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Abstract. This study solves the problem of the fault detection filter design for switched
time-delay systems with quantization effects. We introduce the static quantizer, and the
quantizer error is concerned about in this study. Subsequently, we design fault detection
filters as residual generators to make exponential stability of augmented switched systems.
Then, for the disturbances and the faults input, the estimation error between the faults
and residuals is minimized. The fault detection (FD) problem is translated into the
problem of H∞ filtering. Lyapunov-Krasovskii function is constructed with average dwell-
time switching rules, sufficient conditions are established for FD filter based on linear
matrix inequality (LMI), and the filter gains are obtained by solving the problem of convex
optimization. Finally, we give an example to demonstrate the theoretical developments
by numerical simulations.
Keywords: Fault detection, Time-delay, Switched systems, Static quantizer

1. Introduction. With the development of technology, control problems encountered in
modern industrial process are becoming more and more complex [1]. As a special type of
hybrid systems, switched systems have a lot of engineering applications, such as aircraft
control system [2], robot control system [3] and electric power system [4]. A typical
switched system is a control system consisting of a set of continuous (or discrete) time
subsystems and a switching rule that decides how to switch between subsystems [5-7].

The system with time-delay refers to the current trend of development obviously de-
pends on the state of past history [8]. At present, time domain method is mainly used for
delay dependent problems in the world. The time domain method of time-delay systems
stability analysis is based on Lyapunov-Krasovskii function and LMIs [9].

There is a time delay which is in a subsystem model or switched signal called a switched
time-delay system. It has a strong practical background, such as power systems and
network control systems [10]. At present, the main research methods of stability are
single Lyapunov function method, multiple Lyapunov functions and ADT approach [11].

In the network control system, the signal is transmitted through the network. Therefore,
there must be quantization processors to convert analog signals and digital signals into
one another. At present, the research on quantitative control theory mainly focuses on
two aspects: static quantizer and dynamic quantizer. Static quantizer mainly includes
two forms: uniform quantizer and logarithmic quantizer [12]. The advantage of static
quantizer is that it is simple in structure and easy to be maintained in practice. Because
the logarithm quantizer saves the bandwidth compared with the uniform quantizer, most

DOI: 10.24507/ijicic.14.04.1465

1465



1466 J. LI, X. LI AND Q. SU

scholars use a logarithmic quantizer to quantify the signal [13]. In view of the above
advantages of the logarithm quantizer, the logarithm quantizer is used in this paper.

On the other hand, FD technique has been the international attention of the automatic
control community. There are three main types of FD approaches: the model-based
method, the signal-based method and the knowledge-based method [14]. The model-
based fault detection method has become more important in the last decades [15]. Such
methods of FD are generally in two steps: in order to generate residual signals, an observer
or a filter is constructed; tracking the residual signal for realizing the FD. Along with the
development of robust control technology, the approach of FD using H∞ optimization
method is attracting more and more attention.

However, it should be pointed out that the FD of the current switched time-delay
systems with quantizer is still in its initial stage [16, 17].

It is noted that the addition of the quantizer will introduce the quantization error.
Hence, new methods are required to deal with the problem of quantizer error. The tradi-
tional modeling method, which does not consider the time-delay and quantization condi-
tion, is no longer suitable for network transmission requirements. Therefore, the research
of FD problem for switched time-delay systems with quantizer is of great theoretical and
practical significance.

In view of the above problems, this paper studies the fault detection filter design prob-
lem for switched time-delay systems with quantization effects [18]. First, a static logarith-
mic quantizer is designed. Subsequently, a robust FD filter is designed which takes static
quantizer error into account. Meanwhile, LMIs are established to satisfy the sufficient
conditions of a certain performance, and characterize the filter gains by solving a convex
linear matrix. The main contributions of this paper are as follows. The proposed FD filter
design considers the requirements of network transmission, the systems output is quan-
tized, the switched time-delay is considered, and a method to overcome the quantization
error is proposed.

This paper is structured in the following order. In Section 2, the problem of the
FD switched time-delay systems with quantization effects and the design objectives is
introduced. Sufficient conditions are illustrated for tracking system performances and
details of the FD filter design method are presented in Section 3. Section 4 presents an
example to illustrate the given approach. Section 5 provides the conclusions of this study.

