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Abstract. Automatic image annotation is an important problem in computer vision
owing to its critical role in image retrieval. In order to exploit the diversities of differ-
ent features in a sample as well as the similarities, we present a regularized multi-view
structured sparse representation model for image annotation. In this model, handcrafted
visual features, deep learning based features and label information are considered as dif-
ferent views. Each view is coded on its associated dictionary to allow flexibility of coding
coefficients from different views, while the disagreement between each view and a soft-
consensus regularization term is minimized to keep the similarity among multiple views.
The weight for each view is learned in the coding stage, and a weighted label prediction
and propagation method is also proposed. Experimental results on ESP Game and IAPR
TC-12 datasets demonstrate the effectiveness of the proposed approach compared with
other related approaches for image-annotation task.
Keywords: Regularization term, Image annotation, Multi-view learning, Structured
sparsity, Deep learning

1. Introduction. Automatic image annotation aims at automatically assigning relevant
text labels to a given image reflecting its semantic content. It has become an active
research topic due to the great potentials in image retrieval field. The difficulty of this
task lies in that a balance has to be kept between two conflicting goals: firstly, the selected
image representation needs to be specific to be able to differentiate objects that are easily
confounded. On the other hand, the image representation is required to be invariant
to occlusions, deformation, and scale and view point variations, etc. This makes the
automatic image annotation be an extremely challenging problem.

Existing image annotation algorithms can be roughly divided into four types of models:
discriminative model, generative model, nearest neighbor model and deep learning based
model. Discriminative models [1-3] learn a separate classifier for each label and use these
classifiers to predict label classification for the test image. It does not take the correlation
between different labels into account, which is often very important for image annotation.
Generative models [4-6] attempt to predict the correlations or joint probabilities between
semantic labels and visual features from unlabeled images. Many parameters’ estimation
is required in this type of model, which leads to heavy computation cost. Nearest neighbor
(NN) models [7-11] solve image annotation problem as a retrieval problem, and attempt
to represent the image to be annotated by its nearest neighbors. Because of its simplicity
and efficiency, NN models attract more researching attention. Deep learning based mod-
els [12-15] learn the image features based on a deep neutral network structure such as
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convolution neural network (CNN) and auto-encoder (AE), and output the score of each
label by a mapping function, such as softmax or sigmoid function. It is a new branch in
image annotation and attracts many research interests due to the ground-breaking results
of deep learning on image classification [16,17]. However, the annotation performance of
deep learning models lags behind the state of the art due to the lack of supervised learn-
ing. Some works [11,12] employ the deep learning based features directly into K-nearest
neighbor (KNN) based annotation models and obtain promising results.

In recent decades, sparse coding has been widely used in computer vision and demon-
strates good performance [18-20]. It is close to the NN-based method since it also rep-
resents the image to be annotated as the linear combination of training samples while
forcing the representation coefficients being sparse. Many researchers have extended and
improved sparse coding to solve image annotation problem [21-30]. Wang et al. [21]
presented a multi-label sparse coding framework for feature extraction and image anno-
tation. Gao et al. [22] proposed a tri-layer group sparse coding framework for concurrent
single-label image classification and annotation. Cao et al. [23] utilized the group sparse
reconstruction framework to learn the label correlation for dictionary and reconstructed
the test image for label prediction under weakly supervised case. Lu et al. [24] presented a
more descriptive and robust visual bag-of-word (BOW) representation by semantic sparse
recoding method for image annotation and classification. Jing et al. [25] learned a label
embedded dictionary as well as a sparse representation for image annotation. However,
the above methods utilize single feature or concatenate multiple features to a long vec-
tor to represent images, which cannot efficiently explore the complementary of different
features carrying different physical characteristics. Moran and Lavrenko [26] introduced
a sparse kernel learning framework for the continuous relevance model, which adaptively
selected a different kernel for a different feature, and combined multiple features by a
greedy approach to get the performance maximization. However, the number of kernels
they employed is limited, which may be not enough to discover the potential comple-
mentary among diverse features and that between visual features and labels. Liu et al.
[27] introduced structured sparsity with multi-view learning and treated label informa-
tion along with different features as different views of an image, which achieved good
performance for image annotation. In our previous work [28], a mixed-norm sparsity was
introduced into the multi-view learning framework to obtain a better image representa-
tion for annotation. However, both these methods assumed that the coding coefficients for
different views are the same, and the weights for different views are equal, which is often
not true in nature. To solve this problem, [29] presented a multi-view joint sparse coding
model, in which each feature/label view corresponds to a specific sparse representation,
and a joint sparse regularization term is introduced to ensure the similar sparse pattern
across multiple views. [30] revised this framework by mapping each view to an implicit
kernel space to find a set of optimal sparse representations and discriminative dictionaries
jointly, which obtained a better performance. However, the joint sparse regularizer only
enforced the similar sparsity of different views in the row direction, which is still limited in
employing the similarity and diversity of multiple views, and the kernel mapping increases
calculation cost greatly. Yang et al. [19] introduced a variance regularization term with
adaptive weighting for different views to effectively exploit the similarity and diversity of
different features for coding and classification.

Inspired by earlier work [19,27], we propose to learn a regularized multi-view structured
sparse representation for image annotation. We account for both the similarity and dis-
tinctiveness of different views in coding and label prediction stages. In the coding stage,
we introduce distinct coding coefficients for different views into the structured sparsity
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representation framework, which is also integrated with a weighted soft-consensus reg-
ularization term to explore both similarities and differences in all views. We treat the
handcrafted features as well as the deep learning based features and label information as
multiple separate views of images for multi-view learning to strengthen the discriminative
power of the learned sparse representation. In the label transfer stage, we first predict the
sparse coefficient vector for test image in label view by weighted average of the learned
sparse coding in other views; then the product of learned dictionary in label view from
training images and the predicted sparse coefficient vector is used directly to propagate
the labels from the training images to the test image. Our extensive experiments on ESP
Game and IAPR TC12 datasets demonstrate the effectiveness of our proposed method
and the competitive performance compared with other related methods.

