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Abstract. Integrated circuit (IC) manufacturing involves complex processes and may
require months to complete. Thousands of messages will be generated during each process,
and most messages can easily be identified and analyzed. However, ambiguous informa-
tion remains as a kind of tacit knowledge that is one of the most essential issues of R&D
management. Integrated innovation is an application of scientific/technological creative
solutions to complex processes. This research uses a case study of a semiconductor com-
pany in Hsinchu Science Park in northern Taiwan. Traditional methods only yield the
results inferred from explicit knowledge, and omit the results based on tacit knowledge.
The integrated method can be designated as a clear direction for the R&D which uses
the multivariate statistical analysis as virtual sensors. By involving Hotelling T2, and
the principal component analysis (PCA), to generate specific results corresponding to the
core of the high density plasma chemical vapor deposition (HDP CVD) equipment or
process, eliminate inaccurate information using the experience rating in a 12-inch fab.
This provides an approach that can guide the R&D engineers and illuminate the entire
process. In sum, both process stabilization and cost savings are the major advantages of
virtual sensors.
Keywords: Integrated innovation method, R&D management, Virtual sensors, Knowl-
edge management, Multivariate statistical analysis, IC manufacturing

1. Introduction. Knowledge is the key to a competitive advantage as a potential tool
(Okatan [36]). Innovation capacity has become increasingly important for a firm’s sur-
vival (Catherine et al. [8]; Niu and Hsin [35]). For the high-tech industry, innovation is
represented by the excellent product development and the process efficiency improvement
which exceeds those of their/its rivals. The R&D department plays a core role in pro-
moting innovation and development (Adams and Lamont [1]; Cardinal et al. [7]; Cho et
al. [10]; Halawi et al. [19]). Innovation is considered a force with the primary progress,
prosperity and the management innovation application can result in the long-term com-
petitive advantages (Crossan and Apaydin [12]; Hitt et al. [22]; Volberda et al. [47]).
Furthermore, the knowledge-based approaches to innovation have emphasized the role of
knowledge integration (Mart́ın-de Castro [32]; Hurnonen et al. [24]).
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In a knowledge-based society, the processes by which knowledge is created, acquired,
communicated, and applied must be effectively managed (Szulanski [44]; Mart́ın-de Castro
[32]). One of the results of knowledge management is innovation, which includes new
products, new technologies, new markets, new materials, and new combinations (Alaei
et al. [2]; Hurnonen et al. [24]), and the higher value for innovations that come from
the new knowledge combinations (Hitt et al. [22]; Lahiri [28]; Penner-Hahn and Shaver
[37]; Singh [42]; Wang et al. [48]). Knowledge management capabilities and knowledge
innovation are the most important parts for improving business performances (Joaqúın
et al. [25]; Lin and Chang [30]; Okatan [36]). Knowledge integration innovation is more
emphasized nowadays, especially in R&D.

Knowledge capital is often considered to be more important than financial and phys-
ical capital. In this paper, knowledge management is defined as the access to expertise,
knowledge, and expertise that provides new capabilities, enables better performance, en-
courages development and innovation, and boosts customer value (Gloet and Terziovski
[17]). Knowledge management is also a set of processes and usage systems that seek
to alter the pattern of organizational knowledge processing and value (Scarbrough [40];
MilenaLopes et al. [33]). The awareness of the R&D engineers involved in a project de-
termines its success (Gassmann and Zedtwitz [15]; Ritala et al. [39]). Indeed, knowledge
management is the most important portion of R&D management in IC manufacturing.

Tacit knowledge is a type of information, best described as “we can know more than
we can tell” (Polanyi [38]). Tacit knowledge is an important starter in the innovation
process and it has a significant impact on the application for the innovation process. It
is hard to capture from minds (Okatan [36]), as it is deeply rooted in an individual’s
actions and experiences (Polanyi [38]). Cardinal et al. [7] indicated that, in situations
where a great deal of tacit knowledge is used for innovation, collaboration between cross-
functional teams is essential. Unfortunately, the knowledge in these “recipes” is not
necessarily codified, but often stays within the innovation and operational teams’ routines
and skills. Knowledge management can assist in the access and codification of such tacit
knowledge. An engineer’s experience and talent is a valuable tacit knowledge for an R&D
department. Hence, systematizing practical experience for storage and access can bridge
the gap between the experts and novices in an R&D department. Knowledge management
can play a major role in facilitating collaboration, which, in turn, can assist in the sharing
of the tacit knowledge (Coad and Rao [11]; Mart́ın-de Castro [32]).

