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Abstract. In this paper, H∞-control problem of uncertain linear systems with non-
coincident time-varying state and input delays is considered. Both state and input de-
lays are assumed to be in some given intervals. Contrary to the previous works, the
lower bounds of these delays are not restricted to zero. By defining a suitable augmented
Lyapunov-Krasovskii functional, a new delay-dependent sufficient condition is developed
in terms of linear matrix inequalities to ensure H∞-control of the system with minimum
allowable disturbance attenuation level. The effectiveness and the advantages of the pro-
posed method are illustrated on the various numerical examples.
Keywords: H∞-control, State delay, Input delay, Robust linear systems, Stability

1. Introduction. Stability analysis and the controller design for the system with time-
delay have been widely studied in last decades. The earlier and recent references are [1, 2]
and the references there in. Stability analysis of delay systems is achieved in delay inde-
pendent or delay dependent cases. Results in delay independent case do not include any
information on the size of delay, but delay dependent solutions include such information.
Many works in delay dependent stability case try to enlarge the delay interval. In order
to obtain less conservative results, a relaxed inequality to bound the cross terms is intro-
duced in [3], zero equations with free variables to the solutions are added in [4, 5], the
descriptor system approach is proposed in [6], and a new augmented Lyapunov-Krasovskii
(L-K) functional is presented in [7, 8]. In [9] augmented L-K functional is applied for the
stabilization of the uncertain systems with interval time-varying delays. In all these works,
state delays are considered and the L-K functional approach and linear matrix inequality
(LMI) based feedback design methods are used for the solutions of the problems such as
stability, stabilization and H∞ control.

As it can be seen from the literature, these problems are also studied on industrial
systems having input delay, such as vehicle systems [10], seat suspension systems [11],
networked systems [12], fuzzy systems [13], and systems with multiple delays [14]. In
some dynamical systems, time-delays also effect the system state and control input si-
multaneously [15, 16, 17, 18, 19, 20]. In [15, 20] time-varying state and input delays are
considered, but the derivative of state delay is restricted to less than 1. In [16, 18] con-
stant and coincident state and input delays are considered. In [17] interval time-varying
state and input delays are examined with respect to the midpoints of the intervals. In
[19] augmented L-K functional is applied for the stabilization of linear time-varying non-
coincident input and state delays with zero lower bounds. Because of some nonlinear terms
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in the matrix inequalities given in both [8, 19], it is referred to the cone-complementary
linearization algorithm suggested in [21].

As the knowledge of the authors, H∞-control of systems with interval time-varying
state and input delays has not been solved by augmented type L-K functional.

The main objectives of this paper are
• To obtain the less conservative results for the robust stability/H∞-control of the

systems with interval time-varying state and input delays;
• To improve an algorithm without using the cone-complementary method.
In this paper, a new augmented type L-K functional is first defined for the interval non-

coincident time-varying state and input delays. Some zero terms are introduced to relax
the solutions. A new delay-dependent sufficient condition is developed in terms of linear
matrix inequalities to ensure robust stability and H∞-control of the system with minimum
allowable disturbance attenuation level without using the cone-complementary method.
Besides that, the less conservative result in comparison to those of existing methods in the
literature is presented for H∞-control of uncertain linear systems with the interval time-
varying state delay. Theorem 3.1 proposed here is extended for the neutral systems. The
rest of this paper is organized as follows. The problem formulation is presented in Section
2. In Section 3, the sufficient conditions for the stability, stabilization and H∞-control
of the systems with interval time-varying state and also noncoincident state and input
delays are established, and some concluding remarks are stated. Then, simulation studies
illustrate the effectiveness of the proposed method in Section 4. Finally, the conclusions
are given in Section 5.

In the sequel, the notations are fairly standard. Rn is the n-dimensional Euclidean
space. Rm×n denotes the the set of m × n real matrices. X > 0 denotes that X is real
symmetric positive definite matrix.

2. Problem Statement and Preliminaries. Consider the following system:

ẋ(t) = (A + ∆A)x(t) + (A1 + ∆A1)x(t − h1(t)) + (B + ∆B)u(t)

+(B1 + ∆B1)u(t − h2(t)) + B2w(t), (1)

z(t) = Cx(t), (2)

x(t) = ϕ(t), ∀t ∈
[
−max

{
h̄1, h̄2

}
, 0
]
, (3)

where x(t) ∈ Rn and u(t) ∈ Rm are the state and control inputs, respectively, ϕ is a
continuously differentiable initial function, w denotes the disturbance vector, A, A1, B,
B1 and B2 are known constant real matrices with appropriate dimensions and ∆A, ∆A1,
∆B, ∆B1 are the uncertainties of the system matrices of the form[

∆A ∆A1 ∆B ∆B1

]
= DF (t)

[
E1 E2 E3 E4

]
(4)

in which the time-varying nonlinear function F (t) satisfies

F T (t)F (t) ≤ I, ∀t ≥ 0. (5)

