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Abstract. Curved mirrors have been widely adopted in rearview mirrors of vehicles and
security mirrors on driving roads to provide drivers with better viewing fields and driving
information. In the manufacturing process of curved mirrors, surface variation flaws
can result from unstable temperature changes of ovens and inappropriate control of over-
flow fusion process. Flawed car mirrors with surface distortion provide shape-distorted
scene information and may thus cause drivers to make wrong decisions when driving.
This study proposes a novel vision system based on slight deviation control techniques to
detect surface variations on curved mirrors of vehicles. To quantify the deformation of
a car mirror, a standard inspection pattern is designed to reflect the pattern on a test-
ing car mirror for image acquisition. The reflected pattern image of a defective mirror
with distortion is compared with that of a normal mirror for quantifying the deformation
and locating the distortion flaws. We first detect the intersection points of the standard
pattern, then measure the distances of the intersection points from the origin, and calcu-
late the distance deviations of the corresponding intersection points between the defective
and the normal images. Finally, the slight deviation control techniques, cumulative sum
method and exponentially weighted moving average method are applied to judging the exis-
tence of the distortion flaws based on the accumulative deviation distances. Experimental
results show that the suggested methods achieve a high probability (98%) of correctly dis-
criminating distortion flaws on curved mirrors of vehicles.
Keywords: Visual inspection system, Curved mirrors of vehicles, Surface variations,
Slight deviation control techniques

1. Introduction. Compared with plane mirrors of vehicles, curved mirrors have higher
reflectance and wider field of view. Curved mirrors have been widely adopted in rearview
mirrors of vehicles and security mirrors on the driving roads to provide drivers with better
viewing fields and driving information. In the manufacturing process of curved mirrors of
vehicles, surface variation flaws often result from unstable temperature changes of ovens
and inappropriate control of over-flow fusion process. Since distortion flaws do not have
regular shapes and clear boundaries, it is not easy to measure magnitudes of distortion
flaws on curved mirrors. Flawed car mirrors with distortion provide shape-distorted scene
information and may thus cause drivers to make wrong decisions when driving. Figure
1 shows the flawless and flawed images of curved mirror surfaces with reflection of street
scene. The object shapes reflected in the flawed image are significantly distorted (Figure
1(b)). The mirror distortion flaws can make reflected objects look irregular, out of focus,
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(a) (b)

Figure 1. Curved mirror images of vehicles with reflection of street scene:
(a) a flawless image; (b) a flawed image with distortion

(a) (b) (c)

Figure 2. (a) Present inspection tasks conducted by human visual judg-
ment; (b) the flawless image and (c) the flawed image with reflection of a
standard pattern

and blurry in the flawed images. These distorted images may lead drivers to make wrong
judgment and thus cause dangerous car accidents.

Inspection difficulties of surface defects exist in the manufacturing process of curved
mirrors. Surface flaws affect not only the appearance of industrial parts but also their
functionality, efficiency and stability. The most common detection methods for surface
flaws are human visual inspections, which are vulnerable to wrong judgments owing to
inspectors’ subjectivity and eye fatigues. Figure 2 shows the present inspection tasks
conducted by human visual judgment, and the flawless image and the flawed image with
reflection of a standard pattern.

Present vision system (off-line and sampling) with a concentric circle pattern and a
testing platform (Figure 3) uses the concentric circle pattern reflected on mirrors to acquire
images and quantify distortion magnitude for selection. It used only 8 intersection points
on the concentric circle pattern to roughly calculate distortion rate. It is hard to accurately
inspect the mirror distortion flaws by present vision systems due to high reflection. High
reflection on curved mirrors increases the difficulty of discriminating the distortion flaws on
car mirrors. In this research, the testing samples with length 18.1cm, width 10.71cm, and
thickness 0.2cm, were randomly selected from the manufacturing process of car mirrors.
Figure 4 shows the dimension of a testing sample (Figure 4(a)) and a captured image
with high reflection on mirror surface (Figure 4(b)). This study proposes a novel vision
system with a trapezoidal mask for image acquisition and applies slight deviation control
techniques to inspecting distortion flaws on curved mirrors of vehicles.
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Figure 3. Present vision system with a concentric circle pattern (upward
view) and a testing platform (vertical view)

