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Abstract. This paper discusses the problem of adaptive neural control for a class of
multiple-input multiple-output (MIMO) nonlinear systems with unknown dead-zone in-
puts. By applying radial basis function (RBF) neural networks (NNs) to identify the
unknown functions and constructing observers, a backstepping control scheme is devel-
oped. The proposed control method requires only one adaptive law for every subsystem.
And the designed controllers can ensure that all the signals in the closed-loop systems are
bounded, and the target signals can be tracked within a small error as well. At last, the
simulation example is provided to show the effectiveness of the proposed scheme.
Keywords: Adaptive control, Backstepping, Neural networks, Output feedback, Un-
known dead zone

1. Introduction. In modern industrial field, many practice systems usually require mul-
tiple control signals, which are called multiple-input multiple-output (MIMO) systems.
Because of the increase of the control loops and the existence of the coupling phenome-
non between various inputs, the structure of MIMO systems is more complex than that of
single input and single output systems. On the other hand, as unknown nonlinearities are
inherent in practical systems, the problem of control and stabilization analysis for MIMO
systems with nonlinearities and uncertainties becomes more academically challenging. In
order to deal with the problem, approximation-based adaptive control methods are widely
used, such as [1, 2, 3, 4, 5] for state feedback and [6, 7, 8] for output feedback. In [9], by
inducing high dimensional integral Lyapunov functions, adaptive state feedback control
and adaptive output feedback control are both derived. In these works, neural networks
or fuzzy logical systems (FLSs) are applied as approximators to identifying unknown non-
linearities by making use of their self-studying ability. Because NNs and FLSs have the
capacity of nonlinear function approximating, the approximation-based adaptive control
strategy is not only used to realize the high-precision control for complex systems, but
also suitable for the systems which are difficult to describe by mathematical models. Es-
pecially in recent years, this method has been successfully applied to various engineering
fields. For example, in [10], fuzzy controllers ensure the stability of MIMO nonlinear
industrial processes with no reliable models. In [11], the proposed adaptive neural control
scheme is evaluated on a two-link robot manipulator.

Additionally, notice dead zone as one of non-smooth nonlinear characteristics usually
occurs in many practical systems and may influence the performance of control systems.
Many scholars devote themselves to the study of nonlinear systems with dead-zone nonlin-
earities, for example, see [12, 13, 14, 15, 16, 17, 18] for state feedback and [19, 20, 21, 22]
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for output feedback in the present of dead zones. Thereinto, given the effects of the
dead-zone and multiple control signals, the authors of [15] present a decentralized vari-
able structure control for a class of uncertain large-scale systems with known dead-zones.
In [16], the need for known parameter bounds of dead zones is removed. In [17], the
tracking problem for a class of nonlinear systems with nonsymmetric dead-zone input
is discussed, but the considered dead-zone is linear. In [18], the authors investigate the
unknown nonlinear dead-zone, and the mean-value theorem is first applied to deriving a
formulation of the perturbed nonlinear dead-zone. So the dead-zone can be treated as the
system nonlinearities. The above mentioned works are based on an assumption that state
variables are available. In [19, 20, 21, 22] the assumption is removed and state observers
are designed to estimate the unknown states. However, most existing observer-based
adaptive output feedback control approaches depend on some nonlinear matrix inequali-
ties to complete the analysis of observation error dynamic systems. For example, in [23],
inequality λmin(Q) − 1

γ
∥P∥2 − n > 0 and PA + AT P + Q < 0 must be satisfied where P

and Q are positive definite matrices and A is defined as in (9). Generally, it is hard to
solve these nonlinear matrix inequalities. However, this difficulty can be overcome by line
matrix inequalities just as done in [24].

