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Abstract. This paper discusses the methodology for extracting and classifying a style
and characteristic component from a walking motion. The walking motion is measured
using four wearable motion sensors for acquiring segmented body motion. To extract
the style and characteristic component, we use the singular value decomposition of the
measured data and evaluate the contribution of each sensor module for gait identification
by using the degree of class separation. From these results, the characteristic compo-
nent of human gait features can be extracted by using singular vectors of whole data of
walking motion. In addition, the singular vectors of higher order modes can be used for
identifying individuals by proper choice of the modes. Furthermore, using the degree of
class separation, the important body segments for gait identification can be indicated by
combinations of sensors with the high degree of separation.
Keywords: Human gait features, Singular value decomposition, Accelerometer

1. Introduction. Human activity recognition using wearable sensors such as accelerom-
eters and gyroscopes is one of the key issues in ubiquitous and wearable computing. These
technologies are widely used for understanding human activities such as car driving [1],
sports [2], healthcare assessments [3, 4], or activities of daily living (ADLs) [5]. This
paper discusses the problem of human motion analysis for accelerometer data, which is
the time sequence data obtained from body-worn inertial sensors. The goals of human
motion analysis generally include the classification or characterization of movements of
any particular individual. The purpose of classification is to comprehend what activity is
being performed. On the other hand, the purpose of the characterization is to compre-
hend how any activity is being performed. To achieve these goals, extraction methods of
motion features from accelerometer data have been discussed by many researchers in the
fields of human activity recognition (HAR). For example, the statistical features, such
as the mean, variance or kurtosis are mostly used for recognizing variety of physical ac-
tivities [6, 7]. On the other hand, few studies have focused on the features extraction
method for evaluating how any activity is being performed to extract qualitative infor-
mation from accelerometer data, such as the characteristics or quality of executing an
activity. Khan et al. [8] have introduced a symbolic representation of raw sensor data for
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extracting hierarchical representations of rule structures that enable linkage between ac-
tivities and their progressively abstract meanings. However, the activities targeted in [8]
are complicated activities composed of several basic movements, such as surgery, cooking,
and sports. Also, they have evaluated the combination or order of the basic movements
for skill assessments. On the other hand, in our research, we focus on a certain specific
activity involved in movement and coordination of the body parts such as arms, legs, and
trunk. In addition, we evaluate the differences in the movement between users to find the
point for evaluating the quality of activity using activity data, where the point means a
body segment or sensor module.

Mishima et al. [9] have proposed an extraction method for similarities and differences
in human body motion obtained full-body motion capture system (MoCap) using singular
value decomposition (SVD). In addition, Akiduki et al. [10] have shown that the SVD
method [9] can be applied to data of segmented body motion collected using body-worn
accelerometers for extracting individual features. Moreover, Kamio et al. [11] have dis-
cussed the physical meaning of these extracted individual features obtained from SVD
method. In [9, 10, 11], walking motion is targeted. The walking motion is one of the
most fundamental movements in everyday life and does not require special training or
proficiency. In addition, even with the same “walking” movement there is also a unique
movement and habit for each person. For this reason, walking motion is also targeted in
this paper. However, these results in [9, 10, 11] were obtained from data of one gait cycle
per one subject. That is, we need to increase the number of gait cycle data to discriminate
individuals by using extracted features.

In this paper, for evaluating differences in the movement between users, we use the
singular value decomposition of the accelerometer data including about 20 gait cycle
data per subject. Also, we evaluate a contribution of each sensor module for individual
identification of gait cycle by using the degree of class separation to find the point for
evaluating the quality of activity using activity data, where the point means a body
segment or sensor module.

The paper is organized as follows. An overview of the experiment to collect the data
on walking motion is given in Section 2. Then the extraction and evaluation method of
individual gait features are presented in detail in Section 3. The experimental results
and discussion are presented in Section 4 to evaluate the effectiveness of the method of
evaluating the contribution of sensors for individual identification. Section 5 concludes
this paper.