The contributions of this work can be summarized as follows. Firstly, we propose a
soft-consensus regularized multi-view structured sparse representation (RmSSR) frame-
work and successfully apply it into image-annotation task. Secondly, we present the op-
timization algorithm of the proposed method based on the accelerated proximal gradient
(APG) method, and a weighted greedy label prediction scheme is also proposed. Finally,
we incorporate deep learning based feature into multi-view learning besides the hand-
crafted visual features and label information, and provide the experimental comparison
and analysis.

The rest of this paper is organized as follows. Section 2 briefly reviews some related
works. Section 3 describes the details of our regularized multi-view structured sparse
representation model, optimization method and the label prediction scheme. Section 4
demonstrates experimental results followed by the conclusion in Section 5.

2. Related Works. This section briefly presents a review on existing image annotation
methods using sparse coding.

2.1. Annotation based on sparse coding. The sparse representation based image
annotation methods were presented in [21,22] for multi-label image annotation. Denote
by X = [x1, x2, . . . , xN ] ∈ RP×N the feature vector matrix formed by original N training
samples, where xi = [xi1, xi2, . . . , xiP ]T , (i = 1, 2, . . . , N), is the feature vector of the ith
sample image, and P is the feature dimension. Letting xt ∈ RP be a test sample to be
labeled, the sparse coding vector ω of the test image over all training images is obtained
by solving the following optimization problem:

arg min
ω

1

2
∥xt − Xω∥2

2 + λϕ(ω) (1)

where ω = [ω1, ω2, . . . , ωN ] ∈ RN and ωi is the coefficient associated with the ith training
sample. ϕ(ω) is a regularizer over ω to encourage sparsity. λ is a scalar constant used to
set the relative influence of both terms.

For different purposes, different forms of ϕ(ω) can be used. Typically, L1 norm is used,
which yields:

arg min
ω

1

2
∥xt − Xω∥2

2 + λ ∥ω∥1 (2)

Many annotation methods [9,22,23] introduce the group sparsity to enhance the anno-
tation performance by exploring the structure information in the observed data, which
can be generally formulated as structured sparse coding [31]:

arg min
ω

1

2
∥xt − Xω∥2

2 + λ ∥ω∥1,p (3)
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Typically, these methods rely on the notion of groups among the training examples
to encourage members of the same group to rely on the same training examples. ∥ω∥1,p

means Lp norm is used on the sparse codes within each group, while L1 norm is used to
sum the results between groups. Generally p = 2 or ∞.

For label transfer, [21] propagates the labels from the training images to the test image
directly by the product of label matrix of training images with the learned sparse vector.
[22] predicts the test image labels based on the reconstruction error in the (sub)groups,
and assigns labels from the (sub)groups with the minimum reconstruction error to the
test image.

2.2. Annotation based on dictionary learning. Although sparse coding has been
proven effective in many domains, all the training samples (called dictionary) used in
it may introduce the noisy information and increase the coding complexity, and could
not fully exploit the discriminative information hidden in the training samples. [23,25]
introduce dictionary learning for image annotation aiming at learning the space where
the given signal could be well represented for processing from the training samples. They
follow the conventional dictionary learning framework [32]:

arg min
D,W

1

2N
∥X − DW ∥2

F + λϕ(W )

s.t. ∥Di∥2 ≤ 1, 1 ≤ i ≤ Nd

(4)

where D ∈ RP×Nd is the dictionary, 1 ≤ Nd ≤ N , and W ∈ RNd×N is the sparse
coefficient matrix. The label transfer scheme is similar to the scheme above except that
it utilizes the learned dictionary to replace all the training samples.

2.3. Annotation based on multi-view structured sparse coding. While the dic-
tionary learning framework is successful in many tasks, it has only been applied to
the single-view case. With multiple types of input modalities, [27] proposes a multi-
view learning model with structured sparsity to factorize multiple representations. Sup-
pose each sample is represented by V different features of views. Denote by X(v) =[
X

(v)
1 , X

(v)
2 , . . . , X

(v)
i , . . . , X

(v)
N

]
∈ RPv×N the feature vector matrix of the vth view for

the training images, by D(v) =
[
D

(v)
1 , D

(v)
2 , . . . , D

(v)
Nd

]
∈ RPv×Nd (Nd > Pv) the overcom-

plete dictionary of the vth view and by W ∈ RNd×N the coding coefficient matrix. Thus,
the method of multi-view learning with structured sparsity is formulated as:

arg min
D(v),W

1

2N

V∑
v=1

∥∥X(v) − D(v)W
∥∥2

F
+ λ1 ∥W ∥1,∞ + λ2

V∑
v=1

∥∥∥(
D(v)

)T
∥∥∥

1,∞

s.t.
∥∥∥D

(v)
i

∥∥∥
2
≤ 1, 1 ≤ i ≤ Nd

(5)

where ∥W ∥1,∞ is a regularizer that controls the sparsity over W .
∑V

v=1

∥∥∥(
D(v)

)T
∥∥∥

1,∞
is

a regularizer that controls the structure of dictionary, and λ1 and λ2 are parameters that
balance the loss function and regularizations respectively. Here the structured sparsity
represented by mixed norm takes each row vector of the matrix as a group. This for-
mulation enforces structured sparsity on the dictionary entries as well as on the sparse
coding coefficients, and expects to find a W that naturally extracts the information shared
among different views from the information specific to each view.

In [27], labels are treated as an additional (V + 1)th view, then X(V +1) =
[
X

(V +1)
1 ,

X
(V +1)
2 , . . . , X

(V +1)
N

]
∈ RPV +1×N represents the label view matrix of training samples,
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PV +1 is the number of labels, X
(V +1)
i ∈ RPV +1 is the label vector of the ith image, and

D(V +1) is the associated label view dictionary which also can be learned by Equation (5).

For a new test sample xt =
{

x
(1)
t , x

(2)
t , . . . , x

(V )
t

}
, the corresponding sparse code matrix

ω can be obtained by solving the convex problem:

arg min
ω

1

2

V∑
v=1

∥∥∥x
(v)
t − D(v)ω

∥∥∥2

2
+ λ1 ∥ω∥1 (6)

and the label view of the test sample x
(V +1)
t are then predicted by x

(V +1)
t = D(V +1)ω

directly.