2. Problem Formulation.

2.1. Problem statement. Consider discrete-time switched time-delay systems as fol-
lows

x(k + 1) =
N∑

j=1

ζj(k)(Ajx(k) + Adjx(k − d) + Bjf(k) + Ejw(k))

y(k) =
N∑

j=1

ζj(k)(Cjx(k) + Cdjx(k − d) + Djf(k) + Fjw(k))

(1)

where x(k) ∈ Rn is the state vector, y(k) ∈ Rm is the measured output, and f(k) ∈ Rnd

and w(k) ∈ Rnd are the fault vector and disturbance input respectively, which belongs
to l2[0 ∞). The positive integer d and N stand for the state delay and the number of
subsystems respectively. ζj(k) is switching signal which represents the j-th subsystem

when ζj(k) = 1. ζj(k): k ∈ Z+, j ∈ L = {1, . . . , N}, Z+ → {0, 1} and
∑N

j=1 ζj(k) = 1.
The matrices Aj, Adj, Bj, Ej, Cj, Cdj, Dj and Fj are of appropriate dimensions for each
subsystem, and switch with µ at the switching instant.
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The following logarithmic quantizer is used for quantization [18]: when the quantizer
input is a scalar, the set of the logarithmic quantizer q(·) quantization series has the
following description: U = {±u(i) : u(i) = ρiu(0), i = 0,±1,±2, . . .}, u(0) > 0, 0 < ρ < 1
and mapping relationship q(·) satisfies

q(y) =


u(i)

1

1 + δ
u(i) < y ≤ 1

1 − δ
u(i)

0 y = 0
−q(−y) y < 0

where y is the input of quantizer, u is the output of quantizer, δ is the parameter, and ρ
is the quantization density, and satisfies δ = 1−ρ

1+ρ
.

Then, the output y(k) with quantizer can be written as yq(k) = q(y(k)), where the
quantizer error is e(k) = yq(k) − y(k).

Remark 2.1. In the network control system, we need to pay attention to data transmission
in the limited bandwidth of communication channel intervention. Therefore, the system
needs to design the quantizer for signal transmission. There are two types: static quantizer
and dynamic quantizer [19, 20]. In this paper, the authors use the logarithmic quantizer
of static quantizer.

The design of FD filters is as follows

xf (k + 1) =
N∑

j=1

ζj(k)(Afjxf (k) + Bfjyq(k))

r(k) =
N∑

j=1

ζj(k)(Cfjxf (k) + Dfjyq(k))

(2)

where xf (k) is the filters’ state, r(k) is residual signal for switched system (1) and the
matrices Afj, Bfj, Cfj, and Dfj are appropriate dimensions’ filter parameters which are
to be determined.

To detect, there is no need to estimation fault f(k) directly. The fault signals of a
certainly frequency band are more useful for the study; therefore, the fault signals can be
weighed. The weighted fault denotes f̂(k) = Wf (z)f(k) with a presented weighted matrix
Wf (z). The minimal realization of Wf (z) is supposed to be

xw(k + 1) =
N∑

j=1

ζj(k)(Awjxw(k) + Bwjf(k))

f̂(k) =
N∑

j=1

ζj(k)(Cwjxw(k) + Dwjf(k))

(3)

where xw(k) is the weighted fault’s state, f(k) and f̂(k) are the original fault and the
weighted fault, respectively. Matrices Awj, Bwj, Cwj and Dwj (j ∈ L) are known.

Remark 2.2. By introducing the Wf (z), it limits the frequency range of the fault sig-
nal, but it can improve the performance of the system and capture the frequency domain
characteristics that reflect different frequency characteristics. Moreover, f̂(k) can get the
appropriate dimension by choosing Wf (z).

Denoting the augmented state vector x̃(k) =
[
xT (k), xT

fj(k), xT
w(k)

]T
, x̃(k − d) =[

xT (k − d), 0, 0
]T

, w̃(k) =
[
wT (k), eT (k), fT (k)

]T
and re(k) = r(k) − f̂(k), where
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e(k) = yq(k) − y(k), the augmented switched systems are obtained as follows

x̃(k + 1) =
N∑

j=1

ζj(k)
(
Ãjx̃(k) + Ãdjx̃(k − d) + B̃jw̃(k)

)

re(k) =
N∑

i=1

ζj(k)
(
C̃jx̃(k) + C̃djx̃(k − d) + D̃jw̃(k)

