1) = s(h2), then h1 = h2.

2.2. Muirhead mean operator. The Muirhead mean (MM) operator [18] is a general
aggregation function and firstly proposed by Muirhead in 1902, and it is defined as follows.
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Definition 2.4. [18] Let ai (i = 1, 2, . . . , n) be a collection of nonnegative real numbers,
A = {a1, a2, . . . , an} and P = (p1, p2, . . . , pn) ∈ Rn be a parameter vector, if

MM P (a1, . . . , an) =

(
1

n!

(∑
θ∈Sn

(
n∏

j=1

a
pj

θ(j)

))) 1∑n
j=1

pj

, (2)

then we call MM P the Muirhead mean (MM), where θ(j) (j = 1, 2, . . . , n) is any a permu-
tation of (1, 2, . . . , n) and Sn is the collection of all permutation of θ(j) (j = 1, 2, . . . , n).

There are some special cases when the parameter vector is assessed of different values.
(1) If P = (1, 0, . . . , 0), MM operator will reduce to arithmetic averaging operator

MM (1,0,...,0)(a1, . . . , an) =
1

n

n∑
j=1

aj. (3)

(2) If P = (
︷ ︸︸ ︷
1, 1, . . . , 1

k
,
︷ ︸︸ ︷
0, . . . , 0

n−k
), MM operator will reduce to Maclaurin symmetric mean

(MSM) operator

MM (

k︷ ︸︸ ︷
1, 1, . . . , 1,

n−k︷ ︸︸ ︷
0, . . . , 0)(a1, . . . , an) =

(∑
1≤i1<···<ik≤n

∏k
j=1 aj

Ck
n

) 1
k

. (4)

(3) If P =
(

1
n
, 1

n
, . . . , 1

n

)
, MM operator will reduce to geometric averaging operator

MM ( 1
n

, 1
n

,..., 1
n)(a1, . . . , an) =

n∏
j=1

a
1
n
j . (5)

From the above discussion we can see that the advantage of the MM operator is that
it can capture the interrelationships among the multiple aggregated arguments and it is
a generalization of most existing aggregation operators.

3. Hesitant Fuzzy Muirhead Mean Operators. Because the traditional MM can
only process the crisp number, and HFEs can easily express the fuzzy information, it is
necessary and significant to extend MM to process HFEs. In this section, we propose the
hesitant fuzzy Muirhead mean (HFMM) operator, and discuss its properties.

Definition 3.1. Let hi (i = 1, 2, . . . , n) be a collection of HFEs, A = {h1, h2, . . . , hn} and
P = (p1, p2, . . . , pn) ∈ Rn be a parameter vector. Then a hesitant fuzzy Muirhead mean
operator is a function HFMM: An → A, and

HFMM P (h1, . . . , hn) =

(
1

n!

(
⊕θ∈Sn

(
⊗n

j=1h
pj

θ(j)

))) 1∑n
j=1

pj

, (6)

where θ(j) (j = 1, 2, . . . , n) is any a permutation of (1, 2, . . . , n) and Sn is the collection
of all permutation of θ(j) (j = 1, 2, . . . , n).

Theorem 3.1. Let hi (i = 1, 2, . . . , n) be a collection of HFEs and P = (p1, p2, . . . , pn) ∈
Rn be a parameter vector. Then HFMM P (h1, . . . , hn) is still an HFE and

HFMM P (h1, . . . , hn) =
∪

γi∈hi,i=1,2,...,n


1 −

(∏
θ∈Sn

(
1 −

n∏
j=1

γ
pj

θ(j)

)) 1
n!


1∑n

j=1
pj

 . (7)
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Proof: Firstly, we prove Equation (7). According to the operational law of HFEs, we
obtain (

hθ(j)

)pj =
∪

γθ(j)∈hθ(j)

{
γ

pj

θ(j)

}
,

and

⊗n
j=1h

pj

θ(j) =
∪

γi∈hi,i=1,2,...,n

{
n∏
j

γ
pj

θ(j)

}
,

and then we get

⊕θ∈Sn ⊗n
j=1 h

pj

θ(j) =
∪

γi∈hi,i=1,2,...,n

{
1 −

∏
θ∈Sn

(
1 −

n∏
j=1

γ
pj

θ(j)

)}
,

and

1

n!
⊕θ∈Sn ⊗n

j=1aθ(j)pj =
∪

γi∈hi,i=1,2,...,n

1 −

(∏
θ∈Sn

(
1 −

n∏
j=1

µ
pj

θ(j)

)) 1
n!