The fact that knowledge is not available in an explicit format makes the knowledge
sharing and the application in the innovation process difficult, especially in the integrated
circuit (IC) manufacturing industry, as this manufacturing process involves many com-
plex messages. Most of the process’s parameters can be observed by physical sensors,
but to obtain the best parameter combination, some are tweaked by the R&D engineers
using their accumulated experience. It is difficult to make this tacit knowledge concrete,
which is one of the most important issues for the R&D management in the IC manufac-
turing process. Through usage of a database compiling of an engineer’s expertise, tacit
knowledge can be codified to make it explicit and more readily available for future inno-
vations. Therefore, one of the motivations of this study is to realize tacit knowledge from
engineering experts.

R&D is defined as discovering new knowledge regarding products, processes or services,
etc., and then applying that knowledge to create (or improve) new (or existing) products,
processes, and services, that fill the market needs. It is difficult to evaluate the R&D
performance, as it is a complex construct (Lin and Chen [29]). Many studies on the
R&D project success factors have reported a set of factors leading to the success of these
projects based on personal experiences (Balachandra and Brockhoff [5]; Holzmann [23]).
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Therefore, one of the principal determinants of the R&D project’s success is the mode
of knowledge involved (tacit/explicit) (Cavusgil et al. [9]; Gassmann and Zedtwitz [15];
Gloet and Terziovski [17]; Kirianaki et al. [27]), and knowledge management dynamic
capabilities act as an important role for the innovation performance (Alegre et al. [4]).

The IC manufacturing industry plays an important role in the national economy of
Taiwan (Niu [34]), and the IC manufacturing process involves complex systems and com-
plex science (Gen et al. [16]). The manufacturing process may take months and involves
hundreds of processes including diffusion, lithography, thin film deposition, and etch-
ing, performed on hundreds of machines, including implanters, chemical vapor deposition
(CVDs), physical vapor deposition (PVDs), furnaces, steppers, and wet benches, and is
measured by sensors or metrologies. Within each process, the parameters of control are
the key factors of the yield rate. The duty of an IC manufacturing R&D is to optimize
the process parameters. Therefore, the second motivation of this study is to explore the
tacit knowledge from the manufacturing process.

Deposition of coatings by plasma enhanced chemical vapor deposition is the most com-
plex of all plasma surface treatment techniques (Dhar [13]). The module development of
the plasma enhanced chemical vapor deposition (PECVD) process includes several kinds
of process parameters, such as the RF power, total pressure inside the reactor, flow rates
of gases involved, substrate temperatures, type of electrodes used, and reactor type or
geometry (gases, flow rate, vacuum percentage, electric and magnetic field intensity).
Most of these process parameters have corresponding physical (direct or indirect) sensors
which monitor their real-time value. After the reaction of all the parameters (molecular
formula) in the PECVD chamber, the plasma forms and decomposes into a state of high
density ions and molecules. During this complex interaction of physics and chemistry in
the chamber, direct physical sensors can only detect the specific states inside the chamber
and much of the process remains a black box. To acquire more detailed information,
indirect physical sensors such as a residual gas analyzer (RGA), an optical emitter sensor
(OES), or a voltage and ampere prober (VIProber) are employed. Thousands of individ-
ual pieces of information related to the optical spectrum, voltage and ampere distribution,
and the density of the magnetic field are acquired. This mass of information exceeds the
ability of an engineer to handle, and much of it is neglected.

Applying the multivariate statistical analysis as a virtual sensor can generate specific
results about the core of the equipment or process, and eliminate inaccurate information
using experience ratings. This approach can therefore be an efficient method for identi-
fying productive directions for the R&D projects. However, there is lack of awareness of
the innovation potential of modern methods for the R&D processes in many companies
(Kirianaki et al. [27]). Thus, this paper explores the practices of the PECVD processes,
focusing on the requirements, formation, applications, and extensions of the virtual sen-
sors. The aim, therefore, is to describe the essentials of the virtual sensors for guiding the
R&D direction, and to enhance the capability of the R&D processes in the semiconductor
industry.