)
, j ∈ L

(4)

where [
Ãj Ãdj B̃j

C̃j C̃dj D̃j

]

=


Aj 0 0 Adj 0 0 Ej 0 Bj

BfjCj Afj 0 BfjCdj 0 0 BfjFj Bfj BfjDj

0 0 Awj 0 0 0 0 0 Bwj

DfjCj Cfj −Cwj DfjCdj 0 0 DfjFj Dfj DfjDj − Dwj


Remark 2.3. It should be pointed out that the estimation of weighted fault f̂(k) is provided
by the residual signal r(k). Since the weighted matrix Wf (z) is given, the weighted fault

f̂(k) changes when system fault f(k) happens. According to re(k) = r(k) − f̂(k), the

residual signal r(k) tracks the weighted fault signal f̂(k). Therefore, measuring r(k) can
achieve the purpose of detecting the fault f(k). That is, we only need to focus on the

relationship between re(k) and f̂(k).

The following task is the design of the FD filter: for a given system (1), a switching
signal satisfying the average dwell time is designed; meanwhile, the FD filters are designed
to make augmented system (4) satisfy exponential stability and minimize the influence of
interference w̃(k) on the error re(k). The interference signal includes input disturbance
w(k) and quantizer error e(k). Under zero-initial condition, let the scales γ > 0 and
0 < α < 1, the performance weighted gain γ’s infimum is made small in the feasibility of

∞∑
k=0

e−αkrT
e (k)re(k) ≤ γ2

∞∑
k=0

w̃T (k)w̃(k) (5)

Remark 2.4. In a network control system, the signal needs to be transmitted over the
network. Therefore, the signal needs to be quantized before transmission. According to
augmented system (4), the FD filter design becomes an H∞ filter problem satisfying the
performance index (5). Afterward, it minimizes the influence of interference w̃(k) and
makes the residual signal r(k) sensitive to the fault.

Since designing Afj, Bfj, Cfj, Dfj of the FD filters, evaluating the generated residual
is the next objective. In this study, we choose the residual evaluation function Jr(k) as
follows

Jr(k) =

√√√√1

k

k∑
s=1

rT (s)r(s),

where k represents the evaluation time step. Then, we choose the threshold as follows

Jth(k) = sup
w(k)∈l2[0,∞)
f(k)=0,j∈L

Jr(k)
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Remark 2.5. The threshold Jth is the residual evaluation function Jr(k)’s supremum with
the disturbance input belonging to l2[0,∞) and the fault free. In practice, the Jth is the
estimation of the Jr(k) without the fault.

As a result, we can detect faults on the basis of the logical rules as follows{ ∥Jr(k)∥ ≤ Jth, no fault

∥Jr(k)∥ > Jth, fault detected with alarm

2.2. Preliminaries. At the end of this section, some known lemmas and definitions are
introduced.

Definition 2.1. For any t0 < ts < tv, denote Nσ(t)(ts, tv) as the switching number during
the time period (ts, tv). If Nσ(t)(ts, tv) ≤ N0 + (tv − ts)/τa, for τa > 0, N0 ≥ 0, τa goes by
the name of average dwell time (ADT).

Definition 2.2. For there exist constants a > 0 and b > 0, σ(t) is the switching signal.
If the solution of the system satisfies ∥x(k)∥ ≤ a∥x(0)∥ce

−bk, ∀k ∈ L, where ∥x(0)∥c =
sup−h≤θ≤0∥x(θ)∥, system (4) satisfies globally uniformly exponentially stable (GUES).

Lemma 2.1. [21]. Assuming that a symmetric matrix Θ ∈ Rn×n, M and H of column
dimension n are given matrices, there are necessary and sufficient conditions for matrix
F to establish inequality Θ + MTFH + HTFTM < 0 which holds: N T

MΘNM < 0,
NHΘN T

H < 0, where NM and NH represent arbitrarily bases of null space of M and H,
respectively.

3. The Fault Detection Filter Design. The authors will investigate the aforemen-
tioned FD problems in this section. Firstly, following lemma is given, and the expected
inequality conditions are constructed.

