International Journal of Innovative
Computing, Information and Control ICIC International (©)2018 ISSN 1349-4198
Volume 14, Number 4, August 2018 pp. 1285-1299

CONSTRUCTING CONTROL-FLOW PATTERNS CONTAINING
INVISIBLE TASK AND NON-FREE CHOICE
BASED ON DECLARATIVE MODEL

KELLY R. SUNGKONO AND RIYANARTO SARNO

Department of Informatics
Institut Teknologi Sepuluh Nopember
Jalan Raya ITS, Sukolilo, Surabaya 60111, Indonesia
kelsungkono@gmail.com; riyanarto@if.its.ac.id

Received December 2017; revised April 2018

ABSTRACT. Business processes can be modeled into declarative models and imperative
models. The declarative model provides rules to describe the relation of flexible processes
and the imperative model uses control-flow patterns to depict the relation of processes in
detail. To correlate relations in both models, extended MINERful algorithm converts a
declarative model into an imperative model in the form of Petri Net model. However,
while forming an imperative model, extended MINERful cannot detect invisible task and
inwisible task in non-free choice relation. This research proposes a method to construct
inwvisible task and invisible task in non-free choice relation by connecting discovered pri-
mary control-flow patterns that are constructed by combining rules in a declarative model.
The primary control-flow patterns are patterns of sequence, XOR, AND and OR. All of
those patterns are formed in linear temporal logic and a tree model as the form of an
imperative model is composed of those patterns. The experiment shows that the proposed
method can build an imperative model that contains invisible task and the invisible task
of non-free choice based on a declarative model. This experiment verifies that the results
of the proposed method have higher precision than results of the extended MINERful al-
gorithm.

Keywords: Declarative model, Imperative model, Linear temporal logic, Control-flow
patterns

1. Introduction. A model established based on an event log helps analysts to describe
and evaluate the business processes. Nowadays, analysts are facilitated with two kinds
of models, such as declarative models and imperative models. The declarative model is
a model that describes processes by several rules. The rules define relations of activities
flexibly, so the declarative model can be easily arranged by analysts [1]. The imperative
model uses control-flow patterns to define the relations of activities explicitly. The control-
flow patterns depict the detail of the activities flows. Imperative models are widely utilized
in many aspects, such as business [2-5], fraud [6,7], medical [8,9], and advertisement [10].
In order for a model to provide general information or detail information of processes, an
algorithm that converts a declarative model into an imperative model is needed.
Extended MINERful algorithm [1] is an additional method in MINERful algorithm. It
converts a declarative model into an imperative model in the form of Petri Net model.
This method defines several rules of the declarative model and finds intersections between
those rules to build an imperative model. The imperative model of extended MINERful
can depict several primary control-flow patterns, such as patterns of sequence relation,
XOR and AND relations. However, this method cannot discover other patterns, such as

DOTI: 10.24507 /ijicic.14.04.1285

1285

1286 K. R. SUNGKONO AND R. SARNO

invisible task and invisible task in non-free choice relations. This is because the method
only observes connectivity between rules in the declarative model without considering the
connectivity between discovered primary patterns.

The modeling of invisible tasks and invisible task in non-free choice depicts real pro-
cesses in particular situations. For example, in Port Container Handling processes, there
is a process that the customs immediately issued a release letter of commodities and
overrides other activities. This applies if the commodities do not require multiple checks.
Even though the process skips several activities, it is not anomaly or failure. Therefore,
an invisible task is added in the model to provide a skip condition.

The second example is the determination of activities that are executed before the
commodities are transported into trucks. There are three commodities that are arranged
in Port Container Handling, such as the dry container, the uncontainer, and the reefer
container. Unlike other commodities, the dry container is directly inserted into the truck.
If a model sets several choice activities before transporting commodities into the truck,
the process of the dry container will be the wrong process. An invisible task in non-free
choice is used in a model to show the condition wherein a skipped process is allowed if
the commodities are determined dry container.

This research proposes a method to construct the control-flow patterns, including pat-
terns of the invisible task [11] and patterns of non-free choice relation [12] based on a
declarative model and to arrange those patterns into a tree model. The proposed method
forms the rules for obtaining the patterns by considering connectivity between rules of
declarative model and connectivity between discovered primary patterns. The consid-
eration of the connectivity between discovered primary patterns can establish patterns
of invisible task and patterns of non-free choice relation. The rules or templates that
are used in the declarative model are chain_response, exclusive_choice, response and ex-
istence2. The primary patterns that are constructed in this research are not the only
patterns for determining XOR, sequence, AND relations, but also OR relations. Those
discovered control-flow patterns are written in Linear Temporal Logic (LTL) and a tree
model is composed of those patterns. Linear temporal logic is chosen because it is the
formal language to describe the relation of components that are related to time and the
tree model is chosen because it can be formed from logical operators that are contained
within LTL.

