
International Journal of Innovative
Computing, Information and Control ICIC International c⃝2018 ISSN 1349-4198
Volume 14, Number 4, August 2018 pp. 1311–1326

ENHANCEMENTS TO GREEDY WEB PROXY CACHING
ALGORITHMS USING DATA MINING METHOD

AND WEIGHT ASSIGNMENT POLICY

Julian Benadit Pernabas1 and Sagayaraj Francis Fidele2

1Department of Computer Science and Engineering
Faculty of Engineering

Christ University, Kengeri Campus
Mysore Road, Kanmanike, Kumbalgodu, Bangalore 560074, India

julian.p@christuniveristy.in
2Department of Computer Science and Engineering

Pondicherry Engineering College
Pillaichavadi, Puducherry 605014, India

fsfrancis@pec.edu

Received July 2017; revised February 2018

Abstract. A Web proxy caching system is an intermediary between the users and
servers that tries to alleviate the loads on the servers by caching selective Web objects
and behaves as the proxy for the server and service the requests that are made to the
servers by the users. In this paper the performance of a proxy system is measured by
the number of hits at the proxy. A higher number of hits at the proxy server reflects the
effectiveness of the proxy system. The number of hits is determined by the replacement
policies chosen by the proxy systems. Traditional replacement policies that are based on
time and size are reactive and do not consider the events that will possibly happen in the
future. The outcomes of the paper are proactive strategies that augment the traditional
replacement policies with data mining techniques. In this paper, the performances of the
greedy replacement policies such as GDS, GDSF and GD* are adapted by the data mining
method and weight assignment policy. Experiments were conducted on various data sets.
Hit ratio and byte hit ratio were chosen as parameters for performance.
Keywords: Web proxy caching, Classification, Fuzzy bi-clustering, Weight assignment
policy

1. Introduction. The World Wide Web and its usage are growing at a rapid rate, which
has resulted in overloaded Web servers, network congestion, and consequently poor re-
sponse time. Multitudes of approaches are continuously being made to overcome these
challenges. ‘Web caching’ is one of the approaches that can enhance the performance of
the Web. A Web cache is a buffered repository of the Web objects that are most likely
to be requested frequently and in the near future. The general architecture of the World
Wide Web caching [1] consists of the client users, the proxy server, and the origin server.
Whenever the client requests the Web object, it can be retrieved either from the interme-
diate proxy server immediately, or it can be retrieved from the origin server. Therefore,
whenever a user’s request is satisfied from the proxy server, it minimizes the response
time and it reduces the overload of the Web origin server. Typically, the Web cache may
be located at the origin server cache, at the proxy server cache, or at the client cache. The
major goals of Web proxy cache are to reduce the user’s response time by improving the
hit ratio and to reduce the network traffic by improving the byte hit ratio. The overall

DOI: 10.24507/ijicic.14.04.1311

1311

1312 J. B. PERNABAS AND S. F. FIDELE

objective of the research work is to improve the performance of the greedy Web proxy
caching algorithms such as Greedy Dual Size (GDS), Greedy Dual Size Frequency (GDSF)
and Greedy Dual* (GD*) by augmenting the fuzzy bi-clustering based Web proxy caching
using weight assignment policy mechanism. In Section 2, we address the related work of
the traditional greedy Web proxy caching algorithms and classification based Web caching
methods. Section 3 presents the working principle of Web proxy caching based on data
mining method. Section 4 details the working flow method of Web proxy caching based
on data mining method. Section 5 presents the generic model for Web proxy caching us-
ing data mining method. Section 6 details the experimental results of web proxy caching
simulation. Section 7 provides the conclusions.

Figure 1. World Wide Web architecture

2. Related Work. This section summaries the traditional greedy Web proxy caching
algorithm [1,2] based on the key parameters.

The algorithm for the traditional greedy replacement algorithm is shown in Figure
2. Several policies have been proposed in literature for augmenting the traditional Web
caching methods with data mining techniques. In the following section, the data mining
based Web caching methods are discussed.