 .

Therefore, (
1

n!
⊕θ∈Sn ⊗n

j=1aθ(j)pj

) 1∑n
j=1

pj

=
∪

γi∈hi,i=1,2,...,n


1 −

(∏
θ∈Sn

(
1 −

n∏
j=1

µ
pj

θ(j)

)) 1
n!


1∑n

j=1
pj

 .

In the process of decision making, the aggregation results would be more reliable if the
selected operator is monotonic, and the lack of monotonicity may debase the reliability
and dependability of the final decision-making results. We can prove HFMM P (h1, . . . , hn)
are idempotent, bounded, and monotonic.

Property 3.1. Let hi (i = 1, 2, . . . , n) be a collection of HFEs, P = (p1, p2, . . . , pn) ∈ Rn

be a parameter vector and hi = h = {γ} (i = 1, 2, . . . , n), and then

HFMM P (h1, . . . , hn) = h.

Proof: Since

HFMM P (h1, . . . , hn) =
∪

γi∈hi,i=1,2,...,n


1 −

(∏
θ∈Sn

(
1 −

n∏
j=1

γ
pj

θ(j)

)) 1
n!


1∑n

j=1
pj

 ,

we have

∪
γi∈hi,i=1,2,...,n


1 −

(∏
θ∈Sn

(
1 −

n∏
j=1

γ
pj

θ(j)

)) 1
n!


1∑n

j=1
pj


=

∪
γi∈hi,i=1,2,...,n


1 −

(∏
θ∈Sn

(
1 −

n∏
j=1

γpj

)) 1
n!


1∑n

j=1
pj
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=
∪

γi∈hi,i=1,2,...,n


1 −

(∏
θ∈Sn

(
1 − γ

∑n
i=1 pj

)) 1
n!


1∑n

j=1
pj


=

∪
γi∈hi,i=1,2,...,n

{(
1 −

(
1 − γ

∑n
i=1 pj

)n!
n!

) 1∑n
j=1

pj

}

=

{(
γ
∑n

i=1 pj

) 1∑n
j=1

pj

}
= {γ} = h.

Therefore, HFMM P (h1, . . . , hn) = h.

Property 3.2. (Monotonicity) Let ha = {ha1 , ha2 , . . . , han} and hb = {hb1 , hb2 , . . . , hbn}
be two collections of HFEs, and P = (p1, p2, . . . , pn) ∈ Rn be a parameter vector. If for
any γai

∈ hai
and γbi

∈ hbi
, we have γai

≤ γbi
for any i (i = 1, 2, . . . , n), then

HFMM P (ha1 , ha2 , . . . , han) ≤ HFMM P (hb1 , hb2 , . . . , hbn).

Proof: Let

HFMM P (ha1 , ha2 , . . . , han) =
∪

γai∈hai ,i=1,2,...,n


1 −

(∏
θ∈Sn

(
1 −

n∏
j=1

γpj
aθ(j)

)) 1
n!


1∑n

j=1
pj

 .

Since γai
≤ γbi

for any i (i = 1, 2, . . . , n), we have

1 −
n∏
j

γaθ(j)
≥ 1 −

n∏
j

γbθ(j)
.

So we have1 −

(∏
θ∈Sn

(
1 −

n∏
j=1

γpj
aθ(j)

)) 1
n!


1∑n

j=1
pj

≤

1 −

(∏
θ∈Sn

(
1 −

n∏
j=1

γ
pj

bθ(j)

)) 1
n!


1∑n

j=1
pj

.

According to Theorem 3.1 and Definition 3.1, we have

HFMM P (ha1 , ha2 , . . . , han)

=
∪

γai∈hai ,i=1,2,...,n


1 −

(∏
θ∈Sn

(
1 −

n∏
j=1

γpj
aθ(j)

)) 1
n!


1∑n

j=1
pj


≤

∪
γbi

∈hbi
,i=1,2,...,n


1 −

(∏
θ∈Sn

(
1 −

n∏
j=1

γ
pj

bθ(j)

)) 1
n!


1∑n

j=1
pj


= HFMM P (hb1 , hb2 , . . . , hbn).