With these observations, we further consider the control problem for a class of MIMO
nonlinear systems with unknown dead-zone inputs. By applying neural networks as ap-
proximators and constructing state observers, a Lyapunov-based control strategy is inves-
tigated, which can ensure the overall signals are bounded and the tracking errors converge
to a small neighborhood of the origin. The main contributions of this paper can be sum-
marized as follows. (1) The problems of stability analysis and control design are carried
out with linear matrix inequalities and convex combination method. This method can
reduce the difficulty of simulation and simplify calculations. (2) The nonlinearly param-
eterized adaptation is applied for function approximation, and only one adaptive law is
established for every subsystem. So the designed controllers are more convenient to im-
plement in the real industrial process, and the control method proposed in this note has
certain practical significance.

The rest contents are as follows. Section 2 introduces the preliminaries. An adaptive
output-feedback neural control scheme is presented in Section 3. Section 4 presents a
simulation example, followed by Section 5 which concludes the work.

2. Problem Statement and Preliminaries. For i = 1, 2, . . . , N , consider the following
uncertain MIMO nonlinear systems:

ẋi,j = fi,j(x̄i,j) + xi,j+1 + di,j(x), 1 ≤ j ≤ ni − 1,

ẋi,ni
= fi,ni

(x) + ui + di,ni
(x),

yi = xi,1,

(1)

where x =
[
xT

1 , . . . , xT
N

]T
, xi = [xi,1, . . . , xi,ni

]T ∈ Rni , x̄i,j = [xi,1, xi,2, . . . , xi,j]
T ∈ Rj,

(i = 1, . . . , N ; j = 1, . . . , ni) are the state variables. di,j(·) is the external disturbance
satisfying |di,j| ≤ d̄i,j, and d̄i,j is a positive constant. yi ∈ R denotes the control output
variable of the ith nonlinear subsystem which can be measured directly only. fi,j(x̄i,j) is
an unknown smooth nonlinear function with fi,j(0) = 0. ui ∈ R is the output of the dead-
zone nonlinearity and also the actual control input to the ith subsystem. The dead-zone
characteristic can be modeled as follows [19].

ui = D(vi) =


gri(vi − bri), vi ≥ bri

0, −bli < vi < bri,

gli(vi + bli), vi ≤ −bli,

(2)
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where D(·) denotes the considered dead zone. vi(t) ∈ R is the input of the dead-zone, and
also the control signal to be designed. gli > 0, gri > 0, bli > 0 and bri > 0 are unknown
constants, which represent the right slope, left slope, right breakpoint and left breakpoint
of dead-zone, respectively. To facilitate the control design, the following assumptions will
be used in the subsequent developments.

Assumption 2.1. There exist positive constants Wi such that |vi| ≤ Wi.

Assumption 2.2. For the system function fi,j(·), there exist known constants apq, apq

such that apq ≤ ∂fi,j

∂xm,n
≤ apq, 1 ≤ i, m ≤ N , 1 ≤ j ≤ ni, 1 ≤ n ≤ nm, where ni and

nm stand for the number of state variables in the ith and jth subsystems, respectively.
p =

∑i−1
k=0 nk + j and q =

∑m−1
k=0 nk + n with n0 = 0.

Remark 2.1. Since fi,j(x) =
[

∂fi,j

∂x1,1
, . . . ,

∂fi,j

∂xN,nN

]
x. By Assumption 2.2, there exist con-

stants hi,j > 0 such that |fi,j(x)| ≤ hi,j||x||. It means that the monotonically increasing
function ρi,j(w) = hi,jw, with w ∈ R is the bounding function of fi,j(·).

Assumption 2.3. For i = 1, . . . , N , there exists a positive constant ȳdi such that |ydi| <

ȳdi and
∣∣∣y(k)

di

∣∣∣ < ȳdi, with y
(k)
di being the k-order derivative of ydi.

Thus, the dead zone (2) can be expressed as

ui = gi(t)vi(t) + mi(t), (3)

where

gi(t) =

{
gri, vi > 0,
gli, vi ≤ 0,

, mi(t) =


−gribri, vi ≥ bri,

−gi(t)vi(t), −bli < vi(t) < bri,

glibli, vi ≤ −bli.