Classification based Web caching methods. Khalid and Obaidat [3] proposed a new
cache replacement algorithm called KORA (Khalid Obaidat Replacement Algorithm) to
enhance the Web cache performance. The KORA algorithm performs well compared to
the conventional algorithm by having a lower miss ratio. There has been significant work
with respect to data mining and Web caching in the last decade. Tian et al. [4] used an
adaptive Web cache access predictor using neural networks as one of the approaches to
Web caching. In this approach, a Back-Propagation Neural Network (BPNN) is used to
improve the performance of Web caching by predicting the most likely re-accessed objects.
Koskela et al. [5] studied Web cache optimization with a non-linear model using object

ENHANCEMENTS TO GREEDY WEB PROXY CACHING ALGORITHMS 1313

Table 1. Summary of traditional Web proxy caching algorithms

S.no Algorithms Parameters Evictions
1. GDS Object size Sp.

Object cost Cp.
Inflation Value L.

Least valuable objects with
a key value.

kp = L +
Cp

Sp

.

2. GDSF Object size Sp.
Object cost Cp.
Inflation Value L.
Number of non-aged references Fp.

Least valuable objects with
a key value.

kp = L +
Cp × Fp

Sp

.

3. GD* Object size Sp.
Object cost Cp.
Inflation Value L.
Temporal correlation measures β.
Number of non-aged references Fp.

Least valuable objects with
a key value.

kp = L +

(
Cp × Fp

Sp

) 1
β

.

/* Traditional Algorithm for GDS/GDSF/GD* replacement*/
1. begin
2. for each Web object p requested do
3. begin
4. if Web object p resides in the proxy cache then /*Cache Hit*/

Update the Key Value of the Web object p as

Kp = L +
Cp

Sp

. (4a) /*GDS*/

Update the Key Value of the Web object p as

Kp = L +
Cp × Fp

Sp

. (4b) /*GDSF*/

Update the Key Value of the Web object p as

Kp = L +

(
Cp × Fp

Sp

) 1
β

. (4c) /*GD*/

5. else
6. while there is not enough free space in the proxy cache /*Cache Miss*/
7. do L← minq∈cache K(q) from the proxy cache.
8. Evict q such that K(q) = L.
9. end while;
10. Bring Web object p into proxy cache and update the key value based on

Equations (4a)-(4c).
end if;

11. end;
12. end for;
13. end;

Figure 2. Algorithm for GDS, GDSF and GD*

features. It utilizes the Multilayer Perceptron (MLP) network for predicting the value of
the object based on the syntactic features of the HTML document. The strategy of Cobb
and ElAarag [6] is based on Neural Network Proxy Cache Replacement (NNPCR) which
integrates the neural network for the Web caching based on the sliding window mechanism.
In this method, back propagation adjusts the weight factors in the network. An object is

1314 J. B. PERNABAS AND S. F. FIDELE

selected for replacement based on the ratings returned by the Back Propagation Neural
Network (BPNN).

Ali et al. [7,8] used intelligent Näıve-Bayes approach for Web proxy caching. In this
method, the Näıve Bayes approach is used to classify the Web object, whether it can be
re-accessed in the future or not. Benadit and Francis [9] improved the performance of a
proxy cache using tree augmented Näıve Bayes approach followed by very fast decision tree
algorithm for improving the Web proxy cache and data mining classification performance
[9,10]. This method is integrated with traditional replacement algorithms LRU, GDS,
GDSF and GD* to form a novel Web caching.

3. Working Principle of Web Proxy Caching Based on Data Mining Method.
In this method, when a user requests a Web object, the proxy server checks its cache.
If the Web object is available, the proxy server sends the Web object to the client and
forwards the requests to the Request Processing Module (RPM) in order to predict the
future request for the Web object as shown in Figure 3. Similarly, if the Web object is not
available, the proxy server will forward the requests to the origin server and send it back
to the clients and these requested Web objects are stored in the proxy’s disk cache for
future requests based on the Data Mining Method (DMM). The DMM is further explained
in the following section. Therefore, if the Web object stored in the proxy cache is likely
to be re-accessed again in the future, then this Web object will be retained in the proxy
cache for future use. In addition, if there is no space in the proxy cache to store the
required Web object from the origin server, then the request process module invokes the
data mining method for the proxy cache replacement to remove the Web object that will
not be re-accessed again in future. Similarly, the remaining Web objects, which is stored
in the proxy cache are also updated by the data mining method for obtaining the future
request.