(a) (b)

Figure 4. (a) Dimension of the testing sample and (b) an acquired image
with high reflection

2. Literature Review. Automatic visual inspection of flaws has become a crucial mis-
sion for industries which exert to upgrade product quality and manufacturing efficiency
[1-3]. Lin and Chiu [4] developed a machine vision system to find mass centers of chips, lo-
cate cutting lines and estimate process regulation plans for the automated and high-speed
dicing of electronic passive components. Lin and Li [5] developed a wavelet transform-
based approach to inspecting the area defects on appearances of touch panels. Adamo et
al. [6] proposed a low-cost inspection system based on the Canny edge detection for online
defects assessment in satin glass. Liu et al. [7] presented the method based on watershed
transform methods to segment the possible defective regions and extract features of bottle
wall by rules.

Many studies investigated the flaw inspection of glass related products. Li and Tsai [8]
proposed a wavelet-based discriminant measure for defect inspection in multi-crystalline
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solar wafer images with inhomogeneous texture. Lin and Tsai [9] presented a Fourier
transform-based approach to inspecting surface defects of capacitive touch panels. Chiu
and Lin [10] applied block discrete cosine transform, Hotelling’s T-squared statistic, and
grey clustering technique for the automatic detection of visual blemishes in curved surfaces
of LED lenses. These visual inspection systems focus mainly on the surface blemish
detection.

In photography, distortion is especially associated with zoom lenses, particularly large-
range zooms. Regarding the distortion correction techniques, Duan and Wu [11] proposed
a new method for distortion correction in the barrel distortion of wide-angle lens. The
cubic B-spline interpolation function was adopted to interpolate the surface and the bi-
linear interpolation was used to reconstruct the gray level of pixels. Sun et al. [12]
presented a piecewise spline function to describe the distortion and obtained a continuous
smooth distortion model after eliminating noises using smoothing spline algorithm. Since
this method corrected lens distortion on pixel plane, it obtains unbiased displacement in
image correlation. Chang et al. [13] addressed super-resolution images with nonlinear
lens distortions through deep convolutional neutral network with residual learning. This
camera calibration method can significantly improve the image quality. Santana-Cedrés
et al. [14] developed a novel method for automatic correction of perspective and optical
distortions by using lens distortion model and vanishing points. Furnari et al. [15] intro-
duced a set of distortion adaptive Sobel filters for the direct estimation of geometrically
correct gradients of wide angle images. This method excels in both gradient estimation
and key point matching for images with large amounts of radial distortion. From the
above review of literature, it is evident that most of the distortion related works focus on
the distortion correction of optical lenses.

In distortion defect inspection studies of industrial parts, Jin et al. [16] presented an
inspection method based on phase image processing in grating projection for glass defect
detection. Jin et al. [17] suggested a grating projection based method for measuring de-
formation degree of optical distortion to detect glass defect. The proposed algorithm used
one-dimensional Fourier transform and elimination method of edge effect to process the
fringe image. Chiu et al. [18] implemented a Hough transform based technique for dis-
tortion defect detection on transparent glass. These frequency domain based approaches
need more processing time to complete the mathematical transformations.

Currently, the majority of automated inspection systems of mirrors mainly detect sur-
face defects and the distortion flaws are not included. It is hard to accurately detect
reflected distortion flaws embedded on surface of curved mirrors of vehicles with high re-
flection. Presently, very few research studies apply automated visual inspection systems
to inspecting mirror distortion flaws. Therefore, we propose a vision system based on
slight deviation control techniques to detect reflected distortion flaws on curved mirrors.