Property 3.3. (Boundedness) Let hi (i = 1, 2, . . . , n) be a collection of HFEs, P =
(p1, p2, . . . , pn) ∈ Rn be a parameter vector,

h− = mini

{
h−

i |h−
i = min {γi ∈ hi}

}
,

h+ = maxi

{
h+

i |h+
i = max {γi ∈ hi}

}
,

and then

h− ≤ HFMM P (h1, . . . , hn) ≤ h+.
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Proof: Since h− ≤ h−
i ≤ γi ≤ h+

i ≤ h+, we have (h−)pj ≤ (γi)
pj ≤ (h+)pj and then

(h−)
∑n

j=1 pj ≤
∪

γi∈hi,i=1,2,...,n

{
n∏

j=1

γ
pj

θ(j)

}
≤ ((h+)n)

∑n
j=1 pj .

And so,

1 − (h+)
∑n

j=1 pj ≤
∪

γi∈hi,i=1,2,...,n

{
1 −

n∏
j=1

(
γ

pj

θ(j)

)}
≤ 1 − (h−)

∑n
j=1 pj

and (
1 − (h+)

∑n
j=1 pj

)n! 1
n! ≤

∪
γi∈hi,i=1,2,...,n


(∏

θ∈Sn

(
1 −

n∏
j=1

(
γ

pj

θ(j)

))) 1
n!


≤
(
1 − (h−)

∑n
j=1 pj

)n! 1
n!

,

that is,

1 − (h+)
∑n

j=1 pj ≤
∪

γi∈hi,i=1,2,...,n


(∏

θ∈Sn

(
1 −

n∏
j=1

(
γ

pj

θ(j)

))) 1
n!

 ≤ 1 − (h−)
∑n

j=1 pj .

Therefore,

1 −
(
1 − (h−)

∑n
j=1 pj

)
≤

∪
γi∈hi,i=1,2,...,n

1 −

(∏
θ∈Sn

(
1 −

n∏
j=1

(
γ

pj

θ(j)

))) 1
n!


≤ 1 −

(
1 − (h+)

∑n
j=1 pj

)
,

that is,

(h−)
∑n

j=1 pj ≤
∪

γi∈hi,i=1,2,...,n

1 −

(∏
θ∈Sn

(
1 −

n∏
j=1

(
γ

pj

θ(j)

))) 1
n!

 ≤ (h+)
∑n

j=1 pj .

And so

h− =
(
(h−)

∑n
j=1 pj

) 1∑n
j=1

pj ≤
∪

γi∈hi,i=1,2,...,n


1 −

(∏
θ∈Sn

(
1 −

n∏
j=1

(
γ

pj

θ(j)

))) 1
n!


1∑n

j=1
pj


≤
(
(h+)

∑n
j=1 pj

) 1∑n
j=1

pj = h+.

Therefore,

h− ≤ HFMM P (h1, . . . , hn) ≤ h+.

It is easy to obtain that hesitant fuzzy Murihead mean operator is commutative ac-
cording to Definition 3.1.

Property 3.4. (Commutativity) Let hi (i = 1, 2, . . . , n) be a collection of HFEs,
P = (p1, p2, . . . , pn) ∈ Rn be a parameter vector, and

(
h

′
1, . . . , h

′
n

)
be any permutation

of (h1, . . . , hn), then

HFMM P (h1, . . . , hn) = HFMM P
(
h

′

1, . . . , h
′

n

)
.
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Now, we will develop some special cases of HFMM operator with respect to different pa-
rameter vectors. Let hi (i = 1, 2, . . . , n) be a collection of HFEs and P = (p1, p2, . . . , pn) ∈
Rn be a parameter vector.

(1) If P = (1, 0, . . . , 0), HFMM operator will reduce to hesitant fuzzy arithmetic aver-
aging (HFA) operator

HFMM (1,0,...,0)(h1, . . . , hn) =
∪

γi∈hi,i=1,2,...,n

{
1 −

n∏
j=1

(1 − γj)
1
n

}
. (8)

(2) If P = (λ, 0, . . . , 0), HFMM operator will reduce to generalized fuzzy arithmetic
averaging (GFAA) operator

HFMM (λ,0,...,0)(h1, . . . , hn) =
∪

γi∈hi,i=1,2,...,n


(

1 −
n∏

j=1

(
1 − γλ

j

) 1
n

) 1
λ

 . (9)

(3) If P = (1, 1, 0, . . . , 0), HFMM operator will reduce to hesitant fuzzy Bonferroni
Mean (HFBM) operator

HFMM (1,1,0,...,0)(h1, . . . , hn) =
∪

γi∈hi,γj∈hJ ,i̸=j


(

1 −
n∏

i,j=1,i ̸=j

(1 − γiγj)
1

n(n−1)