This research evaluates the quality of process models. The process model is evaluated
based on the two aspects, i.e., fitness and precision [13]. The discovered process model
will be compared with an imperative process model by the extended MINERful algorithm.
This research is constructed as follows. Section 2 presents literature review to clarify this
research. Section 3 describes the proposed method for discovering and composing the
patterns. Section 4 reports final outputs of the experimental process. The last section,
Section 5, presents the conclusions of the research.

2. Literature Review.

2.1. Invisible tasks and non-free choice. A good process discovery is process discov-
ery that can accommodate various process conditions. Primary processes are sequential
processes and parallel processes [4]. Parallel processes contain XOR relation, AND rela-
tion, and OR relation. In addition to these processes, there are processes that need to
be considered. The processes are processes requiring invisible tasks and non-free choice
relation.

Invisible tasks are additional tasks of a process model that helps clarify some process
conditions. The conditions are skip condition, repetitive condition, and moving condition

CONSTRUCTING CONTROL-FLOW PATTERNS 1287

[11]. The illustration of those conditions is shown Figure 1. Firstly, skip condition happens
when several activities are skipped in the process. To differentiate between skip condition
and skip processes as fraud or failure, the appearance of the process becomes the main
benchmark. The process has skip condition if this type of process often appears in an
event log, and the skip process is fraud or failure if this process rarely appears in an event
log. In Figure 1, the percentage of appearance of processes [AC| is 66.7% in the log, so
this process has skip condition. Therefore, an invisible task that is symbolized as a black
box is added to connect activity A and activity C. Secondly, repetitive condition happens
when several activities are executed repeatedly. This condition is commonly known as
redo condition. In the illustration, activities B and C are executed repeatedly, so an
invisible task is added to the process model. Thirdly, moving condition happens when
the next activity of a choice activity is the next activity of other choice activities. Based
on the log of moving condition in Figure 1, activity B as the choice activity has activity C
as its next activity or activity F as its next activity; meanwhile, activity F is also the next
activity of activity E as the other choice activities. To connect activity B and activity F,
an invisible task is added.

Condition | Event Log Process Model (YAWL)
Skip [ABC]. [AC].
[AC] Cy -{_IH »41 (@)
L OO
Moving [ABCG], 1 WO +C
[.—XBFG], A ‘ B.I ('
[AEFG], w[[]) ﬂh LC)
[AEFG] v '[_IH‘ F"
Repetitive | [ABCBCD],
[ABCBCBCD] N/ 1 .
OLELE (Ol OLH.C
Non-Free | [ABEFI],
Choice [ACEGI]. .
[ACEGI, OO OI RO
ABEFI / B T h—m F -
il 1 1 i @
* OLIC DARG | ok

FIGURE 1. The illustration of invisible tasks and non-free choice

Non-free choice relation connects an activities in a choice relation with other activities
in a previous choice relation. This relation shows that an activity of choice relation cannot
be freely chosen, but it is influenced by the activity of the previous choice relation. The
illustration is shown in Figure 1. Although activities F and G are the activities of choice
relation, activity F is always executed if activity B was executed, and activity G is always
executed if activity C was executed. Consequently, non-free choice relations that are
symbolized as red circles in the process model of Figure 1 are added to describe that
condition.

2.2. Control-flow patterns. Standardized pattern to explain executions of activities in
the sequence and parallel conditions have been defined in a process model [14,15]. From

1288 K. R. SUNGKONO AND R. SARNO

the twenty workflow patterns that are introduced, there are several patterns that are
often applied to the process model. Those patterns are parallel split, exclusive choice,
multi-choice, sequence, simple merge, synchronization, and synchronization merge.

Sequence pattern denotes activities that run sequentially. Parallel split and synchro-
nization pattern are used to describe activities parallelly or describe AND relation in a
process model. Simple merge pattern and also exclusive choice is used to signify the exe-
cution of one of the choice activities or describe XOR relation in a process model. Then,
multi-choice and synchronization merge patterns are used to describe the execution of
more than one choice activities or describe OR relation in a process model. Those pat-
terns, apart from being chunks of a model, serve as error checkers on a process model
that is depicted from the event log by constructing control-flow patterns from Standard
Operational Procedure (SOP) process model [16].

Besides the primary patterns, this research presents additional patterns, i.e., non-free
choice relation and patterns with invisible tasks. The primary patterns and additional
patterns are depicted as YAWL format in Figure 2. The graphical patterns are illustrated
by the pattern in YAWL format. The green circles are used as the start and the red circles
are used as the ending. A split pattern only has green circles and a join pattern has red

[Pattern Graphical Pattern (YAWL)
Sequence

> — > —»A

Parallel Split B - .
(AND split) |) Ha®)

Synchronization P - 3
(AND Join) ») ':E ’ ._‘.11 [~

Exclusive Py S ——
choice (XOR. | AL | [0

Split) | Simple (»)= * 8 8 1 @
Merge (XOR ' A N\~ il

Multi Choice _
Pattern (OR 4 " e
Split) | 3 3\
Synchronization | (pr-® [F&)= e
Merger (OR A R c ul
Jom) T e L . Y

Patterns with The Patterns ore described in FIGURE 1
Invisible Task
(Skap,
Repetitive,
Moving)
Non-Free

Choice . '.