2.4. Discussion. Our approach is related to the work in [27], but differs in two aspects.
First, [27] uses multi-view structured sparsity for semi-supervised image annotation, i.e.,
they assume part of testing data is available. Our work focuses on the supervised occasion
since it is often the case that testing data are not known. Second, [27] uses the common
coefficients matrix for different views in learning and label transfer stages, which omits
the diversity between different views. In our formulation, we allow the coding coefficients
to be flexible to some extent for different views, while considering their similarity. Thus,
the learned coefficients and dictionary specific to label view can be effectively used to
obtain labels of test image.

Our proposed use of multi-view learning with soft-consensus regularization term is also
related to the work in [10], but rather than using a set of predefined weights for different
views in the regularization term, we learn the weight for each view to achieve better
representation.

3. Proposed Method. In this section, we will describe the formulation of our method,
its optimization and the labels prediction and propagation scheme.

3.1. Multi-view regularized sparse representation model. We propose a multi-
view regularized structure sparse representation model for image annotation. Assume
that we have a multi-view dataset of N training samples from V visual feature views and
a label view, i.e.,

{
X(1),X(2), . . . ,X(V ),X(V +1)

}
, where X(v) ∈ RPv×N . X(V +1) is the

label view matrix, in which each entry is either 1 or 0 representing whether the occurrence
of a certain label is in the image or not. Our method aims to find the sparse coefficient
matrix of each view α(v) ∈ RNd×N for the sample data X(v) over associated dictionary
D(v) ∈ RPv×Nd , where Nd is the number of dictionary atoms.

Here we exploit the similarity as well as the distinctiveness of different views and intro-
duce a regularization term

∥∥α(v) − α̃
∥∥

F
as a measure of disagreement between coefficient

matrix α(v) and the consensus matrix α̃, which is used to regularize the coding coefficients
of different views over their associated dictionaries.

Thus, the objective function of our RmSSR is written as followed:

arg min
D(v),ω(v),α(v)

V +1∑
v=1

(∥∥X(v) − D(v)α(v)
∥∥2

F
+ λ1

∥∥α(v)
∥∥

1,∞ + λ2

∥∥∥(
D(v)

)T
∥∥∥

1,∞

+λ3ω
(v)

∥∥α(v) − α̃
∥∥2

F

)
s.t. −

V +1∑
v=1

ω(v) ln ω(v) > σ

(7)
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where
∑V +1

v=1

∥∥α(v)
∥∥

1,∞ is a regularizer that controls the sparsity over code coefficients

of different views.
∑V +1

v=1

∥∥∥(
D(v)

)T
∥∥∥

1,∞
is still a regularizer that controls the structure

of dictionary. α̃ is the consensus matrix, and ω(v)
∥∥α(v) − α̃

∥∥2

F
is the soft-consensus

regularizer introduced to enforce coefficient matrix corresponding to each view to be
similar to a consensus matrix among all views. This also results in the dictionary to
capture similar contents in their respective views. ω(v) is a factor used to tune the relative
weight among different views. The weights are constrained to the maximum entropy
principle [19], and σ is a limit value of entropy, which makes the distribution of ω(v) not
concentrated in some individual views. Each weight ω(v) is normalized in [0, 1]. λ1, λ2

and λ3 are positive constants that balance the loss function and the regularization terms,
respectively.

3.2. Objective optimization. The objective function in Equation (7) can be solved by
alternating optimization algorithm [33]. That is, we optimize with respect to ω(v), α(v)

and D(v) respectively, keeping the other two fixed. In the following, we first provide
a general description of our alternating optimization for RmSSR, and then present the
optimization process for the subproblems in detail.

Firstly, by fixing D(v) and ω(v), Equation (7) can be simplified to:

arg min
α(v)

V +1∑
v=1

(∥∥X(v) − D(v)α(v)
∥∥2

F
+ λ1

∥∥α(v)
∥∥

1,∞ + λ3ω
(v)

∥∥α(v) − α̃
∥∥2

F

)
(8)

and α(v) can be optimized iterately by Equation (8).
Once α(v) has been updated for each view in a particular iteration, we can take deriva-

tive of Equation (8) w.r.t α̃, and obtain the solution of α̃ by setting the derivative to be
0:

α̃ =
V +1∑
v=1

ω(v)α(v)

/
V +1∑
v=1

ω(v) (9)

Next, by fixing α(v) and ω(v), Equation (7) can be simplified to update dictionary D(v)

as follows:

arg min
D(v)

V +1∑
v=1

(∥∥X(v) − D(v)α(v)
∥∥2

F
+ λ2

∥∥∥(
D(v)

)T
∥∥∥

1,∞

)
(10)

Finally, by fixing D(v) and α(v), Equation (7) can be simplified to:

arg min
ω(v)

V +1∑
v=1

λ3ω
(v)

∥∥α(v) − α̃
∥∥2

F
+ ξω(v) ln ω(v) (11)

here ξ > 0 is the Lagrange multiplier, and the weights could be directly updated by
setting the deviation equal to 0 as:

ω(v) = exp
{
−1 − λ3

∥∥α(v) − α̃
∥∥2

F

/
ξ
}

(12)

The overall procedure of the alternating optimization for our method is summarized in
Algorithm 1.

Next, we optimize subproblem (8) and (10) to learn the sparse coding and dictionary
respectively.

Learning sparse coding: Equation (8) can be separated to V + 1 parts w.r.t each
view, and each part is written as the following general form. For convenience, we omit
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Algorithm 1 Alternating optimization algorithm for Equation (7)
Input: Feature view of training samples X(v), v = 1, 2, . . . , V ; Label view of training
samples X(V +1); Parameters λ1, λ2, λ3, ξ
Output: Dictionary D(v), sparse coefficients matrix α(v), and weight ω(v), v =
1, 2, . . . , V + 1
1: Initialize D(v), α(v) with random entries, initialize the weight ω(v) with 1

V +1

2: While not convergence do
3: Update coding coefficient α(v) via Equation (8) and get α̃ via Equation (9)
4: Update dictionary D(v) via Equation (10)
5: Update weights ω(v) via Equation (12)
6: End While

the superscript of the view index.

arg min
α

(
∥X − Dα∥2

F + λ1 ∥α∥1,∞ + λ3ω ∥α − α̃∥2
F

)
(13)

By denoting f(α) = ∥X − Dα∥2
F + λ3ω ∥α − α̃∥2

F , Equation (13) is rewritten as:

arg min
α

(
f(α) + λ1 ∥α∥1,∞

)
(14)

Equation (14) is a non-smooth convex function, in which f(α) is differentiable and
its differential is Lipschitz continuous, while ∥α∥1,∞ is non-differentiable. We employ

the APG [34,35] method to solve this problem since it is an accelerated gradient descent
algorithm with the convergence rate of O(1/k2) (k is the number of iterations) and the
generalized gradient update in each iteration is solved analytically by a simple sorting
procedure. Moreover, APG method only need first order information, which makes it
suitable for large scale learning problems.