3. Suggested Methods. To quantify the deformation of a flawed mirror with surface
distortion, this study proposes a standard inspection pattern with checkerboard grids to
reflect the pattern on a testing mirror for image acquisition. The reflected pattern image
of the surface distorted mirror is compared with that of a normal mirror for measuring the
deformation and locating the distortion flaws. Firstly, we detect the intersection points of
the standard inspection pattern, then measure distances of the intersection points from the
origin, and calculate distance deviations of the corresponding intersection points between
the defective and normal images. Finally, we apply the slight deviation control techniques
to determining the existence of the distortion flaws based on detecting slight changes of
the distance deviations. We describe this procedure in the following subsections in detail.
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3.1. Image acquisition. To distinctly acquire images with appropriate reflection for
image processing, this study suggests a vision system with a trapezoidal mask for image
acquisition shown in Figure 5. A testing sample is placed on bottom of the mask and
a standard checkerboard pattern is attached on the top inside the mask. The proposed
vision system uses the checkerboard pattern reflected on mirrors to capture images and
quantify distortion magnitude for slight deviation control. Figure 6 shows three-view
drawings of the trapezoid mask and specifications of the standard pattern. Dimensions of
the trapezoidal mask are described on the three-view drawings (Figure 6(a)). The circle
on the central part of the top view drawing is used to fix the camera lens. The central

Figure 5. Structures of the exploratory circumstance where scanning a
trial mirror sample

(a) (b)

Figure 6. (a) Three-view drawings of the trapezoid mask; (b) specifica-
tions of the standard checkerboard pattern
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circle region of the checkerboard pattern (Figure 6(b)) is the undetected area because
the corresponding region on a testing mirror reflects the camera lens. To clearly cap-
ture images with suitable reflected intensity, the control of lighting source in exploratory
environment is very important. Figure 7 demonstrates outcomes of the proposed image
acquisition environment using trapezoidal mask and light source: (a) a captured image
without suitable light source; (b) a captured image with appropriate light source. After a
clear image has been captured, the image has to be processed which involves segmentation,
feature extraction, and slight deviation control.

(a) (b)

Figure 7. Outcomes of image acquisition with trapezoidal mask and light
source: (a) a captured image without suitable light source; (b) a captured
image with proper light source

3.2. Image processing procedures. To measure deformation of mirror images, the
captured testing images have to be processed in several steps. Figure 8 illustrates the
procedure of image processing and outcomes performed by the suggested approach for
detecting distortion flaws on curved mirror images. Figures 8(a) and 8(b) represent the
captured testing image and the corresponding gray level image using the checkerboard
pattern. Figure 8(c) depicts the binary image that the Otsu method [19] applied to do-
ing segmentation. Figure 8(d) describes the feature extraction of the feature points in
the checkerboard pattern and applies the slight deviation control techniques (CUSUM
method and EWMA method). And, Figure 8(e) presents the resulting image showing
the detected distortion flaws (marked in gray dots and mesh on lower half) by the sug-
gested detection method. The results reveal that the slight distortion flaws on curved
mirror surface are correctly separated in a binary image, regardless of insignificant dis-
tortion magnitudes. We introduce the two standard patterns, concentric circle pattern
and checkerboard pattern, in Subsections 3.4 and 3.5 and the two slight deviation control
techniques in Subsections 3.6 and 3.7.

3.3. Standard concentric circle pattern. A standard concentric circle pattern in-
cludes 6 concentric circles and 4 axes dividing a cycle into equal 8 parts in this study.
Figure 9(a) shows intersection points and notations between the circles and lines in the
concentric circle pattern and Figure 9(b) illustrates coordinate notations of 8 intersection
points on the innermost concentric circle. For each of the 6 concentric circles, it includes
8 intersection points Ii,j (feature points) with coordinates (xi,j , yi,j) and 8 distances di,j

(feature values) between the intersection points and center point of the concentric circles.
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Figure 8. The image processing procedure of the suggested methods

(a) (b)

Figure 9. (a) Intersection points and notations in the concentric circle
pattern; (b) coordinate notations of 8 intersection points on the innermost
concentric circle

The center point O(x, y) is determined by the 8 intersection points of the innermost circle:

O(x, y) =

(
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where m = 1, n = 8. And, the feature values di,j are the distances calculated from O(x, y)
and Ii,j(xi,j, yi,j), correspondingly:

di,j =
√

(xi,j − x)2 + (yi,j − y)2 (2)

Feature values of the concentric circle pattern in a testing image will be compared with
those of a normal image to measure the deviations of the corresponding distances for
locating the distortion flaws on testing images.