2. Overview of Experiment.

2.1. Capturing body movements. To acquire human activities, we have constructed
a measuring system shown in Figure 1. This system includes wearable accelerometer
modules (WAA-010, ATR-Promotions Inc.) shown in Figures 1(a), 1(b) and 1(c) for
capturing segmented body motion of subjects. The dimensions of the sensor module are
39×44×8 mm with a weight of 20 g. The four sensors are worn on the right lower leg (S1),
left thigh (S2), lower back (S3) and left forearm (S4) on a subject, and the numbering of
the segments is shown in Figures 1(a) and 1(b). These placements are referred to Bao and
Intille [6]. Note that the earth-fixed reference coordinate system used is defined as right-
handed Cartesian coordinate systems:

(
GX, GY, GZ

)
as shown in Figure 1(a). By using

this system, the motions of a subject can be collected as both acceleration and angular
velocity along with three-axis of the local coordinate on the sensor module:

(
SX, SY, SZ

)
as shown in Figure 1(c). Of these, all signals used in this paper are summarized in
Table 1. And these signals are sampled at 100 Hz in each sensor module and transmitted
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Figure 1. Wearable accelerometer modules. (a) and (b) show sensor set-
ting on a subject’s body, and (c) shows the accelerometer module and its
coordinate system.

Table 1. Overview of measured three-axis accelerometer signals.

Sensor Module# Axis# p in (1) Position

S1 S1-{ax, ay, az} 1, 2, 3 Right lower leg
S2 S2-{ax, ay, az} 4, 5, 6 Left thigh
S3 S3-{ax, ay, az} 7, 8, 9 Lower back
S4 S4-{ax, ay, az} 10, 11, 12 Left forearm

to the host computer via Bluetooth. Then, to remove high-frequency noise, the signals
are filtered by 3rd-order Butterworth LP filter with a cut-off frequency of 12.5 Hz.

2.2. Data collection. In this paper, data on walking motion is collected from 13 subjects
(10 men and 3 women aged 24.3 ± 4.3). The subject wears the motion capture suits. At
the same time, over the motion capture suits, the four sensors are placed on the position
of S1, . . . , S4 shown in Figures 1(a) and 1(b). Authors instruct the subject to walk
on the test course with 15 m straight flooring line according to a predefined protocol.
In the protocol, each subject has an instruction to perform 5 walking with following
conditions; Cond. N: walking with natural speed, Cond. S: walking with slow speed,
and Cond. F: walking with fast speed on the course. The order of the instructions is
Cond. N1st → Cond. N2nd → Cond. S → Cond. F → Cond. N3rd. Before collecting data,
we have explained the contents of the experiment. Moreover, we also have obtained
informed consent from each subject to use obtained data for research purposes.

3. Feature Computation. To extract individual features of walking motion, we use
the singular value decomposition of the measured data. Here, to expand the number of
gait cycles, we introduce some parameters for the method of [9]. Also, to determine the
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importance of the sensors in gait identification, we introduce a degree of separation of
class.

In the following, note that Rn denotes real n-dimensional space, and x ∈ Rn denotes
an n-dimensional column vector, respectively. If A =

(
aij

)
∈ Rn×m is a matrix of n rows

and m columns, then A⊤ is the transpose of A.

3.1. Preparation for data matrix. Consider a sequence of segmented motion data,
which is cyclic and consequently has a gait period. Then pth time series of the γth gait
cycle in the multivariate time series data with discrete time steps is as follows:

xγ
p =

(
xγ

p(1), xγ
p(2), . . . , xγ

p(N)
)⊤ ∈ RN , (1)

where p = 1, 2, . . . , S and γ = 1, 2, . . . , L.

Here, N is a length of the time series, and S is the number of variables in the multivariate
time series, that is, S = (the number of sensors) × (the number of axes on the sensor).
And the correspondence between index p and axis number of the sensor is shown in
Table 1. The total number of gait cycles for all subjects is L =

∑M
α=1 Lα, where Lα is a

number of the gait cycles in subject α, and M is the number of subjects. Moreover, a set
of the time series for the γth gait cycle data is also as follows:

Xγ = (xγ
1 , x

γ
2 , . . . , x

γ
S) ∈ RN×S. (2)

In the following, we call time-series data of a γth gait cycle: Xγ as γth gait frame. For
comparing the motions with each gait frame, (2) is rewritten as follows:

∗aγ =
(
{xγ

1}⊤, {xγ
2}⊤, . . . , {xγ

S}⊤
)⊤ ∈ RNS. (3)

Note that ∗aγ is a column vector, which represents a human gait pattern in the γth gait
cycle for subject α. Then, the following data matrix for comparing motions is defined:

∗D =
(∗a1, ∗a2, . . . , ∗aL

)
∈ RNS×L.