The gradient of f(α) with respect to α can be written as:

∇fα(α) = 2
[
−DT X + DT Dα + λ3ω (α − α̃)

]
(15)

Then the optimization procedure of APG algorithm consists of alternately updating
the coefficient matrix αm and an aggregation matrix Qm, where m indexes an iteration.
For the first step, given the current matrix Qm, we update αm+1 by the following formula:

Z = Qm − 1

L
∇fQ(Qm) (16)

αm+1 = arg min
α

1

2
∥α − Z∥2

F +
λ1

L
∥α∥1,∞ (17)

where L is a parameter controlling the step penalty. Equation (17) can be decomposed
into Nd separate subproblems of dimension N , and each is solved with the primal dual
relationship according to [34] (the detailed steps are listed in Step 4 of Algorithm 2).

For the second step, we update the aggregation matrix Qm+1 as a linear combination
of αm+1 and αm as follows:

Qm+1 = αm+1 +
θm+1(1 − θm)

θm

(αm+1 − αm) (18)

Here we set θm+1 = 2
m+3

by convention. Algorithm 2 summarizes the optimization
procedure of subproblem (8) by APG method, where for a matrix M , Mi,· represents the
ith row vector of M , and Mij is the entry of the ith row and jth column of M .

Learning dictionary: Subproblem (10) could be solved similar to subproblem (8),
and the optimization procedures are summarized in Algorithm 3.
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Algorithm 2: Optimizing algorithm for subproblem (8)
Input: Training image data X(v), corresponding dictionary D(v), the weight coeffi-
cient ω(v), v = 1, 2, . . . , V + 1, consensus matrix α̃, regularization parameter λ1, λ3

and parameter L.
Output: Sparse coefficient α(v), v = 1, 2, . . . , V + 1
For each view, denote X = X(v), D = D(v), α = α(v), ω = ω(v) for convenience.
1: Initialization: Initialize Q0 and α0 to be zero matrix. Set θ0 = 1 and m = 0.
2: Repeat {Main loop}
3: Calculate Z = Qm − 1

L
∇fQ(Qm) via Equation (15)

4: Calculate αm+1 by Equation (17) as followed:
For ith row of αm+1, i = 1, . . . , Nd

If ∥Zi,·∥1 ≤
λ1

L
, set (αm+1)i,· = 0. Continue.

Let uj = |Zij|, j = 1, 2, . . . , N , sort vector u in the decreasing
order: u1 ≥ u2 ≥ · · · ≥ uN

Find q = max

{
q : λ1

L
−

q∑
r=1

(ur − uq) > 0

}
(αm+1)ij = sign(Zij) min

(
|Zij| ,

(
q∑

r=1

ur − λ1

L

)/
q

)
,

j = 1, 2, . . . , N
End For

5: θm+1 = 2
m+3

6: Qm+1 = αm+1 + (1−θm)θm+1

θm
(αm+1 − αm)

7: m = m + 1
8: Until convergence is attained.

Algorithm 3: Optimizing algorithm for subproblem (10)
Input: Training image data X(v), sparse coefficient α(v), the weight coefficient ω(v),
v = 1, 2, . . . , V +1, consensus matrix α̃, regularization parameter λ2 and parameter L
Output: D(v), v = 1, 2, . . . , V + 1

For each view, denote X = X(v), dictionary B =
(
D(v)

)T
, α = α(v), ω = ω(v), P = Pv

1: Initialization: Initialize Q0 and B0 to be zero matrix. Set θ0 = 1 and m = 0.
2: Repeat {Main loop}
3: Calculate Z = Qm − 2

L

(
ααT Qm − αXT

)
4: For ith row of Bm+1, i = 1, . . . , Nd

5: If ∥Zi,·∥1 ≤
λ2

L
, set (Bm+1)i,· = 0. Continue.

6: Let uj = |Zij|, j = 1, 2, . . . , P , sort vector u in the decreasing
order: u1 ≥ u2 ≥ · · · ≥ uP

7: Find q = max

{
q : λ2

L
−

q∑
r=1

(ur − uq) > 0

}
8: (Bm+1)ij = sign(Zij) min

(
|Zij| ,

(
q∑

r=1

ur − λ2

L

)/
q

)
,

j = 1, 2, . . . , P
9: End for
10: θm+1 = 2

m+3

11: Qm+1 = Bm+1 + (1−θm)θm+1

θm
(Bm+1 − Bm)

12: m = m + 1
13: Until convergence is attained
14: D(v) = (B)T
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3.3. Label prediction and propagation scheme. Since we use different sparse rep-
resentations for different views, we cannot use the learnt sparse coefficients from vi-
sual features to predict label directly like [27], but we still can infer the label infor-
mation from these sparse coefficients. In particular, given a test image represented by

multi-view features
{

x
(1)
t ,x

(2)
t , . . . , x

(V )
t

}
, the learned dictionary D(v) and weight ω(v),

(v = 1, 2, . . . , V + 1), from the features and labels of the training images, we obtain the

sparse coefficients α
(v)
t of visual features for the test image in terms of learned dictionary

and weight by solving the following convex problem:

arg min
α

(v)
t

V∑
v=1

(∥∥∥x
(v)
t − D(v)α

(v)
t

∥∥∥2

2
+ λ1

∥∥∥α
(v)
t

∥∥∥
1
+ λ3ω

(v)
∥∥∥α

(v)
t − α̃t

∥∥∥2

2

)
(19)

where α̃t is the mean vector of all the sparse coefficients from feature views for the test
image.