Figure 3. Working principle of Web proxy caching based on data mining method

ENHANCEMENTS TO GREEDY WEB PROXY CACHING ALGORITHMS 1315

4. Working Flow Method of Web Proxy Caching Based on Data Mining Meth-
od. Web proxy caching aims at enhancing the performance of the proxy server by increas-
ing the hit and byte hit ratio. One class of strategies augments the traditional replacement
policies with data mining technique. The strategy uses a data mining method based on
the fuzzy bi-clustering model and weight assignment policy. The overall working flow
model consists of different methods as shown in Figure 4. The Web log files for the Web
proxy cache simulation are obtained from the National lab for Applied Network Research
(NLANR) as shown in Table 2. Each data set represents a proxy server located in a
particular location.

Figure 4. Overall working model for the Web proxy caching based on data
mining method and weight assignment policy

1316 J. B. PERNABAS AND S. F. FIDELE

Table 2. Statistics for the trace file

Trace File
Unique

Requests
Unique
Servers

Mean Object
Size (bytes)

Median Object
Size (bytes)

BOSTON 125,505 2,580 13,280 2,070
SILICON 935,630 27,674 5,822 2,238

UC 823,649 47,210 41,651 2,814
NY 674,352 59,139 17,440 209
SD 2,406,556 77,092 53,312 652

4.1. Data pre-processing. The datasets are pre-processed and converted into a struc-
tured format for reducing the time of simulation. The techniques undergo few pre-
processing [11] steps to remove irrelevant requests, and to extract useful information.
The steps involved in data pre-processing are proxy logs filtration, data cleaning, and
data compression.

4.1.1. Proxy logs filtration. In this technique, the recorded proxy log files obtained from
the NLANR have undergone the basic filtration process in order to reduce the size of the
log data sets as well as the running time of the simulation. Thus, only the three proxies log
data sets are considered for the filtration process [12] as shown in Figure 5. This filtration
module is based on the methods such as a latency based method, SIZE based method,
dynamic based method, content-based method, GET and ICP type method. Figure 5
illustrates the steps involved in various filtering methods and its details are described
below. After these filtering, the size of the proxy log files is reduced in order to have some
unique requests, which have been obtained after the filtering phases, i.e., 823,649 for the
UC data sets, 674,352 NY data sets, and 2,406,556 SD data sets as shown in Table 2.
From the filtration results obtained, the URL convention and the required HTTP requests
are sorted based on the timestamp. Now the input trace file from UC, NY, SD is ready
to undergo data pre-processing steps for the simulation of the data mining method.

4.1.2. Data cleaning. Data cleaning is the process of removing the irrelevant entries in the
proxy log file [11]. Here only the relevant HTML files are considered and all other irrelevant
log entries that were recorded by requesting graphics, sound, and other multimedia files
are discarded.

4.1.3. Data abstraction. Data abstraction is the process of abstracting the log entries
based on the session identification. The goal of session identification is to divide each
user into different segments based on the user’s pattern, which is called session. Session
identification approaches [11] identify the user’s session by a maximum time limit. Based
on the empirical findings, the maximum time limit has been set to be 30 minutes [11]
for our simulation. After the proxy datasets are pre-processed, it is further analyzed to
obtain the common user features for Web user clustering.

4.2. High-interest Web object set. Once the data set has been preprocessed, it is
segmented to find out the high-interest Web object, based on these two measures, i.e.,
Frequency and Duration [13]. Let P be the set of a Web object P = {P1, P2, P3, . . . , Pn}
accessed by the users in the proxy server logs. The parameters involved for obtaining
the high-interest Web object is shown in Table 3. The frequency of the Web object p is
calculated by the number of times the Web object p is accessed.

ENHANCEMENTS TO GREEDY WEB PROXY CACHING ALGORITHMS 1317

Figure 5. Filtering phases for the Web proxy datasets

Table 3. Parameters for high-interest Web object

Symbols Parameters for High-Interest Web Object
p Web object.
α Frequency of the Web object p.
β Duration of the Web object p.

Size Size of the Web object p.
λ High Interest of the Web object p.