2. R&D Management. Innovation is the creation of new knowledge and new ideas for
achieving business changes. Herkema [21] defined innovation as a knowledge process aimed
at creating new knowledge geared towards the development of commercial and viable
solutions. Innovation is a process in which existing knowledge is used and new knowledge
is collected, shared, and integrated (Mart́ın-de Castro [32]). Therefore, knowledge is the
main driving force behind innovation (Yang et al. [50]; Hurnonen et al. [24]), and fulfils
a myriad of functions in the innovation realm. R&D management plays a key role in the
development of the dynamic capabilities, which a firm’s capabilities can integrate, build,
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and reconfigure internal and external competitiveness (Teirlinck and Spithoven [45]).
In the development of IC manufacturing process, the most important procedure occurs

in the vacuum chambers. Physical (direct or indirect) sensors are peer-to-peer sensors in
the chambers, but this equipment cannot extract information on the complex interactions.
During the process, there is no physical sensor that can output and explain the results of
real-time states in the reaction chambers. Physical sensors merely provide basic informa-
tion which only correlates to a part of the process results. They cannot always determine
the root causes or determine the useful directions. Thus, the vacuum chambers function
is as a black box in which engineers cannot easily predict and observe the manufacturing
process. Traditionally, engineers have relied on their experience accumulation to overcome
problems, but many issues remain unsolved. Because of ambiguous knowledge, the results
cannot be explained. Indeed, tunnel vision is typical in the R&D process, and one cause
is incomplete information. For the R&D engineers, this groping in the dark reduces their
competitiveness and increases the costs of the R&D activity.

Virtual sensors can build a model in the vacuum chamber, as they are product property
predictors and process fault predictors. Through the explication of the R&D engineers’
tacit knowledge, they can complement the R&D management.

2.1. Process environment. ICs are devices used in most computers and electronic de-
vices. Often known as a semiconductor or microchip, they have replaced traditional
vacuum tubes and multi-transistor configurations. As their core operating system has
shrunk to a mere chip, electronics have become smaller as well.

The IC manufacturing process begins with the extraction and purification of the silicon.
Once it has been purified, heated, blended with boron and phosphorous, and stabilized,
it is sliced into very thin layers and polished to create a smooth surface. Each layer is
exposed to oxygen at a high temperature, which creates an oxide film on the surface. The
silicon is then spun at a high speed to transform the oxide coating into a photo-sensitive
material. A lithograph or photo of the desired circuit configuration is then transferred
onto the surface of the IC using a projection lens, in a process known as photolithography.
Once the circuit pattern has been transferred to the silicon, it is exposed to a gaseous
blend that dissolves the oxide and photosensitive coatings. By removing these coatings,
the image is transferred or etched onto the silicon. The IC is then connected to a lead
frame using fine gold threads. The entire microchip is then encapsulated into a specific
casing so that it can be fitted into an electronic device.

The process module is very complex, and there are four important roles in the whole
process: IC design house, wafer factory, IC foundry, and the factory of testing and package
(Figure 1). An IC design house means a company of electronics engineering, encompassing
the particular logic and circuit design techniques. ICs consist of miniaturized electronic
components built into an electrical network on a monolithic semiconductor substrate
by photolithography. A wafer factory is a company which produces the silicon wafers.
The silicon manufacturing process consists of crystal growth, wafer slicing, wafer polishing,
wafer cleaning, epitaxial deposition, and metrology, etc. They are also differentiated by
product or process type and diameter, 150mm, 200mm, and 300mm, etc. An IC foundry
is a semiconductor fabrication plant (fab) which produces the electronic devices such as
integrated circuits. A factory of testing and package means a company which provides
the independent semiconductor manufacturing service in assembly and test. It develops
and offers a turnkey solution covering the IC packaging, design and production of the
interconnect materials, front-end engineering test, wafer probing, and the final test.

The four process modules in IC manufacturing are photolithography, diffusion, etching,
and thin film deposition (Figure 1). Photolithography is a semiconductor process utilized
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Figure 1. The flow of IC manufacturing process in this industry (the main
process in a scope of boldface dotted line)

in the IC devices’ fabrication to the wafer pattern on a substrate. It uses UV light to
transfer a geometric pattern from a photomask to a light-sensitive chemical (photoresist,
PR) on the substrate. Diffusion is a semiconductor process that involves the activities
of atoms through a solid state, and is driven by a concentration gradient. Etching is
employed in the semiconductor process to remove the layers from the surface of a wafer.
Every wafer undergoes many etching steps in the whole manufacturing process. Thin
film is used in the semiconductor process that involves a series of different chemical or
physical procedures. Generally, the techniques are for using liquid or gas chemicals with
evaporation methods, and the sputtering process or combinations.

The process module is very complex and difficult to summarize simply. This explores
the CVD and PVD in thin film process modules as they are both processes for applying
thin film. CVD is a process of applying a thin film to a substrate using a controlled
chemical reaction, while PVD is the evaporation and sputtering processes of physically
applying a thin metal film to a wafer.