Then, estimate the coefficient vector of the label view, i.e., α̂
(V +1)
t by weighted average

of coefficient vectors from all feature views, which is similar to [10]:

α̂
(V +1)
t =

V∑
v=1

ω(v)α
(v)
t (20)

Finally, the scores for predicted labels of the test image can be obtained by

x̂
(V +1)
t = D(V +1)α̂

(V +1)
t (21)

in which the elements of label view can be considered as the score of each label. The
desired number of labels can be obtained by sorting the labels according to their obtained
scores. The label prediction and propagation scheme for our method is summarized in
Algorithm 4.

Algorithm 4. Our label prediction and propagation scheme
Input: Learned dictionary D(v) and weight ω(v), v = 1, 2, . . . , V + 1; Feature vector

of a test image: x
(v)
t , v = 1, 2, . . . , V ; Parameters λ1, λ3

Output: Predicted labels for the test image: x̂
(V +1)
t

1. Obtain sparse coefficient of feature view α
(v)
t , (v = 1, 2, . . . , V ) via Equation (19)

2. Estimate sparse coefficient of label view α
(V +1)
t via Equation (20)

3. Calculate the scores for predicted labels x̂
(V +1)
t via Equation (21)

4. Transfer the required number of labels to the test image according to their scores.

4. Experimental Results and Analysis. In this section, we will experimentally eval-
uate the proposed RmSSR for image annotation. We divide the methods to be compared
into three classifications. One is the spare coding based annotation frameworks including
multi-label sparse coding (MSC) [21], multi-view Hessian discriminative sparse coding
(mHDSC) [27], multi-view joint sparse coding (MvJSC) [29], and kernel based multi-view
joint sparse coding (KMvJSC) [30]. Our RmSSR falls into this classification. To evaluate
the effectiveness of regularization term, we also test our method without regularization
term (mSSR). The second category is the KNN based annotation model since our sparse
reconstruction method is close to it in that they both represent the test image as the lin-
ear combination of training samples. We compare joint equal contribution (JEC) [7], tag
propagation (TagProp) [8] and two-pass KNN (2PKNN) [11] in this classification. The
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third category lists some deep learning based methods including convolutional neural net-
work regressor (CNN-R) [12], multi-view stacked auto-encoder (MVSAE) [13], canonical
correlation analysis with K-nearest neighbor (CCA-KNN) [12], as well as JEC, 2PKNN
and our RmSSR using deep learning based features.

4.1. Experimental settings. The proposed method is experimentally evaluated using
two popular and publicly available datasets benchmarks ESP Game and IAPR TC-12.

ESP Game dataset [36] consists of 20,770 images with a wide variety of topics, such as
logos, drawings, and personal photos. Each image is manually annotated with up to 15
labels from a dictionary of 268 keywords, and with 4.7 labels on average. The set is split
into 18,689 training images and 2,081 test images.

IAPR TC-12 dataset [37] consists of 19,627 images of natural scenes including sports,
actions, people, animals, cities, landscapes and so on. Each image is manually annotated
with up to 23 labels from a dictionary of 291 keywords, and with 4.7 labels on average.
In the dataset, 17,665 images are selected for training, and the remaining 1,962 images
for testing.

There are four parameters in our RmSSR method, which are λ1, λ2, λ3 and ξ. Parameter
ξ is set as 0.001 empirically and is fixed for all experiments. Parameters λ1, λ2 and λ3 are
tuned by 5-fold cross validation on the training image set and are selected in the range
{1 × 10e |e = −5,−4,−3,−2,−1, 0, 1}. Concretely, λ1 and λ2 are both set as 0.01 on ESP
Game dataset, and are separately set as 0.01 and 0.1 on IAPR TC-12 dataset. λ3 is set
as 0.1 and 0.01 on ESP Game and IAPR TC-12 datasets respectively. Due to the random
entries in initialization, we repeat all the experiments 5 times separately and report the
average result.

Following existing works [7,8,11,12,21], the image annotation performance is evaluated
by comparing the results with the manually labeled ground truth. Each testing image
is automatically annotated with five labels, and we calculate the precision (P) and recall
(R) for each label, and get F1 measure by F1 = 2×R×P/(R+P). We report the mean
value over all labels for each metric. Besides, the number of labels with non-zero recall
(N+) is also used.

4.2. Features. We consider two sets of features for our method evaluation. The first set
of features denoted by T is the handcrafted features provided by [8], which consists of 15
features representing each image, including 3 color histograms features (RGB, LAB and
HSV), 2 Hue and 2 SIFT features (extracted on dense grids and Harris-Laplacian inter-
est points respectively, represented as DenseHue, HarrisHue, DenseSIFT, HarrisSIFT),
7 above histogram features with layout information (computed over a 3 × 1 horizontal
decomposition of the image, represented as DenseSIFTV3H1, HarrisSIFTV3H1, Dense-
HueV3H1, HarrisHueV3H1, RGBV3H1, LABV3H1 and HSVV3H1) and a GIST feature.

The second set of feature denoted by VGG is the deep learning based feature extracted
by employing the pre-trained CNN model on the ILSVRC-2012 dataset described in [17].
Following [12], we resize all the images to 224× 224 irrespective of their aspect ratio and
subtract the mean RGB value computed on the training samples from each image pixel.
We use the VGG-16-D layered architecture, which outputs a 4096-dimensional feature
vector.

4.3. Image annotation results. Some examples of the predicted annotations produced
on ESP Game and IAPR TC-12 datasets by our method are presented in Table 1. It con-
tains at least one mismatched label compared with ground truth labels (perfectly matched
annotations are not listed here). The differences in predicted labels are marked in italic
font. The results in Table 1 demonstrate that, some predicted labels not contained in the
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Table 1. Comparison of predicted labels with human annotations for im-
ages from ESP Game and IAPR TC-12 datasets. Italic labels are the dif-
ferences between predicted and ground truth labels while some of them are
also relevant to the image.

Images
from
ESP
Game

Ground
truth
labels

chair, flower,
red, room,

table

bug, green,
insect, tree,

wood

fly, plane,
red, sky

black, car,
flag, group,
man, people

Predicted
labels

chair, flower,
painting, red,

table

bug, green,
insect, leaf,

tree

airplane, fly,
plane, red,

sky

car, flag,
man, people,

star
Images
from
IAPR
TC-12

Ground
truth
labels

creek, face,
forest, horse,
people, rock

cap, curtain,
front, glass,
hand, shop,

woman

court, man,
player, tennis

flag, man,
sky, wall,
woman

Predicted
labels

creek, face,
forest, horse,

people

cap, curtain,
front, glass,

hand

court, man,
player, tennis,

net

flag, man,
side, sky,

wall

ground truth label set can still describe the image well in many cases, such as “painting”
in the first image, which shows the potential effectiveness of our proposed method for
automatic image-annotation task. We also notice that some labels are inevitably missed
in the predicted keywords when the ground truth provides more words than five since we
are restricted to annotating each image with only five words.