1318 J. B. PERNABAS AND S. F. FIDELE

The formula for the Frequency of the Web object p is given in Equation (1):

α(p) =
Number of times(p) accessed∑

WebPage ∈ Visited Web Pages

(Number of times(p) accessed)
(1)

Similarly, the Duration of the Web object p is given by Equation (2) as shown below:

β(p) =
TotalDuration of (p)/Size(p)∑

Max WebPage ∈ Visited Web Pages

TotalDuration(p)/Size(p)
(2)

From these two measures, we can obtain the high-interest Web object set and this high-
interest object set value is normalized to 0 or 1 based on Equation (3) given below:

χ(p) =
2× α(p)× β(p)

α(p) + β(p)
(3)

Once the high-interest Web object p is obtained from the URL, P = {URL1,URL2, . . .,
URLm} a navigation pattern profile is generated from a set of the individual user, which
is given by U = {U1, U2, . . . , Un} and these given URLs are segmented based on the user
interest object set.

4.3. Fuzzy bi-clustering model. Once the data pre-processing step is completed, a
Web usage mining technique has been incorporated. In our system we focus on the fuzzy
bi-clustering algorithm based on the work of Koutsonikola and Vakali [14]. The authors
used spectral clustering methods over traditional methods as its underlying implementa-
tion is simpler, and used well-defined linear algebra techniques. The advantage of adopting
a fuzzy bi-clustering algorithm is that users grouped in the same users’ cluster may be
related to more than one web pages’ cluster, which allows us to quantify users’ interest
to different web pages’ clusters. Once the users have been clustered, a navigation pattern
representative result is obtained. The parameters involved for fuzzy bi-clustering method
are listed in Table 4.

Table 4. Parameters for fuzzy bi-clustering

Symbol Description
n Denotes the number of users
m Denotes the number of objects
U Denotes the users set U = {u1, . . . , um}
P Objects set P = {p1, . . . , pn}

CP (Cx, Py)
Denotes the probability with which the users of cluster Cx

visit the Py page.
V n×m users pattern matrix

PV n×m probability distribution matrix
f(Cx, C

′
y) Denotes the relation between the obtained users and pages clusters

f Function of relation degree

The algorithm for the clustering process is clearly depicted in Figures 6(a) and 6(b).
The clustering process consists of three steps as follows.

1) The patterns of users’ access are stored in the form of a probability distribu-
tion matrix. We have 2 vectors, U = {u1, u2, . . . , un} and P = {p1, p2, p3, . . . , pm}
where ‘U ’ denotes the set of n users and ‘P ’ denotes the set of m pages that have
been recorded. We generate a user visiting pattern for each user, which is a vector
V (ui, :) = V {(ui, p1), (ui,p2), . . . , (ui, pm)} where each element denotes the number of

ENHANCEMENTS TO GREEDY WEB PROXY CACHING ALGORITHMS 1319

Input: Given the set of ‘n’ users denoted as U = {u1, . . . , um}. Let K be the
number of users clusters
Output: The sets C = {C1, C2, . . . , CK} of K users’ clusters
1. V = Create Visiting Patterns (U, P);
2. PV = Create Probability Distribution (V);
3. CS = Find Users Similarity (PV); // refer Equation (4).

4. D(i, i) =
n∑

j=1

CS(ui, uj)

5. L = Calculate Laplacian (D,CS);
6. EV = Eigen Vectors (L,K);
7. C = K-means (EV,K);

(a)

Input: Given the set of ‘m’ pages denoted as P = {p1, . . . , pm} and
let K ′ be the number of page clusters respectively.

Output: The sets C ′ = {C ′
1, C

′
2, . . . , C

′
K} of K ′ page clusters

1. CP = Cluster2 Pages (C, V);
2. SP = Find Pages Similarity (CP); //Refer Equation (5)

3. D′(i, i) =
n∑

j=1

SP (pi, pj)

4. L′ = Calculate Laplacian (D′, SP);
5. EV ′ = Eigen Vectors (L′, K ′);
6. C ′ = K-means (EV ′, K ′);
7. f(Cx, Cy) = Calculate Relation Coefficients (C,C ′, V);

(b)

Figure 6. (a) Fuzzy clustering algorithm for Web users; (b) fuzzy cluster-
ing algorithm for Web pages

times the user ui has visited the particular page py where y is the index number of
the element. The vectors are arranged in a 2-dimensional u×p users’ pattern matrix. We
obtain the probability distribution matrix by simply dividing each element in the row,
with the sum of elements in that row, i.e., normalizing the row vector. The resultant
matrix is now used to extract k users’ clusters, by grouping together users with similar
behavior. This is performed using cosine coefficient as shown in Equation (4).