CVD is a process of forming a film on a substrate, typically, by generating vapors
from the liquid or solid precursors and delivering those vapors to the surface of a heated
substrate where the vapors react to form a film. Systems for chemical vapor deposition
are employed in the semiconductor fabrication, where CVD is employed to form thin films
of semiconductors, dielectrics, and metal layers. Three types of vapor delivery systems
commonly used for performing CVD include bubbler based systems, liquid mass flow
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control systems, and direct liquid injection systems. The plasma assisted CVD is high-
density plasma CVD (HDP CVD), a method of deposition which became widely accepted
in advanced wafer fabs in the mid-1990s. As its name suggests, the plasma in HDP CVD
is a high-density mixture of gases at low pressure, which is directed toward the surface
of the wafer in the reaction chamber. The advantage is that it can deposit films to fill
gaps with high aspect ratios over a range of deposition temperatures of 300◦C to 400◦C.
The HDP CVD was initially developed for interlayer dielectric (ILD) applications, but it
is also employed for deposition in ILD-1, shallow trench isolation, etch-stop layers, and
the deposition of low-κ dielectrics.

The HDP CVD process involves a chemical reaction between two or more gas precur-
sors. In the deposition of oxide ILD, oxygen (or ozone) is frequently used with a silicon-
containing gas, such as silane (SiH4) or TEOS, along with argon. A source excites the gas
mixture with RF or microwave power (2.45GHz), and directs the plasma ions into a dense
region above the wafer surface to generate the high-density plasma. Indeed, oxidation
of the Si (LOCOS) is the standard technology for providing electrically isolating active
devices in ICs. As the demand for smaller geometry and higher circuit density increases,
even more stringent requirements are being placed upon the isolation performance, and
problems with LOCOS are beginning to surface. To overcome these limitations, the IC
manufacturers have pursued an alternative process called shallow trench isolation (STI)
as a substitute for LOCOS for isolating devices (Fazan and Mathews [14]). STI allows for
higher chip density, thus, increasing the efficiency of usage of the Si wafers. A typical STI
process involves etching a trench pattern through a nitride and thin pad oxide layers and
into the silicon. Subsequently, a CVD oxide is laid over the entire wafer, filling the trench
area and overlaying the nitride-protective active region. Chemical mechanical polishing
(CMP) is then used to planarize the topography obtained by the preceding deposition
processes, stopping on the nitride layer. The remaining nitride is subsequently removed
by wet chemistry or reactive ion etching (RIE).

In general, the thin film process module involves PVD, CVD, and planarization. Phys-
ical and chemical reactions take place during this process, including absorption, surface
migration, nucleation, and desorption. Chemically reactive plasma discharges are often
used to modify the surface properties of the materials. Processing by plasma-assisted
techniques is being increasingly used in various areas of production and manufacturing as
diverse as the automotive, aerospace, biomedical, and microelectronics industries (Figure
2).

The plasma, sustained in a mixture of gas, vapors, vacuum, or electric and magnetic
fields, contains a multitude of different neutral and charged particles. A large number
of process parameters have to be controlled in plasma deposition, such as power, total
pressure inside the reactor, the flow rates of the gases involved, substrate temperatures,
type of electrodes used, and the reactor type or geometry. These controlled parameters
are often interdependent and interact mutually in determining the material properties
and deposition rates (Figures 3 and 4). Plasma can induce chemical reactions that may
be considered advantageous because it allows the formation of new materials. However, it
makes studying the parameters of the reaction control and reproducibility of composition
difficult.

In this process, the R&D engineers can only acquire the information from the direct and
indirect physical sensors. This information includes both explicit and tacit knowledge,
and it involves correlation to process the results. Traditional methods only yield results
which are inferred from the explicit knowledge, and omit the proportion related to the
tacit knowledge. The cost of physically visiting each sensor to reprogram it is prohibitive
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Figure 2. Different reactions during plasma polymerization (k1-k6 are the
rates of the different reaction schemes)

Figure 3. A PVCVE processing chamber for semiconductor equipment

(Kabadayi et al. [26]). Moreover, the technology of the physical sensor cannot send
sufficient messages.

This paper addresses this challenge through the introduction of virtual sensors. We
regard the most important message as hiding in the tacit knowledge. Virtual sensors pro-
vide a way to guide the R&D engineers and to bring to light the essence of the production
process.