O Al
‘@

FIGURE 2. Primary and additional control-flow patterns

CONSTRUCTING CONTROL-FLOW PATTERNS 1289

circles to denote that a split pattern must be placed at the beginning of join pattern to
depict parallel relations. The non-free choice pattern does not have green circles or red
circles because this pattern needs split and join pattern to describe a full relation.

This research constructs the control-flow patterns based on Declare templates by De-
clare Miner algorithm. In line with Declare templates that are formed in Linear Temporal
Logic (LTL), this research proposes control-flow patterns in Linear Temporal Logic (LTL).

2.3. LTL (Linear Temporal Logic) and Declare template. LTL is a formal language
that describes several temporal logics that refers to the time. LTL is constructed from
constants (right and wrong), a group of atomic propositions, logical operators (=, V, A,
—) and temporal capital operators. There are four temporal capital operators used in
linear temporal logic. The explanation of four operators is described in Figure 3. The
diagrams describe the events when the operators are used. For the first operator, X, it
declares that inherent activities of the operator are executed at the next state. The first
diagram in Figure 3 shows task k is in a second circle as the next state. The second
operator, GG, declares that inherent activities of an operator can be on the whole following
path. The third operator, F', declares that inherent activities of the operator can be
executed at somewhere before the state of activities that are written before the operator.
In the diagram, the activity that is written before the operator is symbolized as —k. The
last operator, U, declares that the first inherent activity of the operator can be executed
until the last inherent activity is executed. In the diagram, the first inherent activity is
symbolized as k£ and the second inherent activity is symbolized as (.

Textual | Symbolic | Explanation Diagram
Xk Ok k has to hold at k
the next state [] - -@
Gk ok khastoholdon | k k k
the entire .. ' . : .

subseguent path

Fk ok k has to hold -k -k k
somewhere on . ;. :.
the path

kUI kUL k has to hold kil kAol

@

until at some . :.

position | holds.

F1GURE 3. The operators of linear temporal logic

The illustrations of usage of operators are given to clarify the understanding. The
example of the first operator is Registration -> X (Go to The Venue). It is said that each
visitor must go to the venue right after registering. The example of the second operator
is G (Registration -> X (Go to The Venue)). 1t is said that the activity registration and
then go to the venue can happen in the first process, in the middle process, or the end of
the process. The example of the third operator is Registration -> F' (Go to The Venue).
It is said that after doing registration, each visitor can do other activities before going to
the venue or going to the venue directly. The example of the last operator is Registration
U Starting Event. This statement tells that the registration will continue to open until
the event is started.

By extracting processes, LTL is formed into activity relations, that are called Declare
templates or rules [17]. This template is used by Declare Miner algorithm [18] to form a

1290 K. R. SUNGKONO AND R. SARNO

TABLE 1. Several declare templates

Declare
Template (Rules)

chain_response(K1,52) | O(K1 — O(R2))

LTL Description

If activity K1 is recorded, then the
next recorded activity is R2

Both of K1 and R2 recorded in the
process, but they are recorded in
different processes.

Activity R2 must be executed after

(O(K1 Vv R2)

exclusive_choice(K1,S2) A NO(KL A R2)))

response(K1, 52) DKL = O(R2)) activity K1 was executed.
‘ Activity K1 appears in the pro-
existence(K1) OK1 A O(0(K2))) cesses tywo timeIs)Iz)r more. g

model of cases of an event log. That model is described by a declare template graph. Table
1 shows Declare templates or rules, such as chain_response, exclusive_choice, response, and
existence2. The statements in the LTL column of the table denote the LTL form of the
rules or Declare templates. The description of all rules explains the processes that occur
based on the LTL form. Those templates will be used in this research to construct the
control-flow patterns.

2.4. The quality of process model. There are several aspects to measure the process
model quality. This research chooses fitness and precision as the measurement aspects [13].
Fitness measures how many processes that are depicted in the model. Otherwise, precision
measures how many traces from a model process are recorded in the model. The equations
of precision and fitness calculation are given in Equation (1) and Equation (2). In Equa-
tion (1), variable n(Cases_Captured_In_M odel) stores the number of cases in the event log
that are depicted in the model and n(Cases_In_Log) stores the amount of all cases of the
event log. Otherwise, in Equation (2), variable n(Traces_O f Model_Captured_In_Log)
stores the amount traces of a model that are the same as cases in the event log and
variable n(Traces_O f Model) stores the amount traces of a model. For example, there
are four cases of an event log, i.e., [ABEFI|, [ACEFI|, [ABEGI], and [ACEGI]. Using a
model of non-free choice relation in Figure 1, a fitness value of the model is 0.5 because
only two cases, [ABEFI] and [ACEGI], out of four cases are depicted in the model. Then,
a precision value of the model is 1.0 because all of the traces of the model, [ABEFI] and
[ACEGI] are captured in the event log.
n(Cases_Captured _In_Model)

Fitness(k) = n(Cases_In_Log) (1)

. n(Traces_OfModel _Captured _In_Log)
P k) = 2
recision() n(Traces_OfModel) 2)

3. Proposed Method. There are two parts of the proposed method. The first step
is discovering control-flow patterns based on the declarative model. The second step is
composing the patterns into a tree model.