Let mi(t) ≤ m̄i with m̄i = max{glibli, gribri}. Define β̄i = max{gli, gri} and β
i

=

min{gli, gri}, and one has gi(t)
β

i

= 1 + ρi(t) with ρi(t) being a piecewise positive bounded

function. Using the above equations, one has ρi(t) ≤ β̄i

β
i

− 1. So, dead zone can be further

expressed as

ui = β
i
(1 + ρi(t))vi(t) + mi(t). (4)

Combining with (4), the systems (1) can be rewritten as the state-space form (for 1 ≤
i ≤ N) {

ẋi = Aixi + Liyi + Fi(x) + di + Biβi
vi(t) + Bi

[
β

i
ρi(t)vi(t) + mi(t)

]
,

yi = CT
i xi,

(5)

where Fi(x) = [fi,1(xi,1), . . . , fi,ni
(x)]T , Li = [li,1, . . . li,ni

]T , Bi = [0, . . . , 0, 1]Tni×1, CT
i =

[1, 0, . . . , 0]1×ni
, di = [di,1, . . . , di,ni

]T , and Ai =

[
Lni−1 Ini−1

−li,ni
0

]
with Lni−1 = [−li,1, . . .,

−li,ni−1]
T . The vector Li is chosen suitably such that Ai is a strict Hurwitz matrix.

3. Control Design and Stability Analysis. First, we should design the state observer,
which can be expressed as follows:{

˙̂xi,j = x̂i,j+1 + li,j(yi − x̂i,1), 1 ≤ i ≤ N, 1 ≤ j ≤ ni − 1,

˙̂xi,ni
= vi + li,ni

(yi − x̂i,1).
(6)
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Similarly, the state observer (6) can be converted into the state-space form:

˙̂xi = Aix̂i + Liyi + Bivi, (7)

where x̂i,j denotes the estimation of xi,j. Define the estimation error as ei,j = xi,j − x̂i,j.
From (5) and (7), we get the observer error equation for the ith subsystem:

ėi = Aiei + Fi(x) + di + Bi

(
β

i
− 1
)

vi(t) + Bi

[
β

i
ρi(t)vi(t) + mi(t)

]
, (8)

where ei = [ei,1, . . . , ei,ni
]T . And let e =

[
eT
1 , . . . eT

N

]T
, A = diag[A1, . . . , AN ], F (x) =[

F T
1 (x), . . . , F T

N (x)
]T

, B = diag[B1, . . . , BN ], D =
[
dT

1 , . . . , dT
N

]T
and v̄ = [v̄1, . . . , v̄2]

T

with v̄i =
(
β

i
− 1
)

vi(t), v = [v1, . . . , v2]
T with vi = β

i
ρi(t)vi(t) + mi(t), for the whole

MIMO systems, the whole observer-error equation can be expressed by

ė = Ae + F (x) + D + B (v̄ + v) . (9)

Next up, an adaptive backstepping design method for the systems (1) can be proposed.
The neural control signals are required as follows (for i = 1, . . . , N ; j = 1, . . . , ni)

αi,j = − 1

2a2
i,j

zi,j θ̂i −
1

2
zi,j − ki,jzi,j, (10)

where zi,j = x̂i,j − αi,j−1 with αi,0 = ydi. ki,j and ai,j are positive design parameters. θ̂i

is the estimation of θi that will be specified later and the evaluated error is θ̃i = θi − θ̂i.
Notice that αi,ni

= vi is the real control signal for the ith subsystem. And for 2 ≤ j ≤ ni,
one has

−α̇i,j−1 = −
j−1∑
k=1

∂αi,j−1

∂x̂i,k

(x̂i,k+1 + li,kei,1) −
∂αi,j−1

∂θ̂i

˙̂
θi −

j−1∑
k=0

∂αi,j−1

∂ydi
(k)

y
(k+1)
di . (11)

The adaptive laws are defined as the solution of the following differential equations:

˙̂
θi =

ni∑
j=1

ri

2a2
i,j

z2
i,j − σiθ̂i, (12)

where ri and σi are positive design parameters.