4.4. Method comparison. Table 2 compares the performance of our proposed method
to the related approaches on both datasets. Methods with suffix “ T” represent the
implementations using T features, with “ VGG” using VGG feature, and with “ T+VGG”
using both of them. MSC* and MHDSC* refer to our implementation using T features.
The results of JEC and 2PKNN implemented using VGG feature are obtained from [12].
For other methods, the results of related work are directly copied from their original
papers.

From Table 2, we can see that for sparse code based annotation frameworks, the three
types of mSSR based methods (mHDSC, mSSR, RmSSR) and two types of joint sparsity
based methods are clearly better than MSC in all the evaluation measures. This shows
that the integration of multi-view learning with the sparse coding could represent the
images more robustly.

Compared with mHDSC, which utilizes different dictionaries but the same sparse coef-
ficients for all the views, and mSSR, which allows diversity of sparse coefficients among
different views while neglecting the correlation between multiple views without any reg-
ularization constraint, RmSSR outperforms both of them in all the measures. MvJSC
gets a little higher performance on ESP Game dataset than mSSR, but much lower on
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Table 2. Annotation performance evaluation on both datasets. The
top portion displays published results of some KNN-based state-of-the-art
methods. The middle part shows the results of the sparse code based frame-
work methods, and the bottom rows list results of those methods dealing
with deep learning. The results in bracket are obtained under equal view
weights.

Method
ESP Game IAPR TC12

AP AR F1 N+ AP AR F1 N+
JEC [7] 0.22 0.25 0.23 224 0.28 0.29 0.29 250

TagProp [8] 0.39 0.27 0.32 239 0.46 0.35 0.40 266
2PKNN ML [11] 0.53 0.27 0.36 252 0.53 0.32 0.40 277

MSC* [21] 0.35 0.23 0.28 236 0.35 0.28 0.31 252
mHDSC* [27] 0.43 0.27 0.33 248 0.45 0.32 0.37 260
MvJSC [29] 0.41 0.28 0.33 245 0.42 0.32 0.36 261

KMvJSC [30] 0.44 0.29 0.35 255 0.46 0.34 0.39 268
mSSR T 0.41 0.26 0.32 239 0.48 0.34 0.40 264

RmSSR T
0.46

(0.44)
0.31

(0.30)
0.37

(0.35)
254

(250)
0.52

(0.50)
0.37

(0.37)
0.43

(0.43)
281

(277)
CNN-R [12] 0.45 0.29 0.35 248 0.49 0.31 0.38 272
MVSAE [13] 0.47 0.28 0.34 246 0.43 0.38 0.40 283

CCA-KNN BV [12] 0.44 0.32 0.37 254 0.41 0.34 0.37 273
JEC VGG [12] 0.26 0.22 0.24 234 0.28 0.21 0.24 237

2PKNN VGG [12] 0.40 0.23 0.29 250 0.38 0.23 0.29 261

RmSSR VGG
0.44

(0.42)
0.27

(0.26)
0.33

(0.32)
251

(244)
0.53

(0.47)
0.33

(0.31)
0.40

(0.37)
266

(260)

RmSSR T+VGG
0.49

(0.46)
0.32
(0.28)

0.39
(0.35)

256
(247)

0.54
(0.53)

0.38
(0.37)

0.45
(0.44)

286
(278)

IAPR TC12 dataset, which shows that joint sparsity constraint is still limited to employ
the similarity and diversity of multiple views. Although KMvJSC improves the perfor-
mance by kernel space mapping greatly, it is still less than RmSSR in F1 measure on
ESP Game dataset, and in all measures on IAPR TC12 dataset. These results verify
that the flexibility and the similarity of sparse coefficients in different views are both
important for discrimination, and the tradeoff between them can be reached effectively
by the consensus matrix regularization, which automatically learns weights to distinguish
the importance of different views and minimizes the difference between coding coefficient
matrix and consensus matrix to enforce similarity.

For other state-of-the-arts, we see that our proposed RmSSR model using only T fea-
tures is better than or at least equal to all the previous works in F1 measure and N+ on
both datasets, which verifies that our method is competitive.

Our RmSSR using VGG feature yields slightly worse results than that using T features,
which is generally in accordance with the cases for JEC and 2PKNN using VGG feature
compared with those using T features. That may because the feature is learned using a
pretraining CNN specific for single-label image classification, it may not be optimal for
image annotation, which is a multi-label classification problem.

Compared with RmSSR T and RmSSR VGG, RmSSR T+VGG integrates handcrafted
features and deep learning based feature together, and improves the performance of
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RmSSR further on both datasets, which demonstrates that both sets of features have
the complementary information and can be employed effectively by multi-view learning.

From Table 2, we can see that the learned view weights are beneficial to the im-
age annotation on both datasets. We notice that in the case of equal view weights,
RmSSR T+VGG is even inferior to RmSSR T in terms of R, F1, and N+ on ESP Game
dataset. This demonstrates that more views may not lead to higher performance without
weight learning for each view. By integrating multi-view learning with weight learning,
our method can utilize the complementary among different views more effectively.

Figure 1 presents the learned weights for ESP Game and IAPR TC-12 datasets, which
shows that the views of color features with layout information are the most important on
ESP Game dataset while the views of SIFT features take more important effect on IAPR
TC-12 dataset.

Figure 1. Learned weights for different views on ESP Game and IAPR
TC-12 datasets

4.5. Complexity analysis. In this part, we compare the computation complexity of our
RmSSR approach with those of related sparse coding based image annotation methods
including MSC [21], mHDSC [27], MvJSC [29], and KMvJSC [30].