3.1. Discovering control-flow patterns. In discovering various patterns, several rules
are proposed. The declare model that is used in this research contains chain_response, ex-
clusive_choice, response, and existence2. The hierarchical steps of discovering the patterns
are shown in Figure 4. The primary control-flow patterns are directly formed based on the
rules in a declarative model. The examples are synchronization and simple merge. Based

CONSTRUCTING CONTROL-FLOW PATTERNS 1291

Invisible Task of Skip
Condition in Non-Free
Choice

A

Invisible Task in Invisibie Task in Invisible Task in]

Switch Cono’.rrronJ Redo Condition
T A
simple

merge
(OR Spiit)

Non-Free Choice [

Skip Condition

| I

exclusive simple
choice merge
(XOR Spilit) (XOR Join)

chain_response executive_choice

FIGURE 4. Hierarchy of dependence in pattern formation

synchronization
merge
(OR Join)

parallel split
(AND Spiit)

synchronization
(AND Join)

sequence

A

on Figure 4, those patterns are formed by considering exclusive_choice and chain_response
rules. Then, patterns of invisible tasks and non-free choice are created by considering
other patterns. Invisible tasks in skip condition and invisible tasks in switch condition
are created with a simple merge pattern or exclusive choice pattern if the beginning ac-
tivity in exclusive choice pattern occurs as the beginning activity in simple merge pattern
and vice versa. A non-free choice is created by considering the exclusive_choice of activ-
ities in exclusive choice pattern and activities in simple merge pattern. Lastly, invisible
tasks in non-free choice are created by combining invisible task in skip condition and
non-free choice.

The detailed method is explained in Table 2. In the method, the variables of total next
and total_before are used to determine the primary patterns, i.e., sequence and patterns for
building XOR, OR and AND. Then, the variables of total_ex and total_chain are variables
which are considered in the formation of split and join patterns. The results of all patterns
are described in the LTL row of the table. There are two simple illustrations to describe the
method. For the first illustration, there are chain_response(K,R), chain_response(A, K),
chain_response(A, M). Those rules have more than zero support value. Task K has one
total_next because it only becomes the initial component of one chain_response, and task
A has two total_next because it is the initial component of two chain_response. From these
results, there is a discovered sequence pattern. That is k& -> O(R). In the second illus-
tration, there are chain_response(A, K), chain_response(A, R), and exclusive_choice(K,R).
The total_after of task A is two because there are two chain_response that has task A as
its initial component. Then, total_ex_after of A is one because there is exclusive_choice
between tasks K and R as the act_next of task A. Because there is total_chain_after(A),
there is a discovered XOR Split, which is A -> O((K V R)).

In Table 2:

Total next(act): the amount of chain_response(act, other activities) which has more
than zero support value

Total _before(act): the amount of chain_response(other activities, act) which has more
than zero support value

Total ex_after(act): the amount of exclusive_choice(act_next of act, act_next of act)
which has more than zero support value

Total_ex_before(act): the amount of ezclusive_choice(act_before of act, act_before of
act) which has more than zero support value

1292

K. R. SUNGKONO AND R. SARNO

TABLE 2. Method of constructing patterns

Pattern

Rule to build Patterns and LTL as results

Sequence

total next(act) == 1

LTL: act -> O(y)

Parallel Split
(AND Split)

total next(act) > 1 and total_ex(act) ==

LTL: act -> $((y1 A y2 A ... A yn))

Synchronization
(AND Join)

total_before(act) > 1 and total_ex(act) == 0

LTL: & ((y1 Ay2 A ... Ayn)) -> Ofact)

Exclusive choice
(XOR Split)

total next(act) > 1 and total_ex_after(act) > 0 and
(total_chain_after(act) < total_after(act))

LTL: act -> O((yl Vy2 V... V yn))

Simple Merge
(XOR join)

total_before(act) > 1 and total_ex_before(act) > 0 and
(total_chain_before(act) < total next(act))

LTL: O((yl V y2 V... V yn)) -> O(act)

Multi Choice
Pattern (OR Split)

total next(act) > 1 and total_ex_after(act) > 0 and
(total_chain_after(act) >= total_next(act))

LTL: act -> $((y1 Vy2 V... Vyn))

Synchronization

Merger (OR Join)

total_before(act) > 1 and total_ex_before(act) > 0 and
(total_chain_before(act) >= total next(act))

LTL: $((x1 Vx2 V... Vxn))-> O(act)

Non-Free
Choice Relation

act in Exclusive Choice and act in Simple Merge and
total_ex_aftbef(act) < amount(act_before)? — 1