Remark 3.1. For any initial condition θ̂i(t0) ≥ 0, the solution θ̂i(t) ≥ 0 holds for t ≥ t0.

In the following text, it is assumed that θ̂i(t) ≥ 0.

At this stage, the main results of this note are summarized in the following theorem.

Theorem 3.1. For the resulting nonlinear MIMO system (1) with unknown dead-zones,
under Assumptions 2.1-2.3 and based on the following inequality (13), the proposed control
scheme with the control signals αi,j (10), state observer systems (6) and adaptive laws
θi (12), ensure that all the signals in the close-loop nonlinear MIMO systems remain
bounded and the outputs converge to a small neighborhood of the reference signals. The
above conclusions are valid, then the following inequality should be satisfied.

PA + AT P + PJpq + JT
pqP + (ε0 + 3τ)I + γ < 0, 1 ≤ p, q ≤ g, (13)

where g =
∑N

i=1 ni and P is a definitive positive matrix. Jpq is a constant matrix which
element at the pth row and the qth column is āpq or apq and others are zero.
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Proof: For the whole nonlinear systems, consider the Lyapunov function candidate as
V = V0 +

∑N
i=1 V1 +

∑N
i=1 V2 with V0 = eT Pe, V1 = 1

2

∑ni

j=1 z2
i,j, V2 = 1

2ri
θ̃2

i .
The derivative of V0, which is relative to the observer error systems, can be calculated

as

V̇0 = eT
(
PA + AT P

)
e + 2eT P (F (x) − F (x̂))

+ 2eT PF (x̂) + 2eT PD + 2eT PB (v̄ + v) .
(14)

Additionally, with the fact P > 0, the following inequality holds

2eT P (F (x) − F (x̂)) = 2eT PJe ≤ eT
[
PJ + JT P

]
e, (15)

where J =
[

∂fi,j

∂xm,n

]
is a Jacobian matrix, which has g rows and g columns. According

to Assumption 2.2, every nonzero element in the Jacobian matrix has its own upper
and lower bounds. Namely, there exists a function 0 ≤ µpq(t) ≤ 1 such that

∂fi,j

∂xm,n
=

µpqapq + (1 − µpq)āpq. Thus, J can be reformulated as the following form:

J =

g∑
p=1

g∑
q=1

[
µpqF pq + (1 − µpq)F pq

]
, 0 < αpq < 1, (16)

where F pq and F pq are constant matrixes and they have only one nonzero element apq

and āpq at their pth row and qth column, respectively. In order to overcome this difficulty
coming from time-varying Jacobian matrix J , a group of linear matrix inequalities (LMIs)
is applied to subsequent procedures. Furthermore, from Remark 1, Assumption 2.3 and
Lemma 3 in [25], one has:

2eT PF (x̂) ≤ ε0e
T e + c

(
N∑

i=1

ni∑
j=1

|zi,j|2ϕ2
i,j

(
θ̂i,j

))
+

N∑
i=1

c0ȳdi (17)

with c0 = ε−1
0 ∥P 2∥

∑ni−1
j=1 h2

i,j and c = gc0.
Next up, for any positive constant τ , based on Assumption 2.1, one has

2eT PD ≤ τeT e +
1

τ
∥P∥2

N∑
i=1

ni∑
j=1

d̄ 2
ij, (18)

2eT PBv̄ ≤ τeT e +
1

τ
∥P∥2

N∑
i=1

(
β

i
− 1
)2

W 2
i , (19)

2eT PBv ≤ τeT e +
1

τ
∥P∥2

N∑
i=1

[(
β̄i − β

i

)
Wi + mi

]2
. (20)