3.4. Standard checkerboard grid pattern. A standard checkerboard grid pattern in-
cludes 3 concentric squares and several vertical and horizontal line segments dividing
the 3 squares into equal 40 grids in this study. Figure 10(a) shows intersection points
and notations between the squares and lines in the checkerboard grid pattern and Figure
10(b) illustrates coordinate notations of 12 intersection points on the innermost concen-
tric square. For all of the 3 concentric squares, they include 60 intersection points Ii,j

(feature points) with coordinates (xi,j , yi,j) and 60 distances di,j (feature values) between
the intersection points and center point O(x, y) of the concentric squares. The center
point O(x, y) is determined by 12 intersection points of the innermost square:

O(x, y) =

(

1

m × n

m
∑

i=1

n
∑

j=1

xi,j ,
1

m × n

m
∑

i=1

n
∑

j=1

yi,j

)

(3)

where m = 1, n = 12. The feature values di,j are the distances calculated from O(x, y)
and Ii,j(xi,j, yi,j), correspondingly:

di,j(xi,j, yi,j) = max (|x − xi,j| , |y − yi,j|) (4)

Similarly, feature values of the checkerboard pattern in a testing image will be compared
with those of a normal image to measure the deviations of the corresponding distances
for locating the distortion flaws on testing images.

(a) (b)

Figure 10. (a) Intersection points and notations in the checkerboard grid
pattern; (b) coordinate notations of 12 intersection points on the innermost
concentric square
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3.5. Slight deviation control techniques – CUSUM methods. We measure dis-
tances of the intersection points from the origin, and further calculate the distance devi-
ations ∆di,j

(

∆di,j = di,j − di,j

)

of the corresponding distances of the intersection points

between testing image (di,j) and normal image
(

di,j

)

. The slight deviation control tech-
niques are applied to finding slight changes of the distance deviations for detecting dis-
tortion flaws.

3.5.1. Tabular cumulative sum (CUSUM) approach. To detect slight changes in the dis-
tance deviations, this research suggests the CUSUM algorithm, which is frequently applied
in statistical process control to detecting the slight shift or deviation from the normal pro-
duction process [20,21]. Normally, the CUSUM method processes data, which are smooth
in the beginning periods and deviate slightly in the later periods [22]. The tabular CUSUM
scheme works by accumulating derivations from µ0 that are above target with one statis-
tic C+

s and accumulating derivations from µ0 that are below target with another statistic
C−

s . The statistics C+
s and C−

s are called one-sided upper and lower cumulative sums,
respectively. They are computed as follows:

C+
i = max

⌊

0, ∆di,j − (µ0 + K) + C+
i−1

⌋

C−

i = max
⌊

0, (µ0 − K) − ∆di,j + C−

i−1

⌋ (5)

where C+
0 = C−

0 = 0, K = δ
2
σ.

In Equation (5), K is usually called the reference value, and it is often chosen about
halfway between the target µ0 and the out-of-control value of the mean µ1 that we are
interested in detecting quickly. Therefore, if the shift is expressed in standard deviation
units as µ1 = µ0 + δσ, then K is half the magnitude of the shift.

K =
δ

2
σ =

|µ1 − µ0|

2
⇒ δσ = |µ1 − µ0| ⇒ δ =

|µ1 − µ0|

σ
(6)

Note that C+
s and C−

s accumulate deviations from the target value µ0 that are greater
than K, with both quantities reset to zero on becoming negative. When either C+

s or
C−

s exceeds the decision interval H , the sample set is considered to be out-of-control. A
reasonable value for H is five times the standard deviation σ [23].