CS(ui, uj) =
PV (ui, :) · PV (uj, :)

|PV (ui, :)| · |PV (uj, :)|
=

m∑
l=1

PV (ui, p1) · PV (uj, pl)√
m∑

l=1

PV (ui, p1)2 ·
m∑

l=1

PV (uj, pl)2

(4)

A weighted undirected graph that denotes the similarities between the n users is created.
The degree and Laplacian matrix of the graph are computed, in addition to the eigen-
vectors of the Laplacian. Applying k-means clustering on the eigenvectors gives us the
clusters.

1320 J. B. PERNABAS AND S. F. FIDELE

2) The users’ clusters are now used to perform the clustering of web pages. A k × p
matrix is generated, with each element given by Equation (5)

CP (Cx, Py) =

∑
ui∈Cx

V (ui, py)∑
u∈Cx

m∑
j=1

V (ui, pj)
(5)

Each element specifies the probability of users in the particular will visit the page p. The
generation of clusters is similar to the graphical method used in step 1.

3) Using the clusters obtained, we now develop the relation coefficients between the
clusters using the relation function as shown in Equation (6).

f
(
Cx, C

′
y

)
=

∑
ui∈Cx

∑
pj∈Cy

V (ui, pj)∑
ui∈Cx

∑
l=1 V (ui,pl)

(6)

These coefficients give frequency of the web pages belonging to a particular cluster of a
page, observed for each cluster of users.

4.4. Clustering results. The K-means clustering algorithm generates the common user’s
requests and groups these 100 users in the different Clusters Number (C-N) (Varying 1
to 9) based on the fuzzy bi-clustering model. After obtaining the Web user’s requests, the
individual clusters are evaluated based on the performance metrics as shown in Figure 7.

According to the clustered results obtained, the precision is defined as the ratio of
hits to the number of URLs that are cached; similarly, recall is the ratio of hits to the
number of URLs that are requested. Figure 7 signifies the clustering results based on the
performance metrics.

Figure 7. Results of precision, recall, and hits in clusters

ENHANCEMENTS TO GREEDY WEB PROXY CACHING ALGORITHMS 1321

4.5. Data mining classification. K-nearest neighbor classifier [13] is one of the su-
pervised machine learning algorithms used in a variety of application. In this work, the
K-nearest neighbor classifier works under the principle of distance measures. The KNN
algorithm trains not only the data set but also the classification for each training exam-
ple. This indicates that in the KNN algorithm, the training samples are used to build
classification models.

4.5.1. Classifier results. The data mining classification (KNN) aims to evaluate the exper-
imental results of classification. The evaluation of the classification is based on whether
the Web page belongs to the class of common user navigation pattern profile. This naviga-
tion pattern profile is generated based on the high-interest page, the frequency of access,
and duration of the Web page.

The different classifiers train these values whether the requested Web object belongs to
a common user navigation pattern profile. So, if the requested Web object belongs to the
common user profile pattern it is assigned as class one otherwise zero. Therefore, if the
class value of the Web object 1, it indicates that Web object may request in future and this
type of Web object is considered cacheable requests. In this section, different classifiers
like Support Vector Machines (SVM), Decision Tree (J48), Näıve Bayes (NB) classifier
and K-Nearest classifier (KNN), are used for classification purpose which is shown in
Figure 8. So among the different classifiers, the KNN classifiers have better classification
accuracy.

Figure 8. Comparisons of accuracy for data mining classifier in training sets

5. Generic Model for Web Proxy Caching Using Data Mining Method. In this
section, a generic model for Web proxy caching strategies integrated with data mining
method [15] was introduced. The algorithm for generic Web proxy caching algorithm
integrated with data mining method is shown in Figure 9.