The delays h1(t) and h2(t) are time-varying continuous functions satisfying

0 ≤ h1 ≤ h1(t) ≤ h̄1, 0 ≤ h2 ≤ h2(t) ≤ h̄2, (6)

ḣ1(t) ≤ µ1, ḣ2(t) ≤ µ2. (7)

Now, define the following performance index

J(w(t)) =

∫ ∞

0

[
zT (t)z(t) − γ2wT (t)w(t)

]
dt. (8)
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Our goal is to find a memoryless state-feedback controller in the form of u(t) = Kx(t),
such that the closed-loop system

ẋ(t) = (A + BK)x(t) + A1x(t − h1(t)) + B1Kx(t − h2(t)) + B2w(t) + Dp(t), (9)

p(t) = F (t)q(t), (10)

q(t) = (E1 + E3K)x(t) + E2x(t − h1(t)) + E4Kx(t − h2(t)) (11)

is asymptotically stable and guarantees J(w(t)) < 0 under zero initial condition for all
non-zero w(t) ∈ L2[0,∞) and some prescribed γ > 0. In order to obtain the main results,
we need the following lemmas.

Lemma 2.1. For any real vectors a, b and any matrix Q > 0 with appropriate dimensions,
it follows that

2aT b ≤ aT Qa + bT Q−1b.

Lemma 2.2. [22] For any constant-real matrix P ∈ Rn×n, P > 0, scalar τ > 0 and
vector valued function χ : [0, τ ] −→ Rn, the following inequality holds

τ

∫ τ

0

χT (s)Pχ(s)ds ≥
(∫ τ

0

χ(s)ds

)T

P

(∫ τ

0

χ(s)ds

)
. (12)

3. Main Results. This section presents the delay-dependent stabilization conditions for
system in (1)-(3) with interval time-varying delays.

Theorem 3.1. Given positive scalars h1, h̄1, h2, h̄2, µ1, µ2 and ϵ. The closed-loop system
in Equations (9)-(11) is asymptotically stable with disturbance attenuation γ, for any
time-varying delays h1(t) and h2(t) satisfying (6) and (7) if there exist symmetric positive
definite matrices P , Mi, Ni, Qi and Li, for i = 1, 2 and Rij, for i = 1, 2, j = 1, 2, 3, and
the matrices U , Sij, for i, j = 1, 2, with appropriate dimensions satisfying the following
LMI’s

Σ =


Θ

√
µ

1
ΠT

1

√
µ

2
ΠT

2 ΨT U
∗ −L1 0 0
∗ ∗ −L2 0

∗ ∗ ∗ −1

ϵ
U

 < 0, (13)

where

P =

 P11 P12 P13

∗ P22 P33

∗ ∗ P33

 > 0, Mi =

[
Mi1 Mi2

∗ Mi3

]
> 0, Ni =

[
Ni1 Ni2

∗ Ni3

]
> 0,

for i = 1, 2,

Π1 =
[

P T
12 P T

22 P23 0 . . . 0
]
, Π2 =

[
P T

13 P T
23 P33 0 . . . 0

]
,

Θ1,1 = P12+P T
12+P13+P T

13+h̄2
1M11+h̄2

2M21−M13−M23+d2
1N11+d2

2N21+UT AK +AT
KUT +

R11+R21+R12+R22+R13+R23+S11+ST
11+S21+ST

21+CT C, Θ1,2 = −P12+M13+UA1−S11+
ST

12, Θ1,3 = −P13+M23+UB1K−S21+ST
22, Θ1,4 = P22+P T

23−MT
12, Θ1,5 = P23+P33−MT

22,
Θ1,6 = P11 + h̄2

1M11 + h̄2
2M22 + d2

1N12 + d2
2N22 − U + AT

k P T , Θ1,15 = UT B2, Θ1,16 = UT D,
Θ1,17 = −S11, Θ1,18 = −S21, Θ2,2 = µ1L1 − 2M13 − 2N13 − (1 − µ1)R12 − S12 − ST

12,
Θ2,4 = −P22 + MT

12, Θ2,5 = −P23, Θ2,6 = AT
1 U , Θ2,7 = NT

13, Θ2,9 = M13 + N13, Θ2,11 =
−MT

12−NT
12, Θ2,13 = NT

12, Θ2,17 = −S12, Θ3,3 = µ2L2−2M23−2N23−(1−µ2)R22−S22−ST
22,

Θ3,4 = −P T
23, Θ3,5 = −P33 + MT

22, Θ3,6 = KT B1U
T , Θ3,8 = NT

23, Θ3,10 = M23 + N23,
Θ3,12 = −MT

22 −NT
22, Θ3,14 = NT

22, Θ3,18 = −S22, Θ4,4 = −M11, Θ4,6 = P T
12, Θ5,5 = −M21,

Θ5,6 = P T
13, Θ6,6 = h̄2

1M13+ h̄2
2M23+ d̄2

1N13+ d̄2
2N23−U−UT + h̄2

1Q1+ h̄2
2Q2, Θ6,15 = UT B2,

Θ6,16 = UT D, Θ7,7 = −N13−R11, Θ7,13 = −NT
12, Θ8,8 = −N23−R21, Θ8,14 = −NT

22, Θ9,9 =
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−M13 − N13 − R13, Θ9,11 = MT
12 + NT

12, Θ10,10 = −M23 − N23 − R23, Θ10,12 = MT
22 + NT

22,
Θ11,11 = −M11−N11, Θ12,12 = −M21−N21, Θ13,13 = −N11, Θ14,14 = −N21, Θ15,15 = −γ2I,
Θ16,16 = −ϵU , Θ17,17 = −Q1, Θ18,18 = −Q2.