) 1
2

 . (10)

(4) If P = (

k︷ ︸︸ ︷
1, 1, . . . , 1,

n−k︷ ︸︸ ︷
0, . . . , 0), HFMM operator will reduce to hesitant fuzzy Maclaurin

symmetric mean (HFMSM) operator

HFMM (

k︷ ︸︸ ︷
1, 1, . . . , 1,

n−k︷ ︸︸ ︷
0, . . . , 0)(h1, . . . , hn)

=
∪

γi∈hi,i=1,2,...,n


1 −

∏
1≤i1<···<ik≤n

(
1 −

k∏
j=1

γij

) 1

Ck
n


1
k

 . (11)

(5) If P = (1, 1, . . . , 1), HFMM operator will reduce to hesitant fuzzy geometric aver-
aging (HFGA) operator

HFMM (1,1,...,1)(h1, . . . , hn) =
∪

γi∈hi,i=1,2,...,n


(

n∏
j=1

γj

) 1
n

 . (12)

(6) If P =
(

1
n
, 1

n
, . . . , 1

n

)
, HFMM operator will reduce to hesitant fuzzy geometric aver-

aging (HFGA) operator

HFMM ( 1
n

, 1
n

,..., 1
n)(h1, . . . , hn) =

∪
γi∈hi,i=1,2,...,n


(

n∏
j=1

γj

) 1
n

 . (13)

In section, the HFMM aggregation operator was investigated along with its properties
and some special cases. However, the weight of attributes was not considered in HFMM.
We will consider the hesitant fuzzy weighted MM operator in Section 4.
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4. Hesitant Fuzzy Weighted Muirhead Mean Operators. Weights of attributes
play a vital role in decision making and will directly reflect the results of decision making
results. In Section 3, we proposed the HFMM aggregation operators which cannot consider
the weights of attributes, so it is very important to consider weights of attributes in the
process of information aggregation.

Definition 4.1. Let hi (i = 1, 2, . . . , n) be a collection of HFEs, A = {h1, h2, . . . , hn},
w = (w1, w2, . . . , wn)T be the weight vector of hi (i = 1, 2, . . . , n) with wi ∈ [0, 1] and∑n

i=1 wi = 1, and P = (p1, p2, . . . , pn) ∈ Rn be a parameter vector. Then a hesitant fuzzy
weighted Muirhead mean (HFWMM) operator is a function HFWMM: An → A, and

HFWMM P (h1, . . . , hn) =

(
1

n!

(
⊕θ∈Sn

(
⊗n

j=1

(
wθ(j)hθ(j)

)pj
))) 1∑n

j=1
pj

, (14)

where θ(j) (j = 1, 2, . . . , n) is any a permutation of (1, 2, . . . , n) and Sn is the collection
of all permutation of θ(j) (j = 1, 2, . . . , n).

Theorem 4.1. Let hi (i = 1, 2, . . . , n) be a collection of HFFEs, w = (w1, w2, . . . , wn)T

be the weight vector of hi (i = 1, 2, . . . , n) with wi ∈ [0, 1] and
∑n

i=1 wi = 1, and P =
(p1, p2, . . . , pn) ∈ Rn be a parameter vector. Then HFWMM P (h1, . . . , hn) is still an HFE
and

HFWMM P (h1, . . . , hn)

=
∪

γi∈hi,i=1,2,...,n


1 −

(∏
θ∈Sn

(
1 −

(
n∏

j=1

(
1 −

(
1 − γθ(j)

)wθ(j)
)pj

))) 1
n!


1∑n

j=1
pj

 . (15)

Proof: Since hθ(j) is an HFE, we have wθ(j)hθ(j) is also an HFE. By the operation

of HFEs, we have wθ(j)hθ(j) =
∪

γi∈hi,i=1,2,...,n

{
1 − (1 − γθ(j))

wθ(j)
}
. Therefore, we can

directly obtain the result according to Theorem 3.1.
Similar to Property 3.3 and Property 3.4, we can prove HFWMM P (h1, . . . , hn) are

bounded, and monotonic.

Property 4.1. (Monotonicity) Let ha = {ha1 , ha2 , . . . , han} and hb = {hb1 , hb2 , . . . , hbn}
be two collections of HFEs, and P = (p1, p2, . . . , pn) ∈ Rn be a parameter vector. If for
any γai

∈ hai
and γbi

∈ hbi
, we have γai

≤ γbi
for any i (i = 1, 2, . . . , n), then

HFWMM P (ha1 , ha2 , . . . , han) ≤ HFWMM P (hb1 , hb2 , . . . , hbn).