Consequently, substituting (17), (18), (19) and (20) into (14) we have

V̇0 ≤ eT
(
PA + AT P + PJ + JT P + (ε0 + 3τ)I

)
e+ δ0 + c

(
N∑

i=1

ni∑
j=1

z2
i,jϕ

2
i,j

(
θ̂i,j

))
, (21)

where δ0 = 1
τ
∥P∥2

∑N
i=1

∑ni

j=1 d̄2
ij+

1
τ
∥P∥2

∑N
i=1

(
β

i
− 1
)2

W 2
i + 1

τ
∥P∥2

∑N
i=1

[ (
β̄i − β

i

)
Wi

+mi

]2
+
∑N

i=1 c0ȳdi. Next, we calculate the derivative of V1.
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V̇1 = zi,1 (zi,2 + αi,1 + li,1ei,1 − ẏdi) +

ni−1∑
j=2

zi,j

(
αi,j −

j−1∑
k=1

∂αi,j−1

∂x̂i,k

x̂i,k+1 −
∂αi,j−1

∂θ̂i

˙̂
θi

)

+

ni−1∑
j=2

zi,jei,1

(
li,j −

j−1∑
k=1

∂αi,j−1

∂x̂i,k

li,k

)
+

ni−1∑
j=2

zi,jzi,j+1 + zi,ni
(vi − α̇ni−1 + li,ni

ei,1) .

(22)
By using the completion of squares, one has

zi,1li,1ei,1 ≤
1

2γi,1

l2i,1z
2
i,1 +

γi,1

2
e2

i,1, (23)

zi,jei,1

(
li,j −

j−1∑
k=1

∂αi,j−1

∂x̂i,k

li,k

)
≤ 1

2γi,j

z2
i,j

(
li,j −

j−1∑
k=1

∂αi,j−1

∂x̂i,k

li,k

)2

+
1

2
γi,je

2
i,1. (24)

Define functions f̄i,j(zi,j) as

f̄i,1(Zi,1) =
1

2γi,1

zi,1l
2
i,1 + czi,1ϕ

2
i,1

(
θ̂i,1

)
− ẏdi,

f̄i,j(Zi,j) = −
j−1∑
k=1

∂αi,j−1

∂x̂i,k

x̂i,k+1 −
∂αi,j−1

∂θ̂i

˙̂
θi +

1

2γi,j

zi,j

(
j−1∑
k=1

∂αi,j−1

∂x̂i,k

li,k − li,j

)2

+ zi,j−1 + czi,jϕ
2
i,j

(
θ̂i,j

)
, 1 ≤ j ≤ ni − 1,

f̄i,ni
(Zi,ni

) = −α̇i,ni−1 + li,ni
ei,1 + zi,ni−1 + czi,ni

ϕ2
i,ni

(
θ̂i,ni

)
,

where Zi,j =
[
x̂i,1, . . . , x̂i,j, θ̂i, ydi, ẏdi, . . . , y

(j)
di

]T
, and y

(j)
di is the jth derivative of ydi. Now,

substituting the inequalities (23), (24) into (22) and considering these defined functions
fi,j(·), one has:

V̇1 ≤
ni∑

j=1

zi,j

(
αi,j + f̄i,j(zi,j)

)
+

ni−1∑
j=1

1

2γi,j

e2
i,1 − c

ni∑
j=1

z2
i,jϕ

2
i,j

(
θ̂i,j

)
. (25)