LTL: $((x1 A act A k) V (x2 Aact A k) V...V (xn A act A
k)), where x1, ..., xn € act_before of act, k = act_next in exclu-
stwe_choice(x, act_next) which has minimum support value

Invisible Task
in Skip and
Switch Condition

act appears in Exclusive Choice before “->" and appears in
Simple Merge before “->"

LTL: Change O((act V y2 V ... V yn)) -> O(other_act) into
O((Invisible_Task V y2 V ... V yn)) -> O(other_act)

act appears in Exclusive Choice after “->" and
appears in Simple Merge after “->”

LTL: Change other_act -> O((act V y2 V ... V yn)) into
other_act -> O((Invisible_Task V y2 V ... V yn))

Invisible Task in
Redo Condition

act appears in LTLSequence before “->" and
act not in existence2 and act_after(act) in existence?

LTL: act -> {((act_afterl A O(act_after2) A ... A O(act_after n)))

Invisible Taks in
Non-Free Choice
Relation

act appears in Simple Merge after “->” and act appears in Non-
Free Choice Relation

LTL: Change {((x1 A other_act A act) V (x2 A other_act A k))
into $((x1 A other_act A Invisible_Task) V (x2 A other_act A k))

act appears in Simple Merge before “->" and act appears in Non-
Free Choice Relation > 1

LTL: Change O((yl V act V ... V yn)) -> O(other_act) into
O((y1 V Invisible_Task V ... V yn)) -> O(other_act)

CONSTRUCTING CONTROL-FLOW PATTERNS 1293

Total _chain_after(act): the amount of chain_response(act_next of act, act next of act)
which has more than zero support value

Total_chain_before(act): the amount of chain_response(act_before of act, act_before of
act) which has more than zero support value

Total_ex_aftbef(act): the amount of exclusive_choice(act_before of act, act_next of act)
which has more than zero support value

Besides those patterns, the first activity and the last activity are also identified along
with the control-flow patterns in LTL. The first activity is an activity that does not have
total_before and the last activity is an activity that does not have total(after). The first
activity is symbolized as FirstActivity(activity) and the last activity is symbolized as
LastActivity (activity).

3.2. Building a tree model. A tree model is composed of all discovered patterns. The
method for composing the patterns is explained in Table 3. The method provides rules
to convert each LTL that is described as variable LTL. The first step to build the model
is choosing the first LTL. The first LTL is a control-flow pattern that has activity in
FirstActivity(activity). Then, this LTL will be split into a list of symbols and activities.
For example, Registration -> O((Go to The Venue V. Waiting The Others)) can be split as

TABLE 3. A method of composing tree model based on patterns

No Rules

1 | LTL = Control-Flow Pattern in LTL that has activity in FirstActivity(activity)
2 | While all LTL are modeled:

3 Split LTL into parts that are called part_LTL

4 For part LTL in LTL:

5 If part_LTL is “(":

6 Make a child of node and the position is in the child of node

7 Else if part LTL is “)”:

8 Position is in the parent of node

9 Else if part LTL is “O”:

10 If node of this position is “V”:

11 node = O

12 Else:

13 node = “07 and the bracket beside this part is not executed

14 Else if part LTL is “{”

15 node = <> and the bracket beside this part is not executed

16 Else if part LTL is “V”:

17 If node of this position is “O”:

18 node = “x”

19 If node of this position is “<>":

20 node = “\V”

21 Else if part LTL is “*” or “->7:

22 If node of this position is “x” or “V”:

23 Add child node and fill with “>" or “*”

24 All of child of node “z” or “v” become child of node “>" or “\”
25 Else:

26 Fill the node name with the name of part_LTL position is in the parents
27 LTL = LTL which has activity that are also on previous LTL

1294 K. R. SUNGKONO AND R. SARNO

Part_LTL = [Registration, ->, O, (, (, Go to The Venue, \/, Waiting The Others,),) |. A
Part_LTL of the first LTL is executed from the first part in part_LTL, but the execution of
other Part_LTLs is started from the first activity in Part LTL. The tree model is formed
when all of LTL are already processed.

In the processing of Part_LTL, an open parenthesis is used to add a child of a node and
closing parenthesis is used to return the position to the parent of that node. The other
symbols are used to determine the symbols of relations in the tree model. There are five
symbols that are used in the tree model, i.e., “x” for XOR Relation, “V” for OR relation,
“N? for AND relation, “->" for sequence relation and “0” for redo condition.

4. Result and Analysis. The proposed method is already implemented in programs
and is evaluated using import processes of Port Container Handling in January 2016.
The processes that are used do not contain failure processes. This import process consists
of three big parts. The parts are Discharge, Customs with Quarantine, and Delivery. Dis-
charge part contains activities from the vessels berthing until the stacking of commodities
in the yard. Customs with Quarantine part contain activities that are performed in the
customs (behandle) area or the quarantine area. The Delivery part contains activities
from Customs with Quarantine part until the commodity carrier trucks go out from Port
Container Handling. The types of handled commodities are the dry container, the reefer
container, and the uncontainer. This experiment uses Delivery part and Customs with
Quarantine part separately to evaluate the proposed method.