In (line 1), an initial data mining method is built on history Weblogs. For each Web
object p requested from the proxy cache t that contains the Web object p and then the Web
object p is returned to the Web client. Concerning this performance, measures (lines 7-11);
in this case, it is considered as Cache Hit. In addition, the number of bytes transfer back
to the client is counted for the weighted hit rate measure. Once the data are transferred
back to the client, the proxy cache is updated (line 12) by the data mining method based
on the weight assignment policy, (Class value of the Web object, i.e., whether the Web
object p that can be revisited again in future or not). On the contrary, if the requested

1322 J. B. PERNABAS AND S. F. FIDELE

Procedure Data Mining Methods (DMM)
Proxy cache entry t, t fresh; int Hits = 0, Byte.Hits = 0;
int Cache Max Size N
1. begin
2. DMM.Build ();
3. begin
4. loop forever
5. begin
6. do
7. Get request the Web object p from the proxy cache t.
8. if (Proxycache(t).Contains fresh copy (Web page p))
9. begin
10. Hits = Hits++. /*Cache Hit*/
11. Byte.Hits = Byte.Hits + t. Bytes-Retrieved-to-client.
12. Cache.Update (t, (DMM))
13. end;
14. else
15. begin
16. Cache.Delete(t). /*Cache Miss*/
17. Retrieve Fresh Copy of Web object from origin server S.
18. Cache.Push (t, DMM)
19. While (Proxy cache (t).Size > Max size (N))
20. Cache.Pop(t); */Remove the Web object with lowest key*/
21. Switch ()
22. Case 1: “DMM-GDS”.
23. Case 2: “DMM-GDSF”.
24. Case 3: “DMM-GD*”.
25. end;
27. While (Condition);
28. end;
29. DMM.Update model();
30. end;

Figure 9. Generic model for Web proxy caching replacement algorithms
using DMM

Web object is not available in the proxy cache or it is stale, a cache miss occurs, i.e., the
Web object is deleted from the cache (line 16), in this case, the proxy server forwards the
request to the origin server (line 17), and a fresh copy of the Web object is retrieved from
the origin server and pushed into the proxy cache (line 18). The push method consists
of assigning the class value of the Web object by the data mining method based on the
weight assignment policy. In addition, if the cache space t exceeds the maximum cache
size N (line 19), the Web object q from the cache is popped out from the cache (line 20),
based on the class assigned and lowest key value based on the weight assignment policy
by the data mining methods. Such an approach is known as weight assignment cache
replacement policy (lines 21-24), i.e., each time when the cache gets overflows. Finally,
the data mining method periodically updates the key value of the remaining Web object’s
stored in the proxy cache t. This process continues iteratively when the cache performance
decreases. Also, notice that update of the data mining method (line 28), is dissociated
from the online caching of the Web object, and it can be performed in parallel.

ENHANCEMENTS TO GREEDY WEB PROXY CACHING ALGORITHMS 1323

5.1. Weight assignment policy for cache replacement. The weight assignment pol-
icy of the Web object p in the proxy cache t is expressed in Equation (7) and the param-
eters are shown in Table 5. From the above strategy, the key value used in the caching
system is applied to the greedy family replacement algorithm (GDS, GDSF, GD*) and the
key factor of the replacement algorithm is modified according to Equation (7) as shown
below.

Kn(p) = L +
F (p) + Kn−1(p)×

(
∆Tt(p)

Ct(p)−Lt(p)

)
S(p)

(7)

Therefore, whenever the cache replacement occurs, the replacement algorithm replaces
the Web object based on the key value used by the weight assignment policy.

Table 5. Parameters for weight assignment policy

Parameters Description
L Inflation factor to avoid cache pollution in the proxy cache t.

f(p) Previous frequency access of Web object p in the proxy cache t.
F (p) Current frequency access of Web object p in the proxy cache t.

Kn−1(p) Previous key value of the Web object p in the proxy cache t.

∆Tt(p)
Difference in time between the current requests and previous requests
for the Web object p in the proxy cache t.

Ct(p) Current reference time of the Web object p in the proxy cache t.
Lt(p) Last reference time of the Web object p in the proxy cache t.
S(p) Size of the Web object p.
Kn(p) Current key value of the Web object p.