Property 4.2. (Boundedness) Let hi (i = 1, 2, . . . , n) be a collection of HFEs, P =
(p1, p2, . . . , pn) ∈ Rn be a parameter vector,

h− = mini

{
h−

i |h−
i = min {γi ∈ hi}

}
,

h+ = maxi

{
h+

i |h+
i = max {γi ∈ hi}

}
,

and then

h− ≤ HFWMM P (h1, . . . , hn) ≤ h+.

Now, we will develop some special cases of HFWMM operator with respect to the
parameter vector. Let hi (i = 1, 2, . . . , n) be a collection of HFEs, w = (w1, w2, . . . , wn)T

be the weight vector of hi (i = 1, 2, . . . , n) with wi ∈ [0, 1] and
∑n

i=1 wi = 1, and P =
(p1, p2, . . . , pn) ∈ Rn be a parameter vector.
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(1) If P = (1, 0, . . . , 0), HFWMM operator will reduce to

HFWMM (1,0,...,0)(h1, . . . , hn) =
∪

γi∈hi,i=1,2,...,n

{
1 −

n∏
j=1

(1 − γj)
wj
n

}
. (16)

(2) If P = (

k︷ ︸︸ ︷
1, 1, . . . , 1,

n−k︷ ︸︸ ︷
0, . . . , 0), HFWMM operator will reduce to hesitant fuzzy weight-

ed Maclaurin symmetric mean (HFWMSM) operator

HFWMM (

k︷ ︸︸ ︷
1, 1, . . . , 1,

n−k︷ ︸︸ ︷
0, . . . , 0)(h1, . . . , hn)

=
∪

γi∈hi,i=1,2,...,n


1 −

( ∏
1≤i1<···<ik≤n

(
1 −

k∏
j=1

(1 − γij)
wj

)) 1

Ck
n


1
k

 . (17)

5. Model for Multiple Attribute Decision Making with Hesitant Fuzzy Infor-
mation. As an important extension of fuzzy sets, hesitant fuzzy sets (HFSs) permit the
membership degree of an element to a set to be represented as several possible values be-
tween 0 and 1, human beings hesitate among a set of membership degrees and they need
to represent such a hesitation. There are many decision making problems in which deci-
sion makers (DMs) to give their assessments on attributes by not several possible values
between 0 and 1 not crisp numbers. In current hesitant aggregations, the interrelation-
ships of the attributes are not considered. However, these interrelationships of attributes
should be considered in the process of decision making. To do so, in this section, we
develop a novel MADM method with hesitant fuzzy information based on the proposed
HFWMM operator. The following assumptions or notations are used to represent the
MADM problems for potential evaluation of emerging technology commercialization with
hesitant fuzzy information.

Let A = {A1, A2, . . . , Am} be a set of m alternatives, G = {G1, G2, . . . , Gn} be the
set of attributes, and w = {w1, . . . , wn} be the weight vector of attributes with wi ≥ 0
and

∑n
i=1 wi = 1. Suppose that A = (hij)m×n is the decision making matrix, where hij

(i = 1, 2, . . . , m; j = 1, 2, . . . , n) are in the form of HFEs.
In the following, a novel MADM method is developed with hesitant fuzzy information

based on HFWMM operator, which is shown in the following.
Step 1. Construct the hesitant fuzzy decision matrix H = (hij)m×n according to the

decision making information provided by the decision makers. If there are cost attributes
in decision making problems, then we need to transform the decision matrix H into a
normalization matrix P = (pij)m×n, where

Pij =

{
hij for benefit attribute Gij,

hc
ij for cost attribute Gij,

where hc
ij =

∪
γij∈hij

{1 − γij}.
Step 2. Aggregate all assessment values hij (i = 1, 2, . . . , m; j = 1, 2, . . . , n) of the

alternative Ai (i = 1, 2, . . . , m) on all attributes Gj (j = 1, 2, . . . , n) into the overall
assessment hi (i = 1, 2, . . . , m) based on the

HFWMM P (h1, . . . , hn)
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=
∪

γi∈hi,i=1,2,...,n


1 −

(∏
θ∈Sn

(
1 −

(
n∏

j=1

(
1 −

(
1 − γθ(j)

)wθ(j)
)pj

))) 1
n!