RBF NNs approximators are employed to identify these lumped unknown dynamics as
done in [3, 26]. For any given εi,j > 0, there exists a neural network W T

i,jSi,j(Zi,j) such
that

f̄i,j(Zi,j) = W T
i,jSi,j(Zi,j) + δi,j(Zi,j),

where δi,j ≤ εi,j is the approximation error. Si,j(Zi,j) is the basis function vector of the
neural networks. Notice the fact ST

i,j(Zi,j)Si,j(Zi,j) ≤ Ni,j with Ni,j being the dimension
of Si,j and using completion of squares again, we have

zi,j f̄i,j ≤
1

2a2
i,j

z2
i,jθi +

1

2
a2

i,j +
1

2
z2

i,j +
1

2
ε2

i,j, 1 ≤ i ≤ N, 1 ≤ j ≤ ni, (26)

where the unknown constant θi = max1≤j≤ni
{θi,j} with θi,j = Ni,j∥Wi,j∥2. Then substi-

tuting (10) and (26) into (25) obtains:

V̇1 ≤ −
ni∑

j=1

ki,jz
2
i,j +

ni∑
j=1

1

2a2
i,j

z2
i,j θ̃i +

ni∑
j=1

1

2

(
a2

i,j + ε2
i,j

)
+

ni−1∑
j=1

1

2
γi,je

2
i,1 − c

ni∑
j=1

z2
i,jϕ

2
i,j

(
θ̂i,j

)
.

(27)
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It is easy to get V̇2 = − 1
ri

θ̃i
˙̂
θi and taking (21) and (27) into account, we can get

V̇ ≤ eT
[
PA + AT P + PJ + JT P + (ε0 + 3τ)I + γ

]
e −

N∑
i=1

ni∑
j=1

ki,jz
2
i,j + δ0

+
N∑

i=1

θ̃i

ri

(
ni∑

j=1

ri

2a2
i,j

z2
i,j −

˙̂
θi

)
+

N∑
i=1

ni∑
j=1

1

2

(
a2

i,j + ε2
i,j

)
, (28)

where γ = diag
[∑N

i=1

∑ni−1
j=1

1
2
γi,j, 0, . . . , 0

]
. According to the inequality (16) and Lemma

3 in [27], (13) is equivalent to the following inequity

PA + AT P + PJ + JT P + (ε0 + 3τ)I + γ < 0. (29)

The above inequality (29) means that there exists a constant µ > 0, such that

eT
[
PA + AT P + PJ + JT P + (ε0 + 3τ)I + γ

]
e < − µ

λM(P )
eT Pe, (30)

where λM(P ) is the maximal eigenvalue of matrix P . Next, using θ̃θ̂ ≤ −1
2
θ̃2 + 1

2
θ2 and

submitting (12), (30) into (28), we can obtain:

V̇ ≤ − µ

λM(P )
eT Pe −

N∑
i=1

ni∑
j=1

ki,jz
2
i,j −

N∑
i=1

σi

2ri

θ̃2
i

+
N∑

i=1

σi

2ri

θ2
i +

N∑
i=1

ni∑
j=1

1

2

(
a2

i,j + ε2
i,j

)
+ δ0. (31)

Now, defining a0 = min
{

µ
λM (P )

, 2ki,j, σi, 1 ≤ i ≤ N, 1 ≤ j ≤ ni

}
and b0 =

∑N
i=1

∑ni

j=1[
1
2

(
a2

i,j + ε2
i,j

)]
+
∑N

i=1
σi

2ri
θ2

i + δ0, then (31) can be rewritten as

˙V (t) ≤ −a0V (t) + b0. (32)

Solving the above inequality, one has

V (t) ≤
(

V (0) − b0

a0

)
e−a0t +

b0

a0

, (33)

which means that for t ≥ 0, z =
[
z1,1, . . . , zN,nN

, θ̃1, . . . , θ̃N

]T
belongs to the compact set

Ω =
{

z|V (z(t)) ≤ V (0) + b0
a0

}
. Therefore, all the signals in the closed-loop system are

bounded. In addition, from (33), we can also obtain limt→∞ z2
i,1 ≤ 2b0

a0
, for i = 1, . . . , N .