The main computation cost of RmSSR comes from the gradient calculation for sub-
problem (8) and (10). Suppose the number of views as v, the average dimension of all
views as p, and the number of iteration as k for subproblem (8) and (10), we optimize the
sparse codes and the dictionaries with the same complexity O

[
kv

(
NdNp+N2

dN +N2
dp

)]
.

Denote the number of alternating iterations as η, and the number of candidate parame-
ters that need the δ-fold cross-validation as τ . Therefore, the total computation cost of
RmSSR is O

[
2kτδηv

(
NdNp + N2

dN + N2
dp

)]
.
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Table 3 lists the computation complexities of our RmSSR and related sparse coding
based image annotation methods. In the complexity of MSC, γ denotes the number of
nonzero entries in the sparse coefficient. Usually, Nd and p are much smaller than N .
Therefore, our RmSSR has a comparatively smaller computational complexity than all
other methods except MvJSC, which demonstrates the competitiveness of our method.

Table 3. Computation complexity of RmSSR and related sparse coding
based image annotation methods

Method Computation Complexity

MSC [21] O [(vp)3 + N2γ2]

mHDSC [27] O [kτδηv (2NdNp + 2N2
dN + 2N2

dp + NdN
2)]

MvJSC [29] O[2kτδηvpNdN)]

KMvJSC [30] O [τδηv (kN3 + 2kN2Nd + pN2 + pN)]

RmSSR O [2kτδηv (NdNp + N2
dN + N2

dp)]

4.6. Parameter sensitivity. We investigate the sensitivities of the parameters λ1, λ2

and λ3 in our approach using the IAPR-TC12 dataset as an example. Figure 2 demon-
strates the F1 measure variation versus different combinations of λ1 and λ2 with fixing
λ3 = 0.01. We can see that the best result is obtained when λ1 = 0.01 and λ2 = 0.1.
This means the regularization terms of sparse coefficient and sparse dictionary are effec-
tive when both of them are not too small and too large. Figure 3 demonstrates the F1
measure variation versus different λ3 with fixing λ1 = 0.01 and λ2 = 0.1. We can see the
consensus matrix regularization term taking the best effect when λ3 = 0.01. If it is too

Figure 2. The F1 measure of RmSSR versus different combinations of λ1

and λ2 on IAPR TC-12 dataset
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Figure 3. The F1 measure of RmSSR versus different λ3 on IAPR TC-12 dataset

small, the correlations among multiple views are lost while it limits the diversity of all
the variety of views with large values.

5. Conclusion. In this paper, we present a regularized multi-view structured sparse
representation model for image annotation. The contributions of our work are mainly
embodied in three aspects. Firstly, we introduce a weighted soft-consensus regularization
term into multi-view structured sparsity framework to effectively exploit the similarity
and distinctiveness of all views for coding and annotation. This framework enforces the
coefficient matrix corresponding to each view to be similar to a consensus matrix across
all views. Meanwhile, it distinguishes the distinctiveness of the coefficients from differ-
ent views over the associated dictionaries by adaptive weighting. Secondly, we propose
the optimization method for our formulation based on APG method. The correspond-
ing label prediction and propagation algorithm is presented to annotate the test image.
Thirdly, we conduct experiments using the conventional handcraft features (including
label information), deep learning based feature and both respectively on two datasets.
The experimental results demonstrate that exploiting similarity and distinctiveness of
multiple views simultaneously helps to improve the annotation performance greatly, and
the integration of complementary information of hand-crafted features and deep learning
based features is useful for discrimination. For future work, following [10,11], we intend
to introduce label weight matrices to our framework to solve the class imbalance problem
by increasing the recall of rare labels.

Acknowledgment. This work is supported by National Natural Science Foundation of
China (61371143) and the excellent youthful teacher project of North China University
of Technology (XN019006).



1282 Z. XING, M. ZANG AND Y. ZHANG

REFERENCES

[1] Y. Verma and C. V. Jawahar, Exploring SVM for image annotation in presence of confusing labels,
Proc. of the 24th British Machine Vision Conf., Bristol, UK, pp.1-11, 2013.

[2] G. Carneiro, A. B. Chan, P. J. Moreno and N. Vasconcelos, Supervised learning of semantic classes
for image annotation and retrieval, IEEE Trans. Pattern Analysis and Machine Intelligence, vol.29,
no.3, pp.394-410, 2007.

[3] M. L. Zhang and L. Wu, LIFT: Multi-label learning with label-specific features, IEEE Trans. Pattern
Analysis and Machine Intelligence, vol.37, no.1, pp.107-120, 2015.

[4] O. Yakhnenko and V. Honavar, Annotating images and image objects using a hierarchical Dirichlet
process model, Proc. of the 9th International Workshop on Multimedia Data Mining, Las Vegas, NV,
USA, pp.1-7, 2008.

[5] D. Putthividhya, H. T. Attias and S. S. Nagarajan, Topic regression multi-modal latent Dirichlet
allocation for image annotation, Proc. of the 23rd IEEE International Conf. on Computer Vision
and Pattern Recognition, San Francisco, CA, USA, pp.3408-3415, 2010.

[6] Z. Li, Z. Shi, Z. Li and Z. Shi, Modeling latent aspects for automatic image annotation, Proc. of
IEEE the 16th International Conf. on Image Processing, pp.1857-1860, 2009.

[7] A. Makadia, V. Pavlovic and S. Kumar, A new baseline for image annotation, Proc. of the 10th
European Conf. on Computer Vision, Marseille, France, pp.316-329, 2008.

[8] M. Guillaumin, T. Mensink, J. Verbeek and C. Schmid, TagProp: Discriminative metric learning in
nearest neighbor models for image auto-annotation, Proc. of the 12th IEEE International Conf. on
Computer Vision, Kyoto, Japan, pp.309-316, 2009.

[9] S. Zhang, J. Huang, H. Li and D. N. Metaxas, Automatic image annotation and retrieval using
group sparsity, IEEE Trans. Systems, Man, and Cybernetics, Part B (Cybernetics), vol.42, no.3,
pp.838-849, 2012.

[10] M. M. Kalayeh, H. Idrees and M. Shah, NMF-KNN: Image annotation using weighted multi-view
non-negative matrix factorization, Proc. of the 27th IEEE International Conf. on Computer Vision
and Pattern Recognition, Columbus, OH, USA, pp.184-191, 2014.