Proof: Let us choose an L-K functional candidate as V (x(t), t) =
∑4

i=1 Vi(x(t), t),
where

V1(x(t), t) = ηT (t)Pη(t),

V2(x(t), t) =
2∑

j=1

h̄j

∫ 0

−h̄j

∫ t

t+θ

ξT (s)Mjξ(s)dsdθ

+
2∑

j=1

(
h̄j − hj

) ∫ −hj

−h̄j

∫ t

t+θ

ξT (s)Njξ(s)dsdθ,

V3(x(t), t) =
2∑

j=1

(∫ t

t−hj

xT (s)Rj1x(s)ds +

∫ t

t−hj(t)

xT (s)Rj2x(s)ds

+

∫ t

t−h̄j

xT (s)Rj3x(s)ds

)
,

V4(x(t), t) =
2∑

j=1

h̄j

∫ 0

−h̄j

∫ t

t+θ

ẋT (s)Qjẋ(s)dsdθ, (14)

η(t) =

[
xT (t)

(∫ t

t−h1(t)

x(s)ds

)T (∫ t

t−h2(t)

x(s)ds

)T
]T

,

ξ(t) =
[

xT (t) ẋT (t)
]T

.

Taking the time derivative of Vi(x(t), t), i = 1, 2, 3, 4 along the trajectory of system (9)
yields

V̇1 = 2ηT (t)P η̇(t),

V̇2 =
2∑

j=1

h̄2
jξ

T (t)Mjξ(t) −
2∑

j=1

h̄j

∫ t

t−h̄j

ξT (s)Mjξ(s)ds

+
2∑

j=1

(
h̄j − hj

)2
ξT (t)Njξ(t) −

2∑
j=1

(
h̄j − hj

) ∫ t−hj

t−h̄j

ξT (s)Njξ(s)ds,

V̇3 =
2∑

j=1

(
xT (t)Rj1x(t) − xT

(
t − hj

)
Rj1x

(
t − hj

)
+ xT (t)Rj2x(t) −

(
1 − ḣj(t)

)
xT (t − hj(t))Rj2x(t − hj(t))

+xT (t)Rj3x(t) − xT
(
t − h̄j

)
Rj3x

(
t − h̄j

) )
,

V̇4 =
2∑

j=1

(
h̄2

j ẋ
T (t)Qjẋ(t) − h̄j

∫ t

t−h̄j

ẋT (s)Qjẋ(s)ds

)
.

For simplicity, denote x(t) =: x, ẋ(t) =: ẋ, η(t) =: η, x(t − hj(t)) =: xhj(t) and∫ t

t−hj(t)
x(s)ds =: ihj(t), for j = 1, 2. Then η̇(t) and V̇1 can be written as

η̇ = η1 + ḣ1(t)η2xh1(t) + ḣ2(t)η3xh2(t), (15)
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and

V̇1 = 2ηT Pη1 + 2ḣ1(t)η
T Pη2xh1(t) + 2ḣ2(t)η

T Pη3xh2(t), (16)

respectively, where

η1 =
[

ẋT (x − xh1(t))
T (x − xh2(t))

T
]T

, η2 =
[

0 I 0
]T

, η3 =
[

0 0 I
]T

.

By (7) and Lemma 2.1 there exist positive definite matrices L1 and L2 such that

2ḣ1(t)η
T Pη2xh1(t) ≤ µ1

(
ηT Pη2L

−1
1 ηT

2 Pη + xT
h1(t)L1xh1(t)

)
,

2ḣ2(t)η
T Pη3xh2(t) ≤ µ2

(
ηT Pη3L

−1
2 ηT

3 Pη + xT
h2(t)L2xh2(t)

)
,

and so

V̇1 ≤ 2ηT Pη1 + µ1

(
ηT Pη2L

−1
1 ηT

2 Pη + xT
h1(t)L1xh1(t)

)
+ µ2

(
ηT Pη3L

−1
2 ηT

3 Pη + xT
h2(t)L2xh2(t)

)
.