Finally, a matrix D is defined as a result of standardization for each column of the matrix
∗D where ∗αγ is centered to have mean 0 and scaled to have standard deviation 1.

D =
(
a1,a2, . . . , aL

)
∈ RNS×L. (4)

Also, the matrix D represents a set of human gait patterns for all subjects.

3.2. Singular value decomposition. In this paper, we suppose that the matrix D con-
tains information on both similarities and differences for each subject. The similarities are
a common component of matrix D, and the differences can be defined a set of components
obtained by subtracting the common component from the matrix D. These components
can be extracted by using singular value decomposition (SVD) [9]. The SVD of data
matrix D is given by

D = UΣV ⊤, (5)

where U and V are unitary matrices, and Σ is a diagonal matrix. The diagonal elements
of Σ are called singular values σi (i = 1, 2, . . . , L), which are non-negative real numbers
and σi ≥ σj (i ≤ j). Each column vector of U is a left singular vector ui ∈ RNS. Each
column vector of V is a right singular vector vi ∈ RL. The ith element of each Σ, U and
V is called the ith mode by Mishima et al. [9].

Here, the matrix D can be represented as follows using ui and vi, which are linear
independent respectively.

D = σ1u1v
⊤
1 + σ2u2v

⊤
2 + · · · + σLuLv⊤

L
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=
L∑

i=1

σi


u1i
...

uni
...

uNSi


(
v1i · · · vγi · · · vLi

)
, (6)

where uni is the nth element of ui, and vγi is the γth element of vi. At (6), ui represents a
motion feature for the ith mode, vγi indicates the contribution ratio of the γth gait cycle
to the ith mode, and σi represents the contribution ratio of the ith mode to the matrix
D. From σ1 ≥ σ2 ≥ · · · ≥ σL in (6), the lower order mode has a larger component in the
matrix D. Moreover, the 1st mode is a typical component that is common among all gait
frames. Then the singular value of the 1st mode σ1 is the largest among all modes, and vγ1

have to be almost constant for all subjects. Here, u1 represents the motion characteristic
common to body motion, so in this paper, u1 is called a style component of a body motion.
While, the high-order terms after the second term in (6), the component in the matrix D
is smaller than in the first mode. And vγi (i ≥ 2) have to change with each gait frame
or each subject. So, in this paper, u2 or more is called a characteristic component of the
body motion.

3.3. Class variance as a degree of separation of class. As the evaluation index of
the sensors for gait identification, we introduce a degree of separation between each class.
The degree of separation is defined as follows:

Jσ,med. =
median

[
σ2

b,α

]
median

[
σ2

w,α

] , for α = 1, . . . , M, (7)

where

σ2
w,α =

∑
χ∈Xα

(χ − mα)⊤ (χ − mα) , σ2
b,α = Lα (mα − m)⊤ (mα − m) .

Here, σ2
w,α and σ2

b,α are within-class variance and between-class variance for subject α,

respectively. And χ ∈ Rk is a gait frame of a subject in the k-dimensional feature vector,
and χα represents a set of gait frames of the subject α. The size of χα is Lα. Moreover,
mα ∈ Rk represents a mean vector of the set of χα, and m is mean vector for all gait
frame of all subjects. Sensor data with a higher degree of separation in (7) contribute to
gait identification.