A declarative model of Delivery part by Declarative Miner algorithm [17] is shown in
Figure 5. In the model, exclusive_choice and chain_response rules are displayed. The
colors of the rules indicate high or low support values of the rules. The color will
fade if the support value is low, and vice versa. The color of chain_response between
Determine_Container_Type and Determining-Uncontainer is more faded than the color
of chain_response between Determine_Container_Type with other activities. It indicates

Determine_Container_Type

/\

Determining [Determining j Determining
_Reefer [_Uncontainer A- _Dry
I -~ ~ -
1 e 7
[\
1 \
1 \
I P So \
I P Decide_Task_Before_ | /™~ 1
: -7 Lift_Container P S
N -~ ~ 1\
1 7 ?'—
we - ,f Unplug_Reefer_
Prepare_Tools / fCabIe

-

[
l Lift_on_Container_Truck

/

Truck_Go_To_Gate_Out

== :chain_response ; — —» :exclusive_choice |

FiGURE 5. Declarative model of Delivery part process

CONSTRUCTING CONTROL-FLOW PATTERNS 1295

chain_response between Determine_Container_Type and Determining_Uncontainer has the
lowest support value among all chain_response rules involved Determine_Container- Type.
The rules which have zero support value are not displayed in the model.

Based on this model, the discovered control-flow patterns are automatically formed
based on the declarative model in Figure 5. The result of discovered patterns is shown
in Figure 6. There are four discovered patterns, i.e., (1) non-free choice, (2) sequence,
(3) split in XOR relation and (4) join in XOR relations. Determining-Reefer A De-
cide_Task_Before_Lift_Container N Unplug-Reefer_Cable in LTL of control-flow patterns
indicates a non-free choice relation between Determining_Reefer and Unplug_Reefer_Cable.
The non-free choice relation occurs because the exclusive_choice rule of those activi-
ties has zero support value that is the lowest support value of exclusive choice rules
involved Determining_Reefer. In the case of Determining_Dry, the exclusive_choice of
this activity and Lift_on_Container_Truck has the lowest support among all of exclu-
sive_choice involved Determining_Dry. Because Lift_on_Container_Truck is the next activ-
ity of Unplug_Reefer_Cable and Prepare_Tools, Lift_on_Container_Truck is changed to In-
visible_Task and a pattern of non-free choice has Determining_Dry N\ Decide_Task_Before_
Lift_Container A Inuvisible_Task.

Delivery - Notepad - o e

File Edit Format View Help

LTLFirstLast

Firstactivity(Determine_Container_Type)
Lastactivity(Truck_Go_To_Gate_Out)

LTLSequence

Lift_on_Container_Truck -> _O0 (Truck_Go_To_Gate Out)

LTLXORSplit

Determine_Container_Type -> _0 (Determining_Uncontainer

\/ Determining_Reefer \/ Determining_ Dry)

LTLXORJoin

_0 (Invisible_Task \/ Unplug_Reefer_Cable \/ Prepare_Tools) ->

_0 (Lift_on_Container_Truck)

LTLNonFreeChoice

<> ((Determining_Uncontainer /\ Decide_Task_Before_Lift_Container
/\ Prepare_Tools) \/ (Determining_Reefer /\
Decide_Task_Before_Lift_Container /\ Unplug_Reefer_Cable) \/

k Determining_Dry /\ Decide_Task_Before_Lift_Container /\ Invisible_Task))

F1GURE 6. Control-flow patterns in LTL form of Delivery part process

The last step of the method is composing the discovered control-flow patterns in a tree
model. The discovered tree model is depicted in Figure 7. The tree model is read from the
top to the bottom of the model. The lines that connect the activities and the operators
show the connections between parent nodes and child nodes. For example, the operator
-> has connections with Determine_Container_Type, operator z, Lift_on_Container_Truck,
and Truck_Go_To_Gate_Out. Because operator -> is a base of those connections, operator
-> is a parent node and the others are child nodes of the operator ->. The operator
-> chooses all of its child nodes that are taken sequentially; meanwhile, the operator x
chooses one of its child nodes.