2.2. Advantages of virtual sensors. Virtual sensors can be the product property pre-
dictors and process the fault predictors, which operate rapidly and at a minimal cost. They
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Figure 4. PECVD chamber

can easily distinguish the key performance factors and demonstrate comprehensive re-
sults. Accurate torque measurement is difficult to acquire in the general environment,
but can be obtained on a dynamometer in the laboratory (Hanzevack et al. [20]; Sri-
vastava et al. [43]; Thalmann [46]). A virtual sensor estimates the product properties
or process conditions using the mathematical models, sometimes in conjunction with the
physical sensors. These mathematical models use the physical sensor readings to calculate
the estimated property or condition. The concept of virtual sensors applies to the entire
chain of analytical steps leading up to the prediction of the reaction. Yang et al. [49]
also contended that a multivariate statistical analysis can monitor and further control the
processes to reduce production variation. The main advantage of using a virtual sensor
is that the users can obtain reliable estimated measurements which were not previously
available (Hanzevack et al. [20]).

A virtual sensor can bridge the gap between the explicit and tacit knowledge. It can be
applied to classify the faults and predict the process results. A network of virtual sensors,
each receiving filtered data from parts of the process, and can model the states of the
processing equipment and thereby act as a part of the equipment. Each virtual sensor
can provide an outcome which represents an estimated value for the overall result of the
specific equipment states. A rule-based logic system is used to receive and process the
signals provided by the plurality of equipment sensors, and the output signals provided by
the virtual sensors, to monitor the processing equipment or to detect and classify faults
within the processing equipment. The power of virtual sensors lies in the fact that the
physical sensors used may be heterogeneous (in the case of our example, gas or vapor,
vacuum or electrical), and the virtual sensor can combine these different types of data
to compute an abstract measurement (Albertos and Goodwin [3]; Kabadayi et al. [26];
Thalmann [46]).
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The major R&D work in a semiconductor manufacturer is the process development
and the parameter optimization. The purpose is to enhance the quality and increase
the yield rate of the ICs during the process. R&D engineers work with hundreds of
parameters in the process. A great deal of money, instruments, and time are invested in
the data acquisition processes. Bottlenecks generally exist in the area of tacit knowledge
due to the complex chemical and physical reactions which cannot be abstracted during
the production process (Table 1).

Table 1. Description of the process transaction

In this study, the PECVD process states cannot be completely extracted by the phys-
ical sensors (direct & indirect sensors). Most of these sensors provide analog or digital
signals of physical characteristics such as pressure, temperature, gas flow rate, electric
current, electric voltage, and magnetic force. The key to the process improvement is to
realize the hidden messages in the complex reactions of the physical and chemical charac-
teristics. Applying multivariate statistical analysis as a virtual sensor is an effective and
economical way to explore the functions of monitoring and fault detection/classification
in the semiconductor equipment.

3. Methodology. The principal components analysis (PCA) is a technique for simpli-
fying the multidimensional data sets for analysis. It is also a technique for forming new
variables which are linear composites of the original variables. The maximum number of
new variables that can be formed is equal to the number of original variables, and they are
uncorrelated among themselves (Sharma [41]). Otherwise, the PCA can be used for the
dimensionality reduction in a data set by retaining those characteristics that contribute
most to its variance, by keeping the lower-order principal components, and ignoring the
higher-order ones. Such low-order components often contain the “most important” as-
pects of the data.

To determine the principal component in forming the PC-space which archives the ob-
servations in the vacuum chamber, the next step is to limit the boundary. The Hotelling
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T2 control chart is employed as a tool for detecting and classifying the faults by sum-
marizing all the process variables and all the model dimensions, and indicating how far
from the center (target) of the process they are along the principal component model
hyper plane. We refer to this as a virtual sensor because it estimates the unmeasured
complex chemical and physical reactions. In this paper, we use virtual sensors to generate
an estimate of the real-time tool state variable parameters (SVIDs) during the processing
of the wafer.

In this experiment, if the tool parameters as a function of time are considered as a data
matrix X, then this data matrix can be modeled using the PCA as

X = 1 ∗ X + T ∗ P ′ + E

where X is the average matrix; T is the score matrix, P ′ is the loading matrix, and E is
the residual matrix.

The principal component scores (t1, t2, t3, . . .) are columns of the score matrix T . The
residual matrix E can be used to calculate the distance to the model in X space (DModX).
The residual standard deviation (RSD) of an observation in the X space is proportional to
the observed distance to the hyper plane of the PC model in the X space. The observed
distances to the PC model in the X space (DModX) are presented as linear plots. A
DModX that exceeds the critical DModX reveals that the observation may be an outlier
in the X space. Normally, such distances are determined after all the components have
been extracted.