4. Results and Discussions. In this section, to evaluate the effectiveness of the method
of evaluating the contribution of sensors for individual identification in Section 3, we have
computed the degree of class separation with the procedure shown in Figure 2. The degree
of class separation was computed while changing the combination of sensors, such as S1,
S1, and S2 since sensors with high scores in common in all combinations contribute to
gait identification. In this paper, to simplify the discussion, we used the data of walking
motion with condition N1st, N2nd, and N3rd in the following section. The reason for this
is that the conditions S and F change the walking speed, and it is necessary to consider
the difference in movement depending on the walking speed in addition to the individual
difference factor. Before constructing matrix D in (4), time series for about 20 gait cycles
per each subject (Max. 27 cycles, Min. 18 cycles) were clipped from the whole walking
data of each subject. Since the length of one gait cycle was different for each subject,
the clipped time series have even lengths between by processing through interpolation
algorithm. In this paper, the cubic spline algorithm was used. As the results, the length
of clipped time series was N = 134. In the accelerometer data, S = (4 segments)×(3 axis)
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Figure 3. An example of time-series of walking by subject ‘as’ with the
condition N1st.

when using all time series in Table 1. Also, the number of subjects was M = 13, and
the number of gait frames of all subject was L = 281. Figure 3 shows an example of
time-series for walking data of subject ‘as’ with N1st, which includes 6 gait frame data for
feature computation in the following.

4.1. Extracting for style and characteristics component of motion. Figure 4
shows the results of SVD of matrix D with upper 13 modes out of L = 281 modes. The
singular value at the 1st mode reached a peak of σ1 = 578.7 in Figure 4(a). The singular
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Figure 4. Singular value σi of each mode and value of right singular vector
vi for each mode.

value at the 2nd mode drops suddenly, and after that decreases moderately. On the other
hand, Figure 4(b) shows the right singular vector vi for each gait frame with a grayscale
image. The right singular vector at the 1st mode vγ1 remains constant at approximately
0.06 in Figure 4(b) for all gait frames of all subjects. These results also indicate that the
1st mode affects equally in all gait frames of all subjects, that is, the 1st mode represents
the style component of walking motion common to all subjects. On the other hand,
the higher than the 2nd modes are helpful in identifying individuals, that is, the higher
than the 2nd modes represent characteristic component for each subject. These results
are essentially consistent with the results discussed in [9]. Thus, we see that from the
experimental results of Figure 4, SVD is an effective method for extracting both the style
and the characteristic component of motion.

Thus, we see that from the experimental results of Figure 4, SVD is an effective method
for extracting both the style and the characteristic component of motion.

4.2. Clustering for gait features. To visualize the relationships between the subjects
and each mode, we reduce the dimension of matrix D. Then the matrix D is approximated
by using the left singular vectors as follows.

Dk = U⊤
k D ∈ Rk×L, where Uk =

(
u1, . . . , uk

)
∈ RNS×k. (8)

Here Uk is a set of k left singular vectors. And the columns and row elements of Dk are
corresponding to each gait frame and each mode, respectively. Figure 5 shows the results
of (8), where each marker is corresponding to elements of matrix Dk|k=3 =

(
dij

)
∈ R3×281.

And PC1, PC2, and PC3 shown in Figure 5 are corresponding to the 1st, 2nd, and
3rd principal component respectively from principal component analysis. In each two-
dimensional space, there are L = 281 points, and each point represents a gait frame.
Then the relationship of placement between each point represents similarity between each
gait frame. We can observe the dots in Figure 5 are concentrated in the narrow range
of the PC1 axis and distributed over a wide range of the PC2 and PC3 axes. Then,
on the PC2-PC3 plane shown in Figure 5, the dots are divided into roughly four groups
corresponding to the subjects: α = {5}, {13}, {11, 12}, and {1, 2, 3, 4, 6, 7, 8, 9, 10}. These
results suggest that the walking motion of each subject can be discriminated by using
higher order modes of k = 2 or more in the Dk space. Also, these results suggest that
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Figure 5. Scatter plot of matrix D3 for all gait frame of all subject α = 1, . . . , 13.

PC1 indicates a role for the style component, and high-order modes are corresponding to
characteristic components of walking motion.