Using processes in Delivery part, the model obtained by the extended MINERful algo-
rithm is shown in Figure 8. The difference between the model obtained by the proposed
method and the model obtained by the extended MINERful is non-free choice relations.
The extended MINERful algorithm does not describe the non-free choice between Deter-
mining_Uncontainer and Prepare_Tools and the non-free choice between Determining Dry

1296 K. R. SUNGKONO AND R. SARNO

->
— Determine_ Container Type

— X

—— Determining Dry
—— Decide Task Before Lift Container
—— Invisible Task

—— Determining Reefer
—— Decide_ Task Before Lift Container
— Unplug Reefer Cable

— Determining Uncontainer

— Decide Task Before Lift Container
—— Prepare Tools

— Lift_on Container Truck

—— Truck Go To Gate Qut
\ == —

FIGURE 7. Tree model of Delivery part by the proposed method

DU PT
)O—b DTBC
Q oct DD p12 p15 LCT
p_Start p_11 LCT pi7
DR —bo—bmsc—»O-; UR 160 —pO
p13 p14 p16 p_End

FiGURE 8. Petri Net of Delivery part by extended MINERful

and Lift_On_Container_Truck. It is because that algorithm cannot detect a pattern of
the invisible task in non-free choice. Using processes of Customs with Quarantine part
as the data for the second evaluation, the model processes by the proposed method and
by the extended MINERful are displayed in Figure 9 and Figure 10. Activities on Petri
Net constructed by MINERful use alias names. Real names of those activities are in
Table 4. The differences between models by the proposed method and extended MINER-
ful algorithms are activity Verification_Document_Behandle and Create Document SPBB.
Because extended MINERful cannot detect invisible tasks, those activities are defined
redundantly. Otherwise, the proposed method can detect invisible task in skip condition,
so those redundant activities can be changed into invisible tasks.

All those process models are measured by the fitness and the precision. The measure-
ment aspects of those results are presented with a chart of Figure 11. Although the models
by the proposed method and extended MINERful have high fitness, the model of Delivery
part by the extended MINERful is a wrong model based on the log of Delivery part. It is
because the model has a low precision which indicates several traces of the model are not
stored in the log of Delivery part. Conversely, the models of the proposed method have
high fitness and high precision that indicate the proposed method provides good models,
both in terms of fitness aspect and precision aspect.

CONSTRUCTING CONTROL-FLOW PATTERNS 1297

==

— Stack_Container in Yard

— X

—_— >

—— Verification Document Quarantine

—— Create_Job_Order Document_Quarantine
—— Bring Container from Yard to Quarantine
— Stack_Container_ in Quarantine Area

—— Check_Goods_Quarantine

— Create_document KH/KT

— Send Cerctificate_ KH/KI_Info

— Stack _Container in Yard From Quarantine
—— Invisible Task

—— Verification Document_ Behandle

— X

Invisible Task

-
Create_dJob_Order Document_Behandle
Stack Container in Behandle Area
Check Goods Behandle
Create_document_LHP
Bring Container from Yard to_ Behandle
Stack_Container in Yard From Behandle

——-Freate_document_SEPB

FIGURE 9. A tree model of Customs with Quarantine part by the proposed method

O OFFO OO0

p25 p21 p22 p24

SCY

p_Start p19 VDB SCK

: CPB [
P-End N cpp
SCYB BCYB CLH Q cGB O sce
p35

p33 p32 p31 p30

p36

FI1GURE 10. Petri Net of Customs with Quarantine part by extended MINERful

5. Conclusions. This research proposes a method for constructing the control-flow pat-
terns, including patterns of invisible tasks and non-free choice, based on the rules in a
declarative model and composing those patterns into an imperative model. This research
does not only consider the connection between rules in the declarative model but also
consider the discovered pattern based on the rules to build other patterns.

There are two main steps in the proposed method of this research. Firstly, this research
provides several rules to construct the control-flow patterns. The primary patterns, such
as patterns for building XOR, sequence, OR, and AND relations, are formed based on
several rules in the declarative model. Patterns of invisible tasks and invisible task in
non-free choice are built based on the discovered primary patterns. Lastly, a tree model
is composed of the discovered patterns to describe the whole processes.

1298 K. R. SUNGKONO AND R. SARNO

TABLE 4. List of activity names initialized in Petri Net MINERful

Alias | Real Task Names Alias | Real Task Names
Task Task
names names
DCT Determine Container Type CGQ | Check Goods Quarantine
DD Determine Dry CDK | Create document KH/KT
DR Determine Reefer SCK Send Certificate KH/KT Info
- ; . Stack Container in
DU Determine Uncontamner SCYQ Yard From Quarantine
pTBC | Decide_Task Before VDB | Verification_Document Behandle

Lift Container

Create Job Order

UR Unplug Reefer Cable CIB Document Behandle
Stack Container

PT Prepare_Tools SCB i B dle Area

LCT Lift on Contamner Truck CGB Check Goods Behandle

SCY Stack Contamner i Yard CLH Create document LHP

Bring Container from
Yard to Behandle
Stack_Container_in

VDQ | Venfication_Document_Quarantine | BCYB
Create_Job_Order_

CJ1Q Document Quarantine SCYB Yard From Behandle
Bring Container

BCYQ from Yard to Quarantine CPB Create_document SPPB

scq | Stack Container_in TGO | Truck Go_To_Gate Out

Quarantine Area

Fitness and Precision of Model

1
0.8
0.6
0.4
0.2

0

Fitness Result in Fitness Result in Precision Result Precision Result
Delivery Part Customs with in Delivery Part in Customs with
Quarantine Part Quarantine Part

MW Proposed Method W Extended MINERful Algorithm

FiGURE 11. The fitness and precision of model by the proposed method
and extended MINERful

The evaluation of this experiment used data from Port Container Handling. The results
of evaluation verify the models by the proposed method are better than models by the
extended MINERful algorithm. This is indicated by the precision of the models using the
proposed method is higher than that using extended MINERful. The high precision of
the model of the proposed method is supported by the capability of the method in the
detection of invisible tasks and invisible tasks in non-free choice. This method uses several
rules of the declarative model and it is implemented in separate programs. Therefore, the
development of this research is the utilization of other rules of the declarative model
to construct control-flow patterns and the establishment of a complete program of the
proposed method.