(17)

On the other hand, the integral parts of V̇2 can be written as the following way∫ t

t−h̄j

ξT (s)Mjξ(s)ds =

∫ t−hj(t)

t−h̄j

ξT (s)Mjξ(s)ds +

∫ t

t−hj(t)

ξT (s)Mjξ(s)ds, (18)

and ∫ t−hj

t−h̄j

ξT (s)Njξ(s)ds =

∫ t−hj(t)

t−h̄j

ξT (s)Njξ(s)ds +

∫ t

t−hj(t)

ξT (s)Njξ(s)ds. (19)

From (6) it is possible to write these inequalities as

−
2∑

j=1

h̄j

∫ t

t−h̄j

ξT (s)Mjξ(s)ds ≤ −
2∑

j=1

(
h̄j − hj(t)

) ∫ t−hj(t)

t−h̄j

ξT (s)Mjξ(s)ds

− hj(t)

∫ t

t−hj(t)

ξT (s)Mjξ(s)ds, (20)

and

−
2∑

j=1

(
h̄j − hj

) ∫ t−hj

t−h̄j

ξT (s)Njξ(s)ds

≤ −
2∑

j=1

(
h̄j − hj(t)

) ∫ t−hj(t)

t−h̄j

ξT (s)Njξ(s)ds

−
2∑

j=1

(
hj(t) − hj

) ∫ t−hj

t−hj(t)

ξT (s)Njξ(s)ds. (21)

Then, by Lemma 2.2 the right sides of the inequalities (20) and (21) can be written as

≤ −
2∑

j=1

[(∫ t−hj(t)

t−h̄j

ξT (s)ds

)
Mj

(∫ t−hj(t)

t−h̄j

ξ(s)ds

)

+

(∫ t

t−hj(t)

ξT (s)ds

)
Mj

(∫ t−hj(t)

t−h̄j

ξ(s)ds

)]
,

(22)
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and

≤ −
2∑

j=1

[(∫ t−hj(t)

t−h̄j

ξT (s)ds

)
Nj

(∫ t−hj(t)

t−h̄j

ξ(s)ds

)

+

(∫ t−hj

t−hj(t)

ξT (s)ds

)
Nj

(∫ t−hj

t−hj(t)

ξ(s)ds

)]
,

(23)

respectively. Now, let
∫ t−hj(t)

t−h̄j
x(s)ds =: aj, x

(
t − h̄j

)
=: xh̄j

,
∫ t−hj

t−hj(t)
x(s)ds =: bj, x(t −

hj) =: xhj
. Then, by (22) and (23) V̇2 can be written as follows

V̇2 ≤
2∑

j=1

(
h̄2

j

(
xT Mj1x + 2xT Mj2ẋ + ẋT Mj3ẋ

)
−
(
aT

j Mj1aj + 2aT
j Mj2xhj(t)

− 2aT
j Mj2xh̄j

+ xT
hj(t)

Mj3xhj(t) − 2xhj(t)Mj3xh̄j
+ xT

h̄j
Mj3xh̄j

)
−
(
iThj(t)

Mj1ihj(t) + 2xT MT
j2ihj(t) + xT Mj3x − 2xT Mj3xhj(t)

− 2xT
hj(t)

MT
j2ihj(t) + xT

hj(t)
MT

j3xhj(t)

)
+ d̄2

j

(
xT Nj1x + 2xT Nj2ẋ + ẋT Nj3ẋ

)
−
(
aT

j Nj1aj + 2aT
j Nj2xhj(t)

− 2aT
j Nj2xh̄j

+ xT
hj(t)

Nj3xhj(t) − 2xhj(t)Nj3xh̄j
+ xT

h̄j
Nj3xh̄j

)
−
(
bT
j Nj1bj + 2bT

j Nj2xhj
− 2xT

hj(t)
NT

j2bj + xT
hj

Nj3xhj

− 2xT
hj

Nj3xhj(t) + xT
hj(t)

NT
j3xhj(t)

))
. (24)

Let
∫ t

t−hj(t)
ẋ(s)ds =: dhj(t), for j = 1, 2 and consider V̇4. Since h̄j

∫ t

t−h̄j
ẋT (s)Qjẋ(s)ds can

be written as Equation (20) and Qj > 0, then by Lemma 2.2 V̇4 can be written as

V̇4 ≤
2∑

j=1

(
h̄2

j ẋ
T Qjẋ − dT

hj(t)
Qjdhj(t)

)
. (25)

Now, let U be an arbitrary matrix and consider the following zero terms

2
(
xT + ẋT

)
U
(
−ẋ + AKx + A1xh1(t) + B1Kxh2(t) + B2w + Dp(t)

)
= 0, (26)

2∑
j=1

2
[
xT (t)Sj1 + xT (t − hj(t))Sj2

] [
x(t) − x(t − hj(t)) −

∫ t

t−hj(t)

ẋ(s)ds

]
= 0, (27)

where A + BK =: AK . As it is given in [9], since pT (t)p(t) ≤ qT (t)q(t) there exist a
positive scalar ϵ and a positive definite matrix U such that

χ(t)T ΨT (ϵU)Ψχ(t) − pT (t)(ϵU)p(t) ≥ 0, (28)

where

χ(t)T =
[
xT xT

h1(t) xT
h2(t) iTh1(t) iTh2(t) ẋT xT

h1
xT

h2
xT

h̄1 xT
h̄2 aT

1 aT
2 bT

1 bT
2 wT pT dT

h1(t) dT
h1(t)

]
,

Ψ =
[

E1 + E3K E2 E4K 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
]
.