It implies that the tracking errors zi,1 will converge to the circle domain with 2

√
2b0

a0

being

its radius. Because a0 and b0 are unknown, an explicit estimation of the tracking errors
is impossible. However, based on the definitions of a0 and b0, by reducing ai,j, εi,j and
σi meanwhile increasing ri, one can get smaller tracking errors. At the present stage, the
proof is complete.

4. Simulation Example.

Example 4.1. Consider the following MIMO systems with unknown dead-zone inputs to
verify the effectiveness of the proposed method.
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ẋi,1 = xi,2 + fi,1(xi,1) + di,1(x),

ẋi,2 = ui + fi,2(x) + di,2(x),

yi = xi,1,

where i = 1, 2, f1,1 = 0.25 cos(x11) sin(x11), f1,2 = 0.7 sin(x1,2), f2,1 = 0.25 sin2(x21),
f2,2 = sin(x2,2), and d1,1 = sin(x21) sin(x11), d1,2 = sin(x11x12x21x22) cos(x11), d2,1 =
sin(x22) cos(x11), d2,2 = sin(x1,2). Choosing ε0 + 3τ = 0.01, γ = 0.01I, and for given Jpq,
solving LMIs (29) one can get l1,1 = 15, l1,2 = 31.7, l2,1 = 16.5, l2,2 = 62 and obtain P as

P =


215.6 −95.6 −1.9 0.7
−95.6 51.6 0.005 −0.02
−1.9 0.005 224.3 −68.3
0.7 −0.02 −68.3 25.1

 .

For i = 1, 2; j = 1, 2, the design parameters are set as ki,j = 10, ai,j = 0.5, σi = 1,
ri = 7.5, and the initial conditions are chosen as x1,1(0) = 0.2, x2,1(0) = 0.5, xi,2(0) = 0.1.
The other initial conditions are chosen as zeros. In the simulation, the width of the
Gaussian function is chosen as two. The parameters in the dead-zone model are selected
as br1 = 1.5, gr1 = bl2 = 2, gli = gr2 = bl1 = br2 = 1. Then the simulation results are
shown in Figures 1-6. Figure 1 and Figure 2 are the trajectories of y1, yd1, y2 and yd2,
which show that the output of considered nonlinear systems can trace the referenced signals
perfectly. Figure 3 shows the responses of state variable xi,2 and x̂i,2 (for i = 1, 2). Figure

4 shows the boundedness of adaptive parameters θ̂1 and θ̂2. Figure 5 and Figure 6 display
the control input signals vi and the output signals of dead-zones ui. From these simulation
results, it is observed that the good tracking performance is achieved. Meanwhile, all
signals involved in the closed-loop system are bounded. So the proposed controllers in this
paper are effectiveness.
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Figure 1. x1,1, yd1 and x̂1,1
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Figure 2. x2,1, yd2 and x̂2,1

5. Conclusions. In this paper, a neural adaptive scheme is investigated for a class of
uncertain MIMO nonlinear systems with unknown dead zone inputs. The state observers
are designed to overcome the problem of unobtainable states. Based on the adaptive
backstepping method and using the approximation performance of neural networks, the
adaptive controllers with parameter adaptive laws are developed, and the stability of the
resulting systems is proved. At the same time, the outputs of closed-loop systems can be
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Figure 3. xi,2 and x̂i,2 (i = 1, 2)
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0 5 10 15 20 25 30
−60

−40

−20

0

20

40

60

80

100

120

 Time(sec)

v2

u2

Figure 6. v2 and u2

guaranteed to track the reference signals very well by the proposed control scheme. In
addition, the combination of convex combination method and linear matrix inequalities
helps us overcome the obstacle coming from nonlinear matrix inequalities. As a result, the
difficulty of simulation is reduced and the computational burden is significantly alleviated.
Therefore, the developed control algorithm is more suitable for practical systems. In future
work, time-varying delays, which often occur in various kinds of practical applications,
will be considered in the design process with a view to further improve the control scheme
proposed in this paper.
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