1∑n

j=1
pj

 . (18)

Step 3. Calculate the score values S(hi) of all collective overall values to rank the all
alternatives Ai (i = 1, 2, . . . , m), the bigger the S(ai) is, the better the Ai is.

Step 4. Rank all alternatives Ai (i = 1, 2, . . . , m) and determine the desirable alterna-
tive according to S(hi).

Step 5. End.

6. Numerical Example and Comparative Analysis.

6.1. Numerical example. In this section, we will use HFWMM operator to show the
applications of the proposed approach in Section 5.

Example 6.1. This illustrative example is cited and adapted from [25], which is an eval-
uation on the emergency response capabilities of relevant department when some disasters
occur. There is a panel with five emerging departments Ai (i = 1, 2, 3, 4, 5) that should
be considered that have taken part in the rescue work. A1 is the transportation depart-
ment, A2 is the health departments, A3 is the telecommunications department, A4 is the
supplies department and A5 is the other departments except the above four departments.
The government needs to give an evaluation according to four attributes: (1) G1 is the
emergency forecasting capability; (2) G2 is the emergency process capability; (3) G3 is the
after-disaster loss evaluation capability; (4) G4 is the after-disaster reconstruction capabil-
ity, and w = (0.1, 0.4, 0.2, 0.3) is the weight vector of them. The five possible alternatives
{A1, A2, A3, A4, A5} are evaluated by using the hesitant fuzzy information, and the hesitant
fuzzy linguistic decision matrix A = (aij)4×5 is shown in Table 1.

Table 1. Hesitant fuzzy decision matrix

G1 G2 G3 G4

A1 {0.6, 0.8} {0.2, 0.6, 0.8} {0.6} {0.4, 0.5}
A2 {0.4, 0.7, 0.9} {0.2, 0.4} {0.6, 0.9} {0.5}
A3 {0.5} {0.7, 0.8} {0.3, 0.5, 0.7} {0.5, 0.7}
A4 {0.4, 0.5, 0.6} {0.1, 0.3} {0.4, 0.9} {0.3}
A5 {0.4, 0.7} {0.2, 0.3} {0.8} {0.3, 0.4, 0.8}

Now, we utilize the proposed method based on HFWMM operator to drive the collective
overall value when parameter P = (1, 1, 1, 1) (P reflects the interrelationships of the four
attributes. We take P = (1, 1, 1, 1) just as an example to show the proposed MADM
method. Of course, P can take any real vector, and the influence of the parameter vector
P on the decision making results will be discussed in Section 6.2), we obtain the following.

Step 1. Consider all attributes Gj (j = 1, 2, 3, 4) are the benefit attributes; therefore,
the attribute values of the alternatives do not need to be normalized.

Step 2. Based on Equation (18),

hi = HFWMMP (hi1, . . . , hi5)

=
∪

γi∈hij ,i=1,2,...,4


1 −

(∏
θ∈S4

(
1 −

(
5∏

j=1

(
1 −

(
1 − γθ(j)

)wθ(j)
)pj

))) 1
4!


1∑5

j=1
pj

 .
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we have

h1 = {0.1155, 0.1238, 0.1590, 0.1705, 0.1773, 0.1901, 0.1318, 0.1413, 0.1815, 0.1946,

0.2024, 0.2170};
h2 = {0.1075, 0.1310, 0.1304, 0.1589, 0.1321, 0.1610, 0.1602, 0.1952, 0.1533, 0.1868,

0.1859, 0.2265};
h3 = {0.1349, 0.1520, 0.1579, 0.1780, 0.1791, 0.2019, 0.1424, 0.1605, 0.1667, 0.1879,

0.1890, 0.2131};
h4 = {0.0671, 0.0937, 0.0899, 0.1255, 0.0722, 0.1009, 0.0968, 0.1351, 0.0772, 0.1079,

0.1035, 0.1445};
h5 = {0.1044, 0.1136, 0.1455, 0.1166, 0.1269, 0.1625, 0.1282, 0.1395, 0.1787, 0.1433,

0.1558, 0.1997}.
Step 3. We utilize the score function to calculate the score values of collective overall

assessment values ai (i = 1, 2, 3, 4),

S(h1) = 0.1671, S(h2) = 0.1607, S(h3) = 0.1720, S(h4) = 0.1012, S(h5) = 0.1429.

Step 4. According to the score values of hi (i = 1, 2, 3, 4, 5) calculated in Step 3, all
feasible alternative Ai (i = 1, 2, 3, 4, 5) are ranked as follows:

A4 ≺ A5 ≺ A2 ≺ A1 ≺ A3.