Thus, by Equations in (7), (8), (17), (24), (25), (26), (27), (28) and V̇3 we have

V̇ +zT z−γ2wT w ≤ χ(t)
(
Θ + ΨT (ϵU)Ψ

)
χ(t)+µ1Pη2L

−1
1 ηT

2 P +µ2Pη3L
−1
1 ηT

3 P < 0, (29)

and this inequality is equivalent to (13). �
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Noting that the result in Theorem 3.1 is LMI for open-loop systems (u(t) = 0), but
it is not an LMI for closed-loop systems (u(t) ̸= 0). One cannot solve it directly using
MATLAB LMI Toolbox for the closed-loop systems. So we present the following theorem
to give the process of the controller design, which can be solved easily by LMI Toolbox.

Theorem 3.2. Given positive scalars h1, h̄1, h2, h̄2, µ1, µ2 and ϵ. The system in (1)-(3)
with state-feedback controller u(t) = Y X−1x(t) is asymptotically stable with disturbance
attenuation γ, for any time-varying delays h1(t) and h2(t) satisfying (6) and (7) if there
exist symmetric positive definite matrices X, P̄ii, for i = 1, 2, 3, M̄ij and N̄ij, for i = 1, 2,
j = 1, 3, R̄ij, for i = 1, 2, j = 1, 2, 3, Q̄1, Q̄2, L̄1, L̄2 and the matrices P̄12, P̄13, P̄23, S̄ij,
for i, j = 1, 2, M̄i2 and N̄i2, for i = 1, 2 and Y with appropriate dimensions satisfying the
following LMI’s

Σ̄ =


Θ̄

√
µ

1
Π̄T

1

√
µ

2
Π̄T

2 Ψ̄T Π̄T
3

∗ −L̄1 0 0 0
∗ ∗ −L̄2 0 0
∗ ∗ ∗ −1

ϵ
X 0

∗ ∗ ∗ ∗ −I

 < 0, (30)

where

Π̄1 =
[

P̄ T
12 P̄ T

22 P̄23 0 . . . 0
]
, (31)

Π̄2 =
[

P̄ T
13 P̄ T

23 P̄33 0 . . . 0
]
, (32)

Π̄3 =
[

CX 0 . . . 0
]
, (33)

Ψ̄ =
[

E1X + E3Y E2X E4Y . . . 0
]
, (34)