3.5.2. Standardized CUSUM approach. Two advantages of the standardized CUSUM sch-
eme are that the choices of the parameters k and h do not depend on standard deviation,
and the other is that the standardized CUSUM scheme leads naturally to a cumulative
sum for controlling variability [23]. The standardized cumulative sums are defined as:

yi =
xi − µ0

σ
,

C+
i = max

[

0, yi − k + C+
i−1

]

, C−

i = max
[

0,−k − yi + C−

i−1

]

(7)

where the initial values C+
i = C−

i = 0, i = 0.

3.6. Slight deviation control techniques – EWMA method. The exponentially
weighted moving average (EWMA) control method is also a good alternative in detecting
slight deviations [23-25]. The exponentially weighted moving average Zi is defined as:

Zi = λxi + (1 − λ)Zi−1 (8)

where 0 < λ ≦ 1 is a constant and the starting value is the process target Z0 = µ0. The
values of the parameter λ smoothing constant or called weight in the interval 0.05 ∼ 0.25
work well for small shift detection in practice. A general guideline is to use smaller value
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of λ to detect smaller shifts. The control limits for the EWMA control method are as
follows:

UCLi = X + Lσ

√

λ

2 − λ
[1 − (1 − λ2i)]

LCLi = X − Lσ

√

λ

2 − λ
[1 − (1 − λ2i)]

(9)

The design parameters of the chart are the multiple of sigma used in the control limits (L)
and the value of λ. The performance of the EWMA control technique is approximately
equivalent to that of the CUSUM method, and in some ways it is easier to set up and
operate [26].

4. Experiments and Results. To assess the effect of the suggested methods, assess-
ments were carried out on actual curved mirrors of vehicles, supplied by a car mirror
production plant. All trial samples were arbitrarily chosen from the production process of
car mirrors. Testing images (386) of the curved mirrors of vehicles, of which 136 have no
flaws and 250 have diverse surface distortion flaws, were examined in our assessments. All
images of the mirror appearance have the same size of 256 × 256 pixels and an intensity
of 8 bits. The suggested mirror distortion flaw detection arithmetic is implemented on a
personal computer (CPU Core 2 Duo 2.33 GHz and 2GB D-RAM) by MATLAB language
(7ed.).

To numerically confirm the manifestation of the suggested method, we contrast the
outcomes of our assessments contrary to those supplied by technical assessors (i.e., the
ground truth). Three impartial measures: correct classification rate (CCR) and incorrect
classification rates (α and β) were assessed for the effect of the distortion flaw detection
methods. Statistical type I error (α) measures a probability of generating erroneous alerts,
which judge regular areas as flaws. The area of regular regions judged as distortion flaws
is divided by the area of real regular regions to gain type I error. Statistical type II error
(β) measures a probability of generating lost alerts, which is invalid to alert actual flaws.
The area of undetected distortion flaws is divided by the area of real distortion flaws to
gain type II error. The higher the effect assessment measures (1 − α), (1 − β), and CCR
are, the more exact the detection outcomes are. The correct classification rate CCR is
denoted as:

CCR =
(

C(1−α) + C(1−β)

)

/Ctotal × 100% (10)

where C(1−α) is the pixel number of regular regions correctly detected as flaw-free areas,
C(1−β) is the pixel number of actual flaw regions right detected as flaw areas, and Ctotal is
the pixel number of a testing image.

4.1. ROC curves of performance assessment. If a decisive thresholding changes,
two paired measures, erroneous alert rate (α) and detection rate (1 − β), describing the
outcomes of a hypothesis testing will vary [27]. When different thresholding are applied,
the sets of erroneous alert rates and detection rates are figured as points in a receiver
operating characteristic (ROC) curve. The upper-left corner on an ROC figure represents
an ideal outcome having 100% detection rate and a 0% erroneous alert rate. The more
the ROC curve moves toward the upper-left corner, the better the trial executes. In
manufacturing application, an over 90% detection rate and a below 10% erroneous alert
rate are a general guideline for effect assessment of an optical inspection system.