[11] Y. Verma and C. V. Jawahar, Image annotation by propagating labels from semantic neighbourhoods,
International Journal of Computer Vision, vol.121, no.1, pp.126-148, 2017.

[12] V. N. Murthy, S. Maji and R. Manmatha, Automatic image annotation using deep learning rep-
resentations, Proc. of the 5th ACM on International Conf. on Multimedia Retrieval, pp.603-606,
2015.

[13] Y. Yang, W. Zhang and Y. Xie, Image automatic annotation via multi-view deep representation,
Journal of Visual Communication and Image Representation, vol.33, pp.368-377, 2015.

[14] F. Wu, Z. Wang, Z. Zhang and Y. Yang, Weakly semi-supervised deep learning for multi-label image
annotation, IEEE Trans. Big Data, vol.1, no.3, pp.109-122, 2015.

[15] J. Wu, Y. Yu, C. Huang and K. Yu, Deep multiple instance learning for image classification and
auto-annotation, Proc. of the 28th IEEE Conf. on Computer Vision and Pattern Recognition, Boston,
MA, USA, pp.3460-3469, 2015.

[16] A. Krizhevsky, I. Sutskever and G. E. Hinton, ImageNet classification with deep convolutional neural
networks, Proc. of the 26th International Conf. on Neural Information Processing Systems, Lake
Tahoe, NV, USA, pp.1097-1105, 2012.

[17] K. Simonyan and A. Zisserman, Very deep convolutional networks for large-scale image recognition,
Proc. of the 3rd International Conf. on Learning Representations, San Diego, CA, USA, pp.1-14,
2015.

[18] J. Wright, A. Y. Yang, A. Ganesh, S. S. Sastry and Y. Ma, Robust face recognition via sparse
representation, IEEE Trans. Pattern Analysis and Machine Intelligence, vol.31, no.2, pp.210-227,
2009.

[19] M. Yang, L. Zhang, D. Zhang and S. Wang, Relaxed collaborative representation for pattern classi-
fication, Proc. of IEEE Conf. on Computer Vision and Pattern Recognition, pp.2224-2231, 2012.

[20] J. He, T. Zuo, B. Sun, X. Wu, Y. Xiao and X. Zhu, Robust face recognition framework with block
weighted sparse representation based classification, International Journal of Innovative Computing,
Information and Control, vol.11, no.5, pp.1551-1562, 2015.

[21] C. Wang, S. Yan, L. Zhang and H.-J. Zhang, Multi-label sparse coding for automatic image anno-
tation, Proc. of the 22nd IEEE International Conf. on Computer Vision and Pattern Recognition,
Miami, FL, USA, pp.1643-1650, 2009.



REGULARIZED MULTI-VIEW STRUCTURED SPARSE REPRESENTATION 1283

[22] S. H. Gao, L. T. Chia, I. W. Tsang and Z. Ren, Concurrent single-label image classification and an-
notation via efficient multi-layer group sparse coding, IEEE Trans. Multimedia, vol.16, no.3, pp.762-
771, 2014.

[23] X. Cao, H. Zhang, X. Guo, S. Liu and D. Meng, SLED: Semantic label embedding dictionary
representation for multilabel image annotation, IEEE Trans. Image Processing, vol.24, no.9, pp.2746-
2759, 2015.

[24] Z. Lu, P. Han, L. Wang and J.-R. Wen, Semantic sparse recoding of visual content for image
applications, IEEE Trans. Image Processing, vol.24, no.1, pp.176-188, 2015.

[25] X.-Y. Jing, F. Wu, Z. Li, R. Hu and D. Zhang, Multi-label dictionary learning for image annotation,
IEEE Trans. Image Processing, vol.25, no.6, pp.2712-2725, 2016.

[26] S. Moran and V. Lavrenko, Sparse kernel learning for image annotation, Proc. of the ACM the 4th
International Conf. on Multimedia Retrieval, Glasgow, UK, pp.113-120, 2014.

[27] W. Liu, D. Tao, J. Cheng and Y. Tang, Multiview Hessian discriminative sparse coding for image
annotation, Computer Vision and Image Understanding, vol.118, pp.50-60, 2014.

[28] M. Zang, H. Xu and Y. Zhang, Multi-view mixed-norm sparse coding for image annotation, ICIC
Express Letters, Part B: Applications, vol.7, no.11, pp.2483-2490, 2016.

[29] M. Zang and H. Xu, Multi-view joint sparse coding for image annotation, International Journal of
Innovative Computing, Information and Control, vol.13, no.4, pp.1407-1414, 2017.

[30] M. Zang, H. Xu and Y. Zhang, Kernel-based multiview joint sparse coding for image annotation,
Mathematical Problems in Engineering, vol.2017, no.4, pp.1-11, 2017.

[31] Y. Jia, T. Darrell and M. Salzmann, Factorized latent spaces with structured sparsity, Proc. of
the 24th International Conf. on Neural Information Processing Systems, Vancouver, BC, Canada,
pp.982-990, 2010.

[32] M. Aharon, M. Elad and A. Bruckstein, K-SVD: An algorithm for designing overcomplete dictionaries
for sparse representation, IEEE Trans. Signal Processing, vol.54, no.11, pp.4311-4322, 2006.

[33] J. C. Bezdek and R. J. Hathaway, Convergence of alternating optimization, Neural Parallel and
Scientific Computations, vol.11, no.4, pp.351-368, 2003.

[34] X. Chen, W. Pan, J. T. Kwok and J. G. Carbonell, Accelerated gradient method for multi-task
sparse learning problem, Proc. of the 5th IEEE International Conf. on Data Mining, Les Vegas, NV,
USA, pp.746-751, 2009.

[35] P. Tseng, On accelerated proximal gradient methods for convex-concave optimization, SIAM Journal
on Optimization, pp.1-20, 2008.

[36] L. V. Ahn and L. Dabbish, Labeling images with a computer game, Proc. of SIGCHI Conf. on
Human Factors in Computing Systems, pp.319-326, 2004.

[37] M. Grubinger, P. Clough, H. Müller and T. Deselaers, The IAPR TC-12 benchmark: A new eval-
uation resource for visual information systems, Proc. of the 5th International Conf. on Language
Resources and Evaluation, Genoa, Italy, pp.13-23, 2006.