CONSTRUCTING CONTROL-FLOW PATTERNS 1299

Acknowledgment. Institut Teknologi Sepuluh Nopember and The Ministry of Research,
Technology and Higher Education of Indonesia support this research. The authors admire
the supportive comments or suggestions by the reviewers, in improving the presentation.

[1]

2]

[11]
[12]

[13]

[14]
[15]

[16]

[17]

REFERENCES

J. Prescher, C. D. Ciccio and J. Mendling, From declarative processes to imperative models, CEUR
Workshop Proceedings, vol.1293, pp.162-163, 2014.

R. Sarno, C. A. Djeni, I. Mukhlash and D. Sunaryono, Developing a workflow management system
for enterprise resource planning, Journal of Theoretical €& Applied Information Technology, vol.72,
no.3, pp.412-421, 2015.

R. Sarno and K. R. Sungkono, Coupled hidden Markov model for process mining of invisible prime
tasks, International Review on Computers and Software (IRECOS), vol.11, no.6, pp.539-547, 2016.
R. Sarno and K. R. Sungkono, Hidden Markov model for process mining of parallel business processes,
International Review on Computers and Software (IRECOS), vol.11, no.4, pp.290-300, 2016.

R. Sarno and K. R. Sungkono, Coupled hidden Markov model for process discovery of non-free choice
and invisible prime tasks, Procedia Computer Science, vol.124, pp.134-141, 2018.

R. Sarno, R. D. Dewandono, T. Ahmad, M. F. Naufal and F. Sinaga, Hybrid association rule learning
and process mining for fraud detection, IAENG International Journal of Computer Science, vol.42,
no.2, pp.59-72, 2015.

S. Huda, R. Sarno and T. Ahmad, Increasing accuracy of process-based fraud detection using a
behavior model, International Journal of Software Engineering and Its Applications, vol.10, no.5,
pp-175-188, 2016.

W. Chomyat and W. Premchaiswadi, Process mining on medical treatment history using conformance
checking, The 14th International Conference on ICT and Knowledge Engineering (ICTEKE), pp.77-
83, 2016.

T. Erdogan and A. Tarhan, Process mining for healthcare process analytics, Software Measure-
ment and the International Conference on Software Process and Product Measurement (IWSM-
MENSURA), pp.125-130, 2016.

A. S. Osses, L. Q. D. Silva, B. F. Cobo, M. Arias et al., Business process analysis in advertising: An
extension to a methodology based on process mining projects, The 35th International Conference of
the Chilean Computer Science Society (SCCC), pp.1-12, 2016.

L. Wen, J. Wang, W. M. P. van der Aalst, B. Huang and J. Sun, Mining process models with prime
invisible tasks, Data ¢ Knowledge Engineering, vol.69, no.10, pp.999-1021, 2010.

L. Wen, W. M. P. van der Aalst, J. Wang and J. Sun, Mining process models with non-free-choice
constructs, Data Mining and Knowledge Discovery, vol.15, no.2, pp.145-180, 2007.

J. C. A. M. Buijs, B. F. van Dongen and W. M. P. van der Aalst, On the role of fitness, preci-
sion, generalization and simplicity in process discovery, International Conference on OTM Federated
Conferences, vol.7565, no.1, pp.305-322, 2012.

N. Mulyar, N. Russell, A. H. M. Ter Hofstede and W. M. P. van der Aalst, Towards a WPSL?: A
critical analysis of the 20 classical workflow control-flow patterns, BPM Reports, pp.1-66, 2006.

N. Russell, A. H. M. Ter Hofstede, W. M. P. van der Aalst and N. Mulyar, Workflow control-flow
patterns: A revised view, BPM Center Report, vol.2, pp.6-22, 2006.

R. Sarno, W. A. Wibowo, K. Kartini, Y. A. Effendi and K. R. Sungkono, Determining model
using non-linear heuristics miner and control-flow pattern, TELKOMNIKA (Telecommunication,
Computing, Electronics and Control), vol.14, no.1, pp.349-360, 2016.

F. M. Maggi, A. J. Mooij and W. M. P. van der Aalst, User-guided discovery of declarative process
models, IEEE Symposium on Computational Intelligence and Data Mining (CIDM), pp.192-199,
2011.

F. M. Maggi, Declarative process mining with the declare component of ProM, CEUR Workshop
Proceedings, vol.1021, 2013.