5.2. Integration of GDS/GDSF/GD* replacement with the DMM. The respec-
tive policy is adapted with data mining method when there is a need for cache replacement.
GDS considers variability in cost and size of a Web object p by choosing the victim based
on the ratio between the cost and size of documents. GDSF considers variability in cost,
size and additionally, the frequency of a Web object p by choosing the victim based on
the ratio between the cost and size of documents. GD* captures both popularity and
temporal correlation in a Web object. The chosen policy associates a key value K(p) with
each Web object p in the cache. When a Web object p is requested in the proxy cache t
and it is already available in the proxy cache t then cache hit occurs and the Web object
p is pushed onto the top of the cache, also the key value is updated based on the DMM
and weight assignment policy of the caching system, K(p), i.e., is respectively set to the
equations below. Equation (8) corresponds to GDS, Equation (9) to GDSF, and Equation
(10) to GD*.

Kn(p) = L +
F (p)× C(p) + Kn−1(p)×

(
∆Tt(p)

Ct(p)−Lt(p)

)
S(p)

(8)

Kn(p) = L +
(F (p) + f(p))× C(p) + Kn−1(p)×

(
∆Tt(p)

Ct(p)−Lt(p)

)
S(p)

(9)

Kn(p) = L +

(F (p) + f(p))× C(p) + Kn−1(p)×
(

∆Tt(p)
Ct(p)−Lt(p)

)
S(p)

1
β

(10)

1324 J. B. PERNABAS AND S. F. FIDELE

Similarly, if a cache miss occurs and the Web object p is retrieved from the origin server
S and if there is no space in the proxy cache the Web object q has to be replaced based on
the DMM. The lowest key value assigned by the weight assignment policy of the caching
system, i.e., Web object q with minimum key value minq∈cache{k(q)|q} in the cache is
chosen among the other Web objects resident in the proxy cache t. Subsequently, the
values are reduced by kmin and the key value of the Web object p is updated as shown
in the policy’s corresponding equation and it is pushed to the top of the cache, and also
the data mining classifier model updates the remaining Web objects. The algorithm for
the GDS, GDSF and GD* replacement based on weight assignment policy and DMM is
given in Figure 10.

6. Experimental Results for the Web Proxy Cache Simulation. For the simu-
lation of the Web proxy cache algorithm, the Windows-based cache simulators [16] are

1. begin
2. for each Web object p requested by user do
3. begin
4. if Web object p resides in the proxy cache t then /*Cache hit*/.
5. begin
6. Update information of p by DMM.
7. Class of p = DMM.
8. if Class of Web object p = 1 then
9. Push the Web object p into the top of cache and update the key value

for GDS, GDSF, and GD*

Kn(p) = L +
F (p)× C(p) + Kn−1(p)×

(
∆Tt(p)

Ct(p)−Lt(p)

)
S(p)

(9a)

Kn(p) = L +
(F (p) + f(p))× C(p) + Kn−1(p)×

(
∆Tt(p)

Ct(p)−Lt(p)

)
S(p)

(9b)

Kn(p) = L +

(F (p) + f(p))× C(p) + Kn−1(p)×
(

∆Tt(p)
Ct(p)−Lt(p)

)
S(p)

1
β

(9c)

10. end;
11. else
12. begin
13. if Web object p is not available in the proxy cache t
14. Bring the Web object p into proxy cache t from the origin server S.
15. While there is not enough free space in the proxy cache t.
16. Remove min{k(q)|q} from the proxy cache t && Class of q = 0.
17. end While;
18. Class of p = DMM
19. if Class of Web object p = 1.
20. Push the Web object p in to the top of cache and update the key

Value for GDS, GDSF, GD* based on Equations (9a)-(9c).
21. end;
22. end;
23. end;

Figure 10. GDS, GDSF, GD* replacement algorithms based on DMM

ENHANCEMENTS TO GREEDY WEB PROXY CACHING ALGORITHMS 1325

Figure 11. Comparison of hit ratio and byte hit ratio of GDS, GDSF and
GD* using DMM and weight assignment policy

modified for the integration of data mining classifier model. Results obtained from the
classifier are taken as input to the Web proxy cache simulator.