Therefore, the desirable alternative is A3.

Example 6.2. This example is adopted from [26]. The following practical example in-
volves a supplier selection problem in a supply chain. The authorized decision makers
in a small enterprise attempt to reduce the supply chain risk and uncertainty to improve
customer service, inventory levels, and cycle times, which results in increased competi-
tiveness and profitability. The decision makers consider various criteria involving (i) C1:
performance (e.g., delivery, quality, price); (ii) C2: technology (e.g., manufacturing capa-
bility, design capability, ability to cope with technology changes); (iii) C3: organizational
culture and strategy (e.g., feeling of trust, internal and external integration of suppliers,
compatibility across levels and functions of the buyer and supplier), and w = (0.3, 0.5, 0.2)
is the weight vector of them. Using the supplier rating system, the decision maker eval-
uates three suppliers: S1, S2 and S3. and the hesitant fuzzy linguistic decision matrix
A = (aij)3×3 is shown in Table 2.

Table 2. Hesitant fuzzy decision matrix

C1 C2 C3

S1 {0.5} {0.3, 0.4} {0.6}
S2 {0.7, 0.9} {0.8} {0.5, 0.6}
S3 {0.3, 0.4} {0.4, 0.5} {0.8}

Now, we utilize the proposed method based on HFWMM operator to drive the collective
overall value when parameter P = (1, 1, 1) (of course, the P can take any real vector),
and we obtain the following.

Step 1. Consider all attributes Gj (j = 1, 2, 3, 4) are the benefit attributes; therefore,
the attribute values of the alternatives do not need to be normalized.

Step 2. Based on Equation (18), we have

h1 = {0.1725, 0.1921};
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h2 = {0.2789, 0.3039, 0.3292, 0.3587};
h3 = {0.1846, 0.2015, 0.2066, 0.2254}.

Step 3. We utilize the score function to calculate the score values of collective overall
assessment values ai (i = 1, 2, 3),

S(h1) = 0.1823, S(h2) = 0.3177, S(h3) = 0.2024.

Step 4. According to the score values of hi (i = 1, 2, 3) calculated in Step 3, all feasible
alternative Si (i = 1, 2, 3) are ranked as follows:

A1 ≺ A3 ≺ A2.

Therefore, the desirable alternative is A2.

6.2. The influence of the parameter vector P on the decision making results.
In order to show the influence of the parameter vector P on the decision making results,
we use different parameter vector P in our proposed method based on HFWMM operator
to rank the alternatives in Example 6.1. The ranking results are shown in Table 3.

Table 3. Ranking results by using different parameter vector P in
HFWMM operator

Parameter
vector P

The score values of Ai (i = 1, 2, 3, 4) Ranking results

(1, 0, 0, 0)
S(h1) = 0.1914, S(h2) = 0.1827,

A4 ≺ A5 ≺ A2 ≺ A1 ≺ A3S(h3) = 0.2337, S(h4) = 0.1278,
S(h5) = 0.1746

(1, 1, 0, 0)
S(h1) = 0.1780, S(h2) = 0.1730,

A4 ≺ A5 ≺ A2 ≺ A1 ≺ A3S(h3) = 0.2051, S(h4) = 0.1130,
S(h5) = 0.1603

(1, 1, 1, 0)
S(h1) = 0.1720, S(h2) = 0.1669,

A4 ≺ A5 ≺ A2 ≺ A1 ≺ A3S(h3) = 0.1874, S(h4) = 0.1063,
S(h5) = 0.1510

(1, 1, 1, 1)
S(h1) = 0.1671, S(h2) = 0.1607,

A4 ≺ A5 ≺ A2 ≺ A1 ≺ A3S(h3) = 0.1720, S(h4) = 0.1012,
S(h5) = 0.1429(

1

4
,
1

4
,
1

4
,
1

4

) S(h1) = 0.1671, S(h2) = 0.1607,
A4 ≺ A5 ≺ A2 ≺ A1 ≺ A3S(h3) = 0.1720, S(h4) = 0.1012,

S(h5) = 0.1429

(2, 0, 0, 0)
S(h1) = 0.2079, S(h2) = 0.1962,

A4 ≺ A5 ≺ A2 ≺ A1 ≺ A3S(h3) = 0.2674, S(h4) = 0.31484,
S(h5) = 0.1951

(3, 0, 0, 0)
S(h1) = 0.2244, S(h2) = 0.2086,

A4 ≺ A2 ≺ A5 ≺ A1 ≺ A3S(h3) = 0.2951, S(h4) = 0.1663,
S(h5) = 0.2137

We explain the following aspects to illustrate the influence of parameter vector P on
the decision making results.