The distance to the model (DModX) of an observation in a worksheet which is part of
the model is

si =

√ ∑
e2

ik

(K − A)
× v

where v is a correction factor, (which is the function of the number of observations and
the number of components), and slightly exceeds the unity. This correction factor takes
account of the fact that the DModX is expected to be slightly smaller than the actual
value for an observation in part of the training set because it has affected the model.

The normalized distance to the model is the observed absolute DModX divided by the
pooled RSD of the model s0.

s0 =

√ ∑∑
e2

ij

(N − A − A0) × (K − A)

where A0 = 1 if the model is centered at zero; otherwise (si/s0)2 has an approximate F
distribution from which the probability of membership to the model can be determined.
The distance to the model in the X space (row RSD), after A components (the selected
dimension), for the observations is used to fit the model. If you select component 0, it is
the standard deviation of the observations with scaling and centering as specified in the
worksheet (without row means subtracted). That is, it is the distance to the origin of the
scaled coordinate system.

In complex tool state monitoring, the Hotelling T2 control chart is employed as a tool
for detecting and classifying faults. It summarizes all the process variables and all the
model dimensions, indicating how far from the center (target) of the process are along
the principal component model hyper plane.

Hotelling T2 for observation i, based on A components is,

T 2
i =

A∑
a=1

t2ia
s2

ta



A NOVEL METHOD GUIDING IC MANUFACTURING R&D DIRECTION 1381

where s2
ta is the variance of ta according to the class model

T 2
i × N(N − A)/A

(
N2 − 1

)
∼ Fα(A,N − A)

where N is number of observations in the model training set, and A is the number of
components in the model or the selected number of components.

Therefore, if

T 2
i > A

(
N2 − 1

)
/N(N − A) × Fα (p = 0.05)

then observation i lies outside the 95% confidence region of the model.
The confidence region of a two-dimensional score plot of dimension a and b is an ellipse

with axis [
s2

ta or tb
× Fα(2, N − 2) × 2

(
N2 − 1

)/
N(N − 2)

]1/2

At zero significance level, the confidence region becomes infinite and is not shown on the
plot.

Traditionally, the FDC is regarded as a two-step process in manufacturing. Recently,
Goodlin et al. [18] proposed a simultaneous fault detection and classification technique
that uses the fault vector approach to minimize the time to find, classify, and correct faults.
The method reveals that different faults occur with different vector units in the space,
and so provide a means of concurrently detecting and classifying the faults. This study
examines an approach to simultaneous FDC that combines the PCA method, Hotelling
T 2, and the DModX control chart to detect the designed faults of gas flow and RF param-
eters and classify the faults using the PCA vector space on the HDP CVD equipment.
Therefore, we chose this task to demonstrate the usefulness of the virtual sensors in this
paper.

4. Case Study.

4.1. Experimental environment. An application runs with the support of the virtual
sensor abstraction. In this section, we first describe how a developer defines the applica-
tion’s data requests using the virtual sensors. Then detail how the programs dynamically
interact with data from the virtual sensors.

This research investigated the shallow trench isolation (STI) CVD process, performed
on the commercially available Applied Material 300mm HDP CVD tool. The purpose
of this process is to deposit a USG stack using the high-density SiH4/Ar plasma. The
process is composed of a series of 17 steps (Yang et al. [49]). The first three steps stabilize
the wafer load and the pressure. Step 4 is a brief plasma ignition step. Steps 5 to 8 cause
the gas to flow and heat the chamber. Steps 9 to 11 are the main steps for depositing the
STI layer. Steps 12 to 17 shut off the gases, cool the chamber, shut off the RF, and unload
the wafer. The process chemistry is identical from steps 9 to 11. This work focuses only
on the main deposition steps, which are the key to the whole process. All the analyzed
data is based on steps 9 to 11.

A data collection module was installed in an HDP CVD tool to collect the SVIDs
during the processing of the wafer, and 45 parameters were used in the collection plan.
The sampling rate of the collection was set to 1Hz. In the CVD process, the expression
of many parameters is measured and it becomes impossible to make a visual inspection
in such a large multi-dimensional matrix. As a data-reduction technique, the principal
component analysis is employed to reduce the dimensionality of the parameters and yield
the most important data, while simultaneously filtering out noise in the CVD process. The
data, although clumped around several central points in that hyperspace, will generally
tend towards one direction. If one were to draw a solid line that best describes that



1382 H.-J. NIU AND C.-J. CHANG

direction, then that line is the first principle component (PC1). The captured data can
be plotted in terms of this axis, forming a PC vector space.