A Windows-based cache simulator was used to run the experiments. The experimental
setup is carried out based on parameters like the trace file name, cache size, replacement
scheme and the content type used. The trace file name includes the following attributes
timestamp, URL-ID, object size, etc. The cache size used in these experiments may vary
in size from 5% to 45% (Maximal volume of the cached content) and the replacement
scheme used, GDS, GDSF, GD*. From the experimental results it is shown that the
performance of hit and byte hit ratio for the DMM based Web proxy caching algorithms
outperforms the traditional caching algorithms in all aspects. Here the experimental
results are graphically illustrated and the results are given below.

7. Conclusion. The various working modules of the overall working flow such as the
data pre-processing, fuzzy bi-clustering model, data mining method and generic model
for Web proxy caching algorithms based on weight assignment policy were described in
detail. The data mining method outperforms by improving the classification accuracy by
adapting fuzzy bi-clustering model and also improves the performance of the greedy Web
proxy cache algorithm based on weight assignment policy.

REFERENCES

[1] A. Balamash and M. Krunz, An overview of Web caching replacement algorithms, IEEE Communi-
cations Surveys and Tutorials, vol.6, no.12, pp.44-56, 2004.

[2] S. Jin and A. Bestavros, Greedy-dual* Web caching algorithm, International Journal of Computer
Communication, vol.24, pp.174-183, 2001.

[3] H. Khalid and M. Obaidat, KORA: A new cache replacement scheme, Computers and Electrical
Engineering, vol.26, no.3, pp.187-206, 2000.

[4] W. Tian, B. Choi and V. Phoba, An adaptive Web cache access predictor using network, Develop-
ments in Applied Artificial Intelligence, Lecture Notes in Artificial Intelligence, vol.2358, pp.450-459,
2002.

1326 J. B. PERNABAS AND S. F. FIDELE

[5] T. Koskela, J. Heikkonen and K. Kaski, Web cache optimization with non-linear model using net-
works object features, Computers Networks, vol.43, no.4, pp.805-817, 2003.

[6] J. Cobb and H. ElAarag, Web proxy cache replacement scheme based on back-propagation neural
network, Journal of System Software, vol.6, no.3, pp.805-817, 2003.

[7] W. Ali and S. M. Shamsuddin, Neuro-fuzzy system in partitioned client-side Web cache, Expert
Systems with Applications, vol.38, no.12, pp.14715-14725, 2011.

[8] W. Ali, S. M. Shamsuddin and A. S. Ismail, Intelligent Näıve Bayes-based approaches for Web proxy
caching, Knowledge-Based System, vol.31, pp.162-175, 2012.

[9] P. J. Benadit and F. S. Francis, Improving the performance of a proxy cache using very fast decision
tree classifier, Procedia Computer Science, vol.48, pp.304-312, 2015.

[10] P. J. Benadit, F. S. Francis and U. Muruganantham, Enhancement of Web proxy caching using
discriminative multinomial Näıve Bayes classifier, International Journal of Information and Com-
munication Technology, vol.11, pp.369-381, 2017.

[11] R. Cooley, B. Mobasher and J. Srivastava, Data preparation for mining World Wide Web browsing
patterns, Knowledge and Information Systems, vol.1, no.1, pp.5-32, 1999.

[12] G. Kastaniotis, E. Maragos, C. Douligeris and D. K. Despotis, Using data envelopment analysis
to evaluate the efficiency of Web caching object replacement strategies, Journal of Network and
Computer Applications, vol.35, no.2, pp.803-817, 2012.

[13] H. Liu and V. Keselej, Combined mining of Web server logs and Web contents for classifying user
navigation patterns and predicting users’ future requests, Data and Knowledge Engineering, vol.61,
pp.304-330, 2007.

[14] V. A. Koutsonikola and A. Vakali, A fuzzy bi-clustering approach to correlate Web users and pages,
International Journal of Knowledge and Web Intelligence, vol.1, pp.3-23, 2010.

[15] F. Bonchi et al., Web log data ware housing and mining for intelligent Web caching, Data and
Knowledge Engineering, vol.39, pp.165-189, 2001.

[16] F. J. Gonzalez-Cante, E. Casilari and A. Trivino-cabrera, A Windows based Web cache simulator
tool, Proc. of the 1st International Conference on Simulation Tools and Techniques for Communi-
cations, Networks and Systems & Workshops, pp.1-5, 2008.