P̄ =

 P̄11 P̄12 P̄13

∗ P̄22 P̄33

∗ ∗ P̄33

 > 0, M̄j =

[
M̄j1 M̄j2

∗ M̄j3

]
> 0 , N̄j =

[
N̄j1 N̄j2

∗ N̄j3

]
> 0,

for j = 1, 2 and
Θ̄1,1 = P̄12 + P̄ T

12 + P̄13 + P̄ T
13 + h̄2

1M̄11 + h̄2
2M̄21 − M̄13 − M̄23 + d2

1N̄11 + d2
2N̄21 + AX + BY

XT AT + Y T BT + R̄11 + R̄21 + R̄12 + R̄22 + R̄13 + R̄23 +S̄11 + S̄T
11 + S̄21 + S̄T

21, Θ̄1,2 =
−P̄12+M̄13+A1X−S̄11+S̄T

12, Θ̄1,3 = −P̄13+M̄23+B1Y −S̄21+S̄T
22, Θ̄1,4 = P̄22+P̄ T

23−M̄T
12,

Θ̄1,5 = P̄23+ P̄33−M̄T
22, Θ̄1,6 = P̄11+ h̄2

1M̄11+ h̄2
2M̄22+d2

1N̄12+d2
2N̄22−X +XT AT +Y T BT ,

Θ̄1,15 = B2, Θ̄1,16 = DX, Θ̄1,17 = −S̄11, Θ̄1,18 = −S̄21, Θ̄2,2 = µ1L̄1 − 2M̄13 − 2N̄13 − (1−
µ1)R̄12 − S̄12 − S̄T

12, Θ̄2,4 = −P̄22 + M̄T
12, Θ̄2,5 = −P̄23, Θ̄2,6 = XT AT

1 , Θ̄2,7 = N̄T
13, Θ̄2,9 =

M̄13 + N̄13, Θ̄2,11 = −M̄T
12− N̄T

12, Θ̄2,13 = N̄T
12, Θ̄2,17 = −S̄12, Θ̄3,3 = µ2L̄2−2M̄23−2N̄23−

(1−µ2)R̄22−S̄22−S̄T
22, Θ̄3,4 = −P̄ T

23, Θ̄3,5 = −P̄33+M̄T
22, Θ̄3,6 = Y T BT

1 , Θ̄3,8 = N̄T
23, Θ̄3,10 =

M̄23 + N̄23, Θ̄3,12 = −M̄T
22 − N̄T

22, Θ̄3,14 = N̄T
22, Θ̄3,18 = −S̄22, Θ̄4,4 = −M̄11, Θ̄4,6 = P̄ T

12,
Θ̄5,5 = −M̄21, Θ̄5,6 = P̄ T

13, Θ̄6,6 = h̄2
1M̄13+ h̄2

2M̄23+ d̄2
1N̄13+ d̄2

2N̄23−X−XT + h̄2
1Q̄1+ h̄2

2Q̄2,
Θ̄6,15 = B2, Θ̄6,16 = DX, Θ̄7,7 = −N̄13 − R̄11, Θ̄7,13 = −N̄T

12, Θ̄8,8 = −N̄23 − R̄21,
Θ̄8,14 = −N̄T

22, Θ̄9,9 = −M̄13 − N̄13 − R̄13, Θ̄9,11 = M̄T
12 + N̄T

12, Θ̄10,10 = −M̄23 − N̄23 − R̄23,
Θ̄10,12 = M̄T

22 + N̄T
22, Θ̄11,11 = −M̄11 − N̄11, Θ̄12,12 = −M̄21 − N̄21, Θ̄13,13 = −N̄11,

Θ̄14,14 = −N̄21, Θ̄15,15 = −γ2I, Θ̄16,16 = −ϵX, Θ̄17,17 = −Q̄1, Θ̄18,18 = −Q̄2, h̄j −hj =: dj.

Proof: Consider the LMI Σ given in (13). In order to remove the nonlinearities in Σ,
define U−1 =: X and pre- and post-multiply Σ by the matrix Λ = diag{X, . . . , X, I,X, . . .,
X}. The identity matrix I corresponds to the 15th row and column of Σ. Then, define
also XPijX =: P̄ij, XMijX =: M̄ij, XNijX =: N̄ij, XRijX =: R̄ij, XQiX =: Q̄i,
XLiX =: L̄i, XSijX =: S̄ij, for suitable i, j. As a result from Schur complement,
ΛΣΛ < 0 is equivalent to the inequality in (30). �
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Remark 3.1. The techniques used in the proof of Theorem 3.2 solve the problem in
the case of non-coincident state and input delays. Besides that the results can be easily
extended to the multi-delay, and also to the delay-partitioned cases. This technique has
some similarities with the solution given in [9], but we observed that the results in [9]
cannot be extended to non-coincident state and input delays case and also multi-delay
case. The difficulties arise from some zero terms in the proof of Theorem 1 in [9].

Remark 3.2. The method in this article has no restrictions on the derivatives of the
time-varying delays, while traditional design methods require the derivatives to be less
than 1. So the proposed method can deal with fast time-varying delays. Noting that the
sufficient condition in (30) of Theorem 3.2 does not contain any nonlinear terms and it
can be solved easily by using Matlab’s LMI Control Toolbox [23].

Remark 3.3. In order to solve the results in [8, 19] it is referred to the cone-complementa-
rity linearization algorithm suggested in [21]. This algorithm performs the linearization
process with some iterations and it runs until the acceptable error bounds, which are
generally close to the dimensions of the inverse constraints, are obtained. In this work
matrix inequalities do not involve any inverse constraints and there is no need to use this
algorithm.

In the following part, linear neutral systems [24], with interval state and input delays
are considered and the solution of H∞-control problem for such systems is examined.
Now, consider the linear neutral systems

ẋ(t) = (A + ∆A)x(t) + (A1 + ∆A1)x(t − h1(t)) + Eẋ(t − d)

+ (B + ∆B)u(t) + (B1 + ∆B1)u(t − h2(t)) + B2w(t), (35)

z(t) = Cx(t), (36)

x(t) = ϕ(t), ∀t ∈
[
−max

{
h̄1, h̄2, d

}
, 0
]
, (37)

where d is a constant delay and E is known real matrix with appropriate dimensions.
Consider a difference operator µ(xt) : C[−τ, 0] → Rn given by µ(xt) := x(t) − Ex(t − d)
and also assume that ∥ E ∥< 1, where ∥ . ∥ denotes any matrix norm. This is sufficient
condition for the asymptotic stability of µ(xt) = 0 independent of all delays, (see [25] for
further details).

Theorem 3.3. Given positive scalars h1, h̄1, h2, h̄2, µ1, µ2, d and ϵ. The system in
(35)-(37) with state-feedback controller u(t) = Y X−1x(t) is asymptotically stable with
disturbance attenuation γ, for any time-varying delays h1(t) and h2(t) satisfying (6) and
(7) if there exist symmetric positive definite matrices X, P̄ii, for i = 1, 2, 3, M̄ij and N̄ij,
for i = 1, 2, j = 1, 3, R̄ij, for i = 1, 2, j = 1, 2, 3, Q̄1, Q̄2, L̄1, L̄2, T̄ and the matrices P̄12,
P̄13, P̄23, S̄ij, for i, j = 1, 2, M̄i2 and N̄i2, for i = 1, 2 and Y with appropriate dimensions
satisfying the following LMI’s