4.2. Design of experiment (DoE). The data on 100 normal wafers were collected as
golden wafer data to build the boundary of the virtual sensor (Figure 5). Five wafers
(Nos. 101∼105) were picked and designed to study the effects of the gas flow, pressure,
voltage, and temperature variation. The factors of the DoE are generated from the
critical parameters of the process and hardware. The gases of argon and helium are
the main components of the plasma. The parameters of presses, E-chuck voltage, and
CNT Dome temperature dominate the plasma environment. We set a 3% deviation for
those parameters to acquire the variation during the main deposition (Table 2). Figure 3
plots the PCA scores of the first two principal components (t1, t2), where the oval-shape
is the boundary of the virtual sensor. The cycled wafers represent the gas flow, pressure,
voltage, and temperature of the DoE wafers. These wafers are the strong outliers, at a
95% confidence level (Figures 6-10). This indicates that the five parameters may have
stronger correlations with the other parameters, and thus, impact the process results.
This demonstrates the feasibility of the virtual sensor and shows its ability to extract the
tacit knowledge.

Figure 5. Golden wafer of the virtual sensor boundary

Table 2. Controlled information in the design of the experiment

Wafer No. 101 102 103 104 105
Parameters Pressure Ar(Top) E-Chuck(Volt) CNT Dome(Temp) He(Side)

Setting +3% +3% +3% +3% +3%

5. Implications for the R&D Management and the Conclusions. In this research,
we have described the virtual sensors that allow the measurements of the abstract data
types. Virtual sensors abstract a set of physical sensors and the operations that are
performed on them, providing a new way of extracting data from the heterogeneous
virtual sensors (Baroncini et al. [6]). This summary has been provided to allow the
R&D managers and executives with a rapid appreciation of the content of this article.
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This study addresses some advantages of the virtual sensor for the R&D management, as
follows:

• To understand the root causes of the process problems
• To predict the process results before the physical instrument measurement results
• To predict the properties during the processing which cannot be measured online

(in-situ)
• To obtain the process results faster, and make the corrections sooner to avoid any

process problems
• To decrease the number of physical sensors used in the process to reduce the costs.

Figure 6. Wafer No. 101 parameter and impact process results

Figure 7. Wafer No. 102 parameter and impact process results
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Figure 8. Wafer No. 103 parameter and impact process results

Figure 9. Wafer No. 104 parameter and impact process results

This application supports R&D, and is an essential activity in its development. Given
the clear benefits of virtual sensors, they can also be applied in other fields and industries.
The applications and categories of the virtual sensors depend on the input of the different
data segments or parameter types. In this study, the data of the physical sensors employed
can be applied as a predictor or an analyzer for the semiconductor equipment. Fault
detection and classification (FDC) is a typical application of the virtual sensors to find
faults and address its attribution. They provide clear and exact information for the
engineers.

During the processing, the plasma status can be treated as a black box in a cham-
ber. It is hard to apply real-time metrology to understanding the dynamic status of
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Figure 10. Wafer No. 105 parameter and impact process results

the plasma. In contrast, the virtual sensors know the real-time information for deter-
mining the deviate parameters (dimension-reduction) and classify in attribution terms
(attribute-classification) to contribute a concise result. This helps the R&D engineers
to clearly understand the details of the whole process and helps to develop the optimal
process recipes.

Fault diagnosis and prediction of the semiconductor equipment are more difficult than
that of the other traditional equipment due to their more complex structure. However,
virtual sensors can execute a tool health report within an assigned period of time. Evalu-
ating the optimum equipment maintenance within the process cycle enables the best usage
of the periodic maintenance time (PM). Further, virtual sensors can be employed in the
chamber matching to decrease the variation across the same type of chambers, enhance
the abilities of the real-time correlation and feedback, feed forward the compensation from
station to station, and also increase the robust design of the production line.

In sum, the process stabilization and cost saving are the main advantages of the virtual
sensors. Moreover, this research demonstrates that applying virtual sensors can guide the
direction of the R&D. This shows potential for usage in other manufacturing applications.
Virtual sensors can also offer a way to tailor a generic sensing environment to specific
applications. This will be especially necessary as sensors become more widespread for
general purposes.