(1) We see from Section 3 that our method is more general. Specially, when P =

(

k︷ ︸︸ ︷
1, 1, . . . , 1,

k︷ ︸︸ ︷
0, 0, . . . , 0), the HFWMM operator will become hesitant fuzzy weighted Macl-

aurin mean, which is also family aggregation operators when the parameter k takes dif-
ferent values.
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(2) Parameter vector P can capture interrelationship between the individual arguments
that can be fully taken into account. As far as the HFWMM operator is concerned, we
can find from Table 3 that the more interrelationships of attributes which we consider,
the smaller value of score functions, that is, the parameter vector P have greater control
ability, the values of score function will become greater. So, different parameter vector P
can be regarded as the decision makers’ risk preference.

6.3. Comparisons and analyses. In order to verify the effectiveness of the proposed
methods with HFWMM operator, we compare our proposed method with other existing
methods including the HFWA operator, HFGA operator and HFMSM operator. The
results are shown in Table 4, which indicates that four methods have the same desirable
alternative, which further verifies the validity of the method proposed in this paper with
HFWMM operator.

Table 4. Ranking results by using different methods

Aggregation operator Parameter vector Ranking results

HFWA No A4 ≺ A5 ≺ A2 ≺ A1 ≺ A3

HFGA No A4 ≺ A5 ≺ A2 ≺ A1 ≺ A3

HFMSM (1, 1, 1, 0) A4 ≺ A5 ≺ A2 ≺ A1 ≺ A3

HFWMM in this paper (1, 1, 1, 1) A4 ≺ A5 ≺ A2 ≺ A1 ≺ A3

In the following, we will give some comparisons of the three methods and our proposed
methods with respect to some characteristics, which are listed in Table 5.

Table 5. Comparisons of different methods

Methods
Capture

interrelationship of MAs
Make method
flexible by PV

HFWA × ×
HFGA × ×

HFMSM
√ √

HFWMM in this paper
√ √

where MA means multiple attributes and PV means parameter vector.

HFWA and HFGA are special cases of HFWMM operator. Compared with the meth-
ods based on the HFWA operator and HFGA operator, there are two limitations: (1)
the method based on HFWA and HFGA operator thinks that the input arguments are
independent; (2) the method based on HFWA and HFGA operator does not consider the
interrelationship among input arguments. However, the new proposed operator in this
paper can also consider the interrelationship among all input arguments and it is also a
generalization of most existing aggregation operators. Therefore, the proposed method is
more general and flexible to solve MADM problems than HFWA and HFGA. Therefore,
we extend HFMSM to HFWSMM which is special cases of HFWMM operators when

parameter vector P = (

k︷ ︸︸ ︷
1, 1, · · · , 1,

k︷ ︸︸ ︷
0, 0, · · · , 0). Thus, the new method proposed in this

paper can make the hesitant fuzzy information aggregation process more flexible by the
parameter vector P .
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7. Conclusions. In recent years, aggregation operators play a vital role in decision mak-
ing and many aggregation operators under different environment have been developed.
However, they still have some limitations in solving some practical problems. Some tradi-
tional Maclaurin symmetric mean (MSM) operator fails in dealing with the hesitant fuzzy
information. In this paper, we have investigated the MADM problems with the hesitant
fuzzy information based on new aggregation operator which can capture interrelation-
ships of multiple attributes among any number of attributes by a parameter vector P .
To begin with, we presented some new hesitant fuzzy MM aggregation operators to deal
with MADM problems with hesitant fuzzy information, including the hesitant fuzzy Muir-
head mean (HFMM) operator, the hesitant fuzzy weighted Muirhead mean (HFWMM)
operator. In addition, some properties of these new aggregation operators were proved
and some special cases were discussed. Moreover, we presented a new method to solve
the MADM problems with hesitant fuzzy information. Finally, we used an illustrative
example to show the feasibility and validity of the new methods by comparing with the
other existing methods.

In further research, it is necessary to solve the real decision making problems by apply-
ing these operators. In addition, we can develop some new aggregation operators on the
basis of Muirhead mean operator by considering that MM operator has the superiority of
compatibility.
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