The tabular CUSUM is devised by selecting values for the reference value K and the
decision interval H . It is suggested that these parameters be chosen to offer average run
length (ARL) performance [23,26]. We define K = kσ and H = hσ, where σ is the
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standard deviation of the sample used in establishing the CUSUM. Thus, selections of
the parameters k and h decide control limits of the CUSUM methods. Normally, we want
to choose k relative to the size of the deviation we want to detect; that is k = δ/2, where
δ is the size of the deviation in standard deviation units. In this study, using h = 4 ∼ 5
and k = 1 ∼ 2.5 generally provides a CUSUM that has good ARL properties against a
deviation of about 1σ ∼ 2σ in the process mean.

Table 1 displays the parameter selections and performance assessment of the two
CUSUM approaches. Figure 11 illustrates ROC curve of the suggested CUSUM meth-
ods with different parameter settings of k and h values, respectively. It indicates the
distortion detection performance of the standardized CUSUM approach with parameter
settings (k, h) values of (1.5, 5), (1.5, 5.2), or (1.75, 4) is better than those of the Tabular
CUSUM approach with parameter settings (k, h) values of (2.25, 4.6) or (2.25, 4.8). Simi-
larly, choices of the parameters λ and L determine control limits of the EWMA method.
Figure 12 represents ROC curve of the suggested EWMA method with distinct parameter
settings of λ and L values, respectively. It reveals the distortion detection performance of
the EWMA method with parameter settings (λ, L) values of (0.8, 4) has the best detection
result with erroneous alert rate 4.41% and defect detection rate 98%. Therefore, a suitable
method and good parameter selection, with its ROC curve closest to the upper-left cor-
ner, defeats the other schemes. This indicates that the more exact parameter settings of
the slight deviation detection techniques are chosen, the better outcomes of the distortion
detection will have.

Table 1. Parameter selections and performance assessment of the two
CUSUM methods

Performance Evaluation Tabular CUSUM Standardized CUSUM
Erroneous alert rate (α) 5.88% 5.88%

Distortion detection rate (1 − β) 95.60% 98.00%

Parameters
k = 2.25

h = 4.6, 4.8
k = 1.5, h = 5, 5.2 &

k = 1.75, h = 4

Figure 11. Two ROC curves of different cumulative sum approaches
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Figure 12. Different ROC curves of EWMA method with distinct param-
eter settings

4.2. Present visual inspection scheme. Present visual inspection scheme applies a
concentric circle pattern as a typical one to quantifying grades of distortion severity
on curved mirrors of vehicles. For the concentric circle pattern, distortion rate ε% is
computed as:

ε% =

∣

∣di,j − di

∣

∣

di

× 100% (11)

where di,j is a distance between an intersection point I(i, j) and the center point O(x, y),

di is the average of distances of 8 intersection points on the same concentric circle i, i.e.,

di =
di,1 + di,2 + · · · + di,8

8
(12)

For a defect-free curved mirror, the distortion rate ε% ≦ 3.8%. And, for a regular
plane mirror, the distortion rate ε% ≦ 1.7%. If a distortion rate of a testing curved
mirror image is more than 3.8%, we can conclude that some distortion flaws exist in
the testing image. Table 2 shows parameter settings and performance assessment of the
present visual inspection scheme and Figure 13 presents its corresponding ROC curve.
The present scheme achieves a better detection outcome with erroneous alert rate 4.41%
and distortion detection rate 98% while the threshold of distortion rate 1.15 is used.

4.3. Performance assessment of distinct detection techniques. To assess perfor-
mance of the distortion flaw detection on curved mirrors, Table 3 summarizes the detec-
tion outcomes of our tests. Three slight deviation detection methods and two traditional
schemes are assessed against the outcomes by professional inspectors. The average distor-
tion detection rates (1−β) of all testing samples by the five methods are 95.6% (Tabular

Table 2. Parameter selections and performance assessment of present in-
spection scheme

Control limits 1 1.05 1.1 1.15 1.2
α 8.09% 8.09% 5.15% 4.41% 2.94%

(1 − β) 93.20% 92.40% 90.80% 90.80% 88.40%
Control limits 1.25 1.3 1.35 2.5 3.8

α 2.21% 2.21% 2.21% 0.00% 0.00%
(1 − β) 84.40% 82.40% 81.60% 39.20% 31.60%
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Figure 13. The ROC curve of present visual inspection scheme