Σ̄′ =


Θ̄′ √

µ
1
Π̄1

′T √
µ

2
Π̄2

′T Ψ̄′T Π̄3
′T

∗ −L̄1 0 0 0
∗ ∗ −L̄2 0 0
∗ ∗ ∗ −1

ϵ
X 0

∗ ∗ ∗ ∗ −I

 < 0, (38)

where Π̄1
′
=
[

Π̄1 0
]
, Π̄2

′
=
[

Π̄2 0
]
, Π̄3

′
=
[

Π̄3 0
]
, Ψ̄′ =

[
Ψ̄ 0

]
, Θ̄′

ij = Θ̄ij,

(i, j = 1, . . . , 17) except Θ̄′
66 = Θ̄66 + T̄ , Θ̄′

1,19 = EX, Θ̄′
6,19 = EX, Θ̄′

19,19 = −T̄ and P̄ ,

M̄j and N̄j (j = 1, 2) are the matrices as in Theorem 3.2.
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Proof: The proof of this theorem is achieved by the proof of Theorem 3.1. The L-K
functional in (14) is used by adding the functional V5(x(t), t) =

∫ t

t−d
ẋT (s)T ẋ(s)ds, so its

derivative is V̇5 = ẋT (t)T ẋ(t) − ẋT (t − d)T ẋ(t − d). In this case Equations (15)-(25) are
the same but Equation (26) should be rearranged as

2
(
xT + ẋT

)
U
(
− ẋ + AKx + A1xh1(t) + B1Kxh2(t) + Eẋ(t− d) + B2w + Dp(t)

)
= 0. (39)

The difference between Equations (26) and (39) is the term

2
(
xT + ẋT

)
UEẋ(t − d) = 2xT UEẋ(t − d) + 2ẋT UEẋ(t − d). (40)

As a result of this, we consider the vector ξT (t) =
[

χT (t) ẋT (t − d)
]
, and the matrices

Θ′
1,19 = UE, Θ′

6,19 = UE, Θ′
6,6 = Θ6,6 + T , Θ′

19,19 = −T , Θ′
2,19 = . . . = Θ′

18,19 = 0,
Θ′

i,j = Θi,j, for all i, j = 1, . . . , 18 except Θ′
6,6 = Θ6,6 + T . In that case, the inequality in

(29) can be written as

V̇ + zT z − γ2wT w ≤ ξT (t)
(
Θ′ + Ψ′T (ϵU)Ψ′) ξ(t) + µ1Pη2L

−1
1 ηT

2 P + µ2Pη3L
−1
1 ηT

3 P < 0,
(41)

where Ψ′T =
[

ΨT 0
]
, and the following LMI is obtained

Σ′ =


Θ′ √

µ
1
Π1

′T √
µ

2
Π2

′T Ψ′T U
∗ −L1 0 0
∗ ∗ −L2 0
∗ ∗ ∗ −1

ϵ
U

 < 0, (42)

where Π1
′ =

[
Π1 0

]
and Π2

′ =
[

Π2 0
]
. Then by defining U−1 = X and pre- and

post-multiplying Σ′ by Λ′ = diag{Λ, X} and by defining T̄ =: XTX, inequality (38) can
be obtained.

Remark 3.4. In this paper, for the first time, neutral systems with interval state and
input delays are examined by the augmented matrix approach.

4. Numerical Examples. In this section, some numerical examples are prensented that
demonstrate the validity of the method described above.

Example 4.1. Consider the system ẋ(t) = Ax(t)+A1x(t−h1(t))+Bu(t)+B1u(t−h2(t))
where

A =


0 0 0 0
0 0.5 0 0

−0.5 0 0.3 0
0 0 0 1

 , A1 =


−2 −0.5 0 0
−0.2 −1 0 0
0.5 0 −2 −0.5
0 0 0 −1

 ,

B =
[

1 1 1 0
]T

, B1 =
[

0 1 1 1
]T

, µ = 0.

In this paper interval state and input delays are considered. Thus, the problem above
is solved for nonzero lower bounds. Maximum value of the upper bound is calculated as
h̄1 = 0.715, for h̄2 = 0.3 and h1 = h2 = 0.1. In [15, 19] interval time delays are not
considered. The same problem is solved by the method given in [19] for h1 = h2 = 0 and
h̄2 = 0.1 and the upper bound for h̄1 is obtained as 0.674. As it is seen from Table 1 our
result is less conservative than h̄1 = 0.674 and the results given in [15]. The state feedback
matrix for h̄1 = 0.744, h̄2 = 0.1 is K = [−6.3 − 2.3 1.8 − 0.89].

In the following example, the robust stability for systems with input and state delay
are considered.
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Table 1. Example 4.1 for max h̄1

max h̄1 h̄2 h1 h2

Zhang et al. [15] 0.56 0.1 0 0

Theorem 3.2
0.744 0.1 0 0

0.682 0.6 0 0

Example 4.2. Let A, A1, B, B1 as in Example 4.1 and the uncertainties are given by
the matrices

E1 =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

 , E2 =


0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0

 , E3 =


0
0
0
1

 = E4, D = 0.1 ∗ I, µ = 0.