4.3. Contribution of sensors for gait classification. To evaluate sensors that con-
tribute to individual identification of walking, we compute the degree of class separation

of (7) for PC2-PC3 space, i.e., χ =
(
d2j d3j

)⊤
(j = 1, . . . , L) in (7). Table 2 shows the

results of (7), where each column represents a combination of sensors and its degree of
class separation. In Table 2, each number from S1 to S4 within {∗} means the sensor
module numbers shown in Table 1 and its combinations. For example, in the case of
{S1}, the matrix D is constructed using only the tree axis acceleration data of S1. That
is, the matrix D ∈ R(N×1×3)×L in (4) is constructed with p = 1, 2, 3 in (1). Likewise, in
the case of {S2, S3}, the matrix D is constructed using the acceleration data of the total
of six axes of S2 and S3. That is, the matrix D ∈ R(N×2×3)×L in (4) is constructed with
p = 4, 5, . . . , 8, 9 in (1). Also, Figure 6 shows the results of σw,α and σb,α in (7) when only
one sensor is used.

Table 2. Degree of class separation Jσ,med. corresponding to the sensor
layout pattern.

Layout Jσ,med. Layout Jσ,med. Layout Jσ,med. Layout Jσ,med.

{S1} 3.979 {S3, S4} 2.521 {S1, S2, S3} 2.278 {S1, S2, S3, S4} 2.222
{S2} 2.460 {S2, S4} 0.801 {S1, S2, S4} 1.837
{S3} 4.223 {S2, S3} 2.262 {S1, S3, S4} 3.330
{S4} 3.788 {S1, S4} 2.419 {S2, S3, S4} 2.276

{S1, S3} 4.024
{S1, S2} 2.491

From Table 2, S3 is the highest degree of separation in the case of one sensor. In
addition, the combinations including the sensor S3 shows a high degree of separation. In
other words, these results show that the contribution degree of sensor S3 is the highest in
gait identification.

On the other hand, Figure 7 shows scatter plots of PC2-PC3 space corresponding to
the sensor layout pattern. From Table 2, we can identify important body segment for
gait identification from combinations of sensors with the high degree of separation. And
these results suggest that the physical meaning of individual features can be considered



EXTRACTION AND CLASSIFICATION OF HUMAN GAIT FEATURES 1369

{S1},                = 3.979

0

2000

4000

6000

8000

10 1112 131 2 3 4 5 6 7 8 9

{S2},                = 2.460

10 1112 131 2 3 4 5 6 7 8 9

{S3},                 = 4.223

10 1112 131 2 3 4 5 6 7 8 9

{S4},                = 3.788

10 1112 131 2 3 4 5 6 7 8 9

Subject

Figure 6. An example of within-class variance σ2
w,α and between-class

variance σ2
b,α for subject α.

-20 -10 0

PC3

-20

-10

0

10

20

P
C
2

10 20

{S1, S3},              = 4.024

-20 -10 0

PC3

-20

-10

0

10

20

P
C
2

10 20

{S1, S3, S4},              = 3.330 {S1, S2, S3, S4},              = 2.222

-20 -10 0

PC3

-20

-10

0

10

20

P
C
2

10 20

{S3},              = 4.223

-20 -10 0

PC3

-20

-10

0

10

20

P
C
2

10 20

1

2

3

4

5

6

7

8

9

10

11

12

13

(a) (b)

(c) (d)

Figure 7. Scatter plot of the matrix D3 corresponding to the combination
of the sensors.

based on the correspondence between the combination of sensors and the distribution of
data shown in Figure 7.

5. Conclusions. In this paper, we discussed the methodology for extracting and clas-
sifying of gait features from walking motion. The motions were measured using four
wearable accelerometer modules for acquiring segmented body motion. To extract human



1370 T. AKIDUKI, K. KAWAMURA, Z. ZHANG AND H. TAKAHASHI

gait features, we used the singular value decomposition of the measured data and evalu-
ated the contribution of each sensor module for individual identification of gait cycle by
using the degree of class separation. From these results, the characteristic component of
human gait features can be extracted by using singular vectors of whole data of walking
motion. In addition, the singular vectors of higher order modes can be used for identifying
individuals by proper choice of the modes. For example, we showed that subjects used in
this paper can be divided into roughly four groups using the singular vectors of the 2nd
and 3rd modes. Furthermore, using the degree of class separation, the important body
segments for gait identification can be indicated by combinations of sensors with the high
degree of separation. By using these methods, we can identify the point of focus to find
differences between subjects in walking motion, where the point means the body segment
or the position of sensor modules. As further work, we need to investigate the physical
meanings of each mode for understanding characteristics of a subject from the motion
data.
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