Table 3. Assessment table of distortion flaw detection by five distinct techniques

Methods

Tabular
CUSUM

(

k = 2.25/
h = 4.6, 4.8

)

Standardized
CUSUM

(

k = 1.75/
h = 4

)

EWMA
(

λ = 0.8
L = 4

) Shewhart
(L = 4)

Current visual
inspection

system
(Distortion rate)

α 5.88% 5.88% 4.41% 3.20% 4.41%
(1 − β) 95.60% 98.00% 98.00% 95.55% 90.80%

Time (sec.) 2.1005 2.1324 1.9724 1.4642 1.1006

CUSUM approach), 98.0% (Standardized CUSUM approach), 98.0% (EWMA method),
95.55% (Shewhart method) [23], and 90.8% (present vision scheme), respectively. Never-
theless, the two cumulative sum approaches have briefly higher erroneous alert rate (α),
5.88% (two CUSUM approaches). Otherwise, the other slight deviation detection method
has fairly lower erroneous alert rate, 4.41% (EWMA method). The suggested EWMA
method has higher correct classification rates (CCR) than the other techniques applied
to distortion flaw detection on curved mirror images. The average processing time for an
image with size 256 × 256 pixels is as follows: 2.10 sec. by Tabular CUSUM approach,
2.13 sec. by Standardized CUSUM approach, 1.97 sec. by EWMA method, 1.46 sec. by
Shewhart method, and 1.10 sec. by the present scheme. Hence, the suggested EWMA
method conquers difficulties of detecting distortion flaws on curved mirror and surpasses
in its ability of accurately differentiating small distortion flaws from regular regions.

The two standard inspection patterns have different detection area coverages: 62.83%
for concentric circle pattern and 81.53% for checkerboard pattern. Figure 14 shows the
diagrams of undetected areas in the standard inspection patterns. If we use the checker-
board pattern as the standard pattern, there will be more area to be inspected for each
testing image. Moreover, the distances between each intersection point and the center
point are important feature values to measure the magnitude of mirror distortion flaw.
The two standard patterns also have different numbers of the total intersection points per
image: 48 points for the concentric circle pattern and 60 points for the checkerboard pat-
tern. The larger the number of intersection points is, the more feature values we will have
to more accurately measure the magnitude of distortion flaws. Different total number of
the intersection points may result in different detection results for the detection methods.
Table 4 summarizes the detection outcomes of the two slight deviation detection meth-
ods using the two standard patterns. It indicates that the two slight deviation detection
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Figure 14. Two diagrams of undetected areas in two standard patterns

Table 4. Performance assessment of applying two standard patterns to
two slight deviation detection methods

Performance
Evaluation

Standardized CUSUM EWMA
Checkerboard Concentric Checkerboard Concentric

α 5% 10% 5% 10%
(1 − β) 96.92% 73.36% 95.38% 90.91%

methods using the checkerboard pattern have better detection performance than those of
using the concentric circle pattern.

5. Conclusions. This research proposes a novel vision system based on slight deviation
control techniques to inspect surface distortion flaws on curved mirrors of vehicles. To
quantify the deformation of a flawed mirror with surface distortion, a standard checker-
board pattern is designed to reflect the pattern on a testing mirror for image acquisition.
The reflected pattern image of the surface distorted mirror is compared with that of a reg-
ular mirror for measuring the deformation and locating the distortion flaws by the slight
deviation control techniques. Experimental outcomes demonstrate that the suggested
EWMA method achieves a high probability (98%) of accurately differentiating distortion
flaws and a low probability (4.4%) of mistakenly detecting regular images as flawed ones on
curved mirror images. Future research may extend the suggested approach to determining
the severity levels of the surface distortion flaws (e.g., very serious, serious, moderately
serious, and minor) and employ the suggested techniques to detect transparent glass with
distinct surface distortion flaws.
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