Robust stability problem is solved for this system by using Theorem 3.2 for various values
of h̄2, h1 and h2. The results are shown in Table 2. The state feedback matrix is K =
[−2.72 − 1.1 0.5 − 1.19], for h̄1 = 0.655, h̄2 = 0.2, h1 = 0.1 and h2 = 0.1.

Table 2. Example 4.2 for ϵ = 0.1

max h̄1 h̄2 h1 h2

Theorem 3.2

0.671 0.1 0 0

0.645 0.3 0 0

0.655 0.2 0.1 0.1

Example 4.3. Consider the following uncertain system with coincident state and input
delay, where

A =

[
0 0
0 1

]
, A1 =

[
−1 −1
0 −0.9

]
, B =

[
1
1

]
, B1 =

[
1
0

]
, B2 =

[
0
1

]
,

C =
[

0 1
]
, D = 0.2 ∗ I, E1 = E2 = I, E3 = E4 =

[
0.1 0.1

]
, µ = 0.

This problem is solved by cone-complementary algorithm in 83 steps in [19]. However, in
our method there is no need to use this algorithm. Applying Theorem 3.2 for γ = 2.25
and h1 = h2 we obtain the results in Table 3. As it is seen from this table, it is also
possible to solve the same problem for nonzero lower bounds. Then, the feedback matrix,
for h̄1 = h̄2 = 0.9397 and h1 = h2 = 0.2 is K = [0 −7.2654]. Also, in Table 4 we
demonstrate the minimum values of γ, for h1 = h2 = 0 and h̄1 = h̄2 = 1.036. This value
of γ is smaller than γ = 2.25. All these results illustrate the effectiveness of the proposed
method.

Table 3. Example 4.3

γ = 2.25 max
(
h̄1 = h̄2

)
h1 = h2

Parlakçı and Küçükdemiral [19] 0.776 0

Theorem 3.2 for ϵ = 0.1 0.9397 0.2

Theorem 3.2 for ϵ = 0.2 1.036 0
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Table 4. Example 4.3

h̄1 = h̄2 min γ

Parlakçı and Küçükdemiral [19] 0.776 2.25

Theorem 3.2 for ϵ = 0.1 0.776 0.057

Theorem 3.2 for ϵ = 0.2 1.036 0.09

Example 4.4. Consider the following system with input delay

A =

[
0 1
−1 −2

]
, A1 =

[
0 1

0.2 0.1

]
, B1 =

[
0
1

]
, D =

[
0.1
0.1

]
,

E1 = E2 =
[

1 1
]
, E4 = [ 1 ], µ = 0.

This example is borrowed from [17] and in that work h̄1 = h̄2 = 4, and some feedback
gains for different values of ϵ are given. By Theorem 3.2 we obtain h̄1 = h̄2 = 8 and the
feedback gains K = [−0.012 −0.0026], for ϵ = 0.1 and K = [−0.049 −0.009], for ϵ = 0.2.
So, the proposed method can be applied for a wider range of delays.

Example 4.5. Consider the following system without input delay

A =

[
0 0
0 1

]
, A1 =

[
−1 −1
0 −0.9

]
, B =

[
0
1

]
, B2 =

[
1
1

]
, C =

[
0 1

]
, µ = 0.

This example is borrowed from [19] and it reports that the minimum allowable γ = 0.0022
for h̄1 = 0.9710. As a result of the application of Theorem 3.2, the minimum allowable γ
is found as 0.000051 for the same value of h̄1, and when γ is fixed at 0.0022, the maximum
value of h̄1 is 1.339. From the above comparisons, it can be seen that the method in this
article can lead to much less conservative results for this example.

Example 4.6. Consider Example 4.3 with the matrix E =

[
−0.1 0.25
0.2 0.3

]
. In this case,

h̄1 = h̄2 = 0.9397, h1 = h2 = 0.2 and γ = 2.25 can be obtained for ϵ = 0.1.

5. Conclusions. In this paper, new delay dependent sufficient conditions are proposed
for the robust stability and H∞ control of uncertain linear systems with non-coincident
time-varying state and input delays. State and input delays are assumed to be in some
intervals, in which the lower bounds of the delays are not restricted to zero. Proposed
conditions do not include the cone-complementarity linearization algorithm. Less conser-
vative sufficient conditions are obtained in terms of LMIs and some numerical examples
are presented to illustrate the effectiveness of the proposed results. It is worth mentioning
that the results of this paper may easily be extended to the multi-delay case. H∞-control
of norm-bounded and polytopic uncertain systems with interval state and input delays is
another subject of the further research.
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[5] S. Y. Lee, W. I. Lee and P. Park, Improved stability criteria for linear systems with interval
time-varying delays: Generalized zero equalities approach, Applied Mathematics and Computation,
vol.292, pp.336-348, 2017.

[6] E. Fridman and U. Shaked, An improved stabilization method for linear time-delay systems, IEEE
Trans. Automatic Control, vol.47, pp.1931-1937, 2002.

[7] J. Yoneyama, New delay-dependent approach to robust stability and stabilization for Takagi-Sugeno
fuzzy time-delay systems, Fuzzy Sets and Systems, vol.158, pp.2225-2337, 2007.
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