6. Suggestion and Future Research. This research may be a useful and relevant
resource for an R&D process analysis. It involves the design of the high performance and
highly efficient digital smart sensors and data acquisition systems. However, the golden
model is the measuring standard of the virtual sensors. A poor model results from a
floating measurement foundation. The sensitivity and stabilization of the virtual sensors
depends on whether the golden model is robust enough. Proper data selection and input
parameters are critical factors in the establishment of a golden model. This task relies on
the experience of the senior engineers to prevent “garbage in, garbage out”. The effects
of environmental disturbances always exist within the chamber. This also affects the
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Figure 11. Environmental disturbances

Figure 12. Scope confinement

manufacturing process and is not always reflected by the physical sensors. This means
that part of the information is lost and cannot be usefully interpreted. In this case, the
experience of the engineers is the only way to solving these problems (Figure 11).

In practice, most parameters will be thrown into the model and will result in a data
jam. Furthermore, interactions within the parameters cannot be easily identified. The
characteristics of the independent variables become ambiguous and affect the accuracy
of the model. The resulting virtual sensors will be difficult to control and apply. It is
therefore recommended that the scope and application be defined and confined before
using a virtual sensor. The purpose of virtual sensors becomes clearer as the scope of the
objectives narrow (Figure 12). The process segment axis identifies which process segments
are selected for specific application. The parameter axis shows which parameters appear
in the selected process segments. This can make the model more concise and thereby
enhance its reliability, and the validity of the analysis results.
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of the interplay between organizational sustainability, knowledge management, and open innovation,
Journal of Cleaner Production, vol.142, pp.476-488, 2017.

[34] H. J. Niu, The career commitment of contingent employees: Evidence of on-site engineers in semi-
conductor industry, International Management Review, vol.7, no.2, pp.44-51, 2011.

[35] H. J. Niu and M. C. Hsin, The development of innovation and entrepreneurship: A literature review,
Journal of Innovation and Management, vol.8, no.4, pp.33-62, 2011.

[36] K. Okatan, Managing knowledge for innovation and intra networking: A case study, Procedia-Social
and Behavioral Science, vol.62, no.24, pp.59-63, 2012.

[37] J. Penner-Hahn and J. M. Shaver, Does international research and development increase patent out-
put? An analysis of Japanese pharmaceutical firms, Strategic Management Journal, vol.26, pp.121-
140, 2005.

[38] M. Polanyi, The Tacit Dimension, Anchor Books, Garden City, NY, 1967.
[39] P. Ritala, H. Eelko, A. Almpanopoulou and P. Wijbenga, Tensions in R&D networks: Implications

for knowledge search and integration, Technological Forecasting and Social Change, vol.120, pp.311-
322, 2017.

[40] H. Scarbrough, Knowledge management, HRM and the innovation process, International Journal of
Manpower, vol.24, no.5, pp.501-516, 2006.

[41] R. P. Sharma, Chemical interactions and compromised immune system, Fundamental and Applied
Toxicology, vol.4, no.3, pp.345-351, 1984.

[42] J. Singh, Distributed R&D, cross-regional knowledge integration and quality of innovative output,
Research Policy, vol.37, pp.77-96, 2008.

[43] A. N. Srivastava, N. C. Oza and J. Stroeve, Virtual sensors: Using data mining techniques to
efficiently estimate remote sensing spectra, IEEE Trans. Genoscience and Remote Sensing, vol.43,
no.3, pp.590-600, 2005.

[44] G. Szulanski, The process of knowledge transfer: A diachronic analysis of stickiness, Organizational
Behavior & Human Decision Processes, vol.82, no.1, pp.9-27, 2000.

[45] P. Teirlinck and A. Spithoven, Formal R&D management and strategic decision making in small
firms in knowledge-intensive business services, R&D Management, vol.43, pp.37-51, 2013.

[46] D. Thalmann, Virtual sensors: A key tool for the artificial life of virtual actors, Proc. of Pacific
Graphics, Seoul, Korea, pp.22-40, 1995.

[47] H. W. Volberda, F. A. J. van Den Bosch and C. V. Heij, Management innovation: Management as
fertile ground for innovation, European Management Review, vol.10, pp.1-15, 2013.

[48] C. Wang, L. Chen and S. Chang, International diversification and the market value of new product
introduction, Journal of International Management, vol.17, pp.333-347, 2011.

[49] C. Yang, C. J. Chang, H. J. Niu and H. C. Wu, Increasing detectability in semiconductor foundry
by multivariate statistical process control, Total Quality Management & Business Excellence, vol.9,
no.5, pp.429-440, 2008.

[50] C. Yang, Y. D. Wang and H. J. Niu, Does industry matter in attributing organizational learning
to its performance?: Evidence from the Taiwanese economy, Asia Pacific Business Review, vol.13,
no.4, pp.547-563, 2007.