3.1. Conditions for FD filter with quantization effects.

Lemma 3.1. Considering augmented system (4), let γ > 0, 0 < α < 1 and µ ≥ 1. If the
Lyapunov-Krasovskii function Vσ(k)

(
x̃(k)

)
exists, the following inequalities are satisfied:

Vσ(k)

(
x̃(k)

)
≤ e−αVσ(k)

(
x̃(k − 1)

)
− Γ(k − 1) (6)

Vσ(k)

(
x̃(k)

)
≤ µVσ(k−1)

(
x̃(k)

)
(7)

where Γ(k) , rT
e (k)re(k) − γ2w̃T (k)w̃(k).

For any switching signal with the ADT

τa ≥ τ ∗
a = ceil

[
ln µ

α

]
(8)

where the function ceil(ν) represents rounding real number ν to the nearest integer greater
than or equal to ν.

Then augmented system (4) is GUES satisfying weighted l2 performance with gain γ.
Moreover, the state decay can be given by

∥x(k)∥ ≤
√

b

a
e−0.5(α− lnµ

τa
)k∥x(0)∥ (9)

where a = λmin

(
Pσ(kq)

)
, b = λmax

(
Pσ(kq)

)
+ λmax

(
Qσ(kq)

)
, ∀σ(kq) ∈ L.
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Proof: Firstly, we consider the stability of system (4) when w̃(k) = 0. The following
Lyapunov-Krasovskii function for the jth (σ(kq) = j) subsystem of system (4) is chosen:

Vj(x̃(k)) = x̃T (k)Pjx̃(k) +
k−1∑

s=k−d

eα(s−k+1)x̃T (s)Qjx̃(s) (10)

Along trajectory of the augmented switched system (4), we have

Vj(k + 1) − e−αVj(k)

= x̃T (k + 1)Pjx̃(k + 1) +
k∑

s=k−d+1

eα(s−k)x̃T (s)Qjx̃(s)

−

(
e−αx̃T (k)Pjx̃(k) + e−α

k−1∑
s=k−d

eα(s−k+1)x̃T (s)Qjx̃(s)

)
= x̃T (k + 1)Pjx̃(k + 1) − e−αx̃T (k)Pjx̃(k) + x̃T (k)Qjx̃(k)

− e−αdx̃T (k − d)Qjx̃(k − d)

=

[
x̃(k)

x̃(k − d)

]T

Πj

[
x̃(k)

x̃(k − d)

]
(11)

where

Πj =

[
ÃT

j PjÃj − e−αPj + Qj ÃT
j PjÃdj

∗ ÃT
djPjÃdj − e−αdQj

]
.

Hence, if Πj ≤ 0 is established, it follows from (11) that

Vj(x̃(k + 1)) ≤ e−αVj(x̃(k)) (12)

By iterating over (12), we get, for k ∈ [kq, kq+1)

Vj

(
x̃(k)

)
≤ e−α

(
k−kq

)
Vj

(
x̃(kq)

)
(13)

For any given integer k > 0, we let 0 = k0 < k1 < · · · < kq = kNσ(0,k)
denote the

switching instants of σ(kq) over the interval [0, k). According to (7) and (10), we can
easily obtain

Vj (x̃(kq)) ≤ µVj

(
x̃
(
k−

q

))
(14)

Combining (13) and (14), then one can derive that

Vσ(kq) (x̃(k)) ≤ e−α(k−kq)Vσ(kq)

(
x̃(kq)

)
≤ µe−α(k−kq)Vσ(kq−1)

(
x̃(k−

q )
)

≤ µe−α(k−kq)e−α(kq−kq−1)Vσ(kq−1)

(
x̃(kq−1)

)
≤ µ2e−α(k−kq−2)Vσ(kq−2)

(
x̃(kq−2)

)
≤ · · ·
≤ µNσ(k0,k)e−αkV0

(
x̃(k0)

)
(15)

As Definition 2.1 of the ADT Nσ(k0, k) ≤ N0 +(k−k0)/τa and (8), (15) can be written

as Vσ(kq) (x̃(k)) ≤ e−(α− lnµ
τa

)kV0

(
x̃(k0)

)
.

Denote a = λmin

(
Pσ(kq)

)
, b = λmax

(
Pσ(kq)

)
+ λmax

(
Qσ(kq)

)
, ∀σ(kq) ∈ L, it yields that

Vσ(kq)

(
x̃(k)

)
≥ a∥x̃(k)∥2 (16)
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Vσ(kq)

(
x̃(0)

)
≤ b∥x̃(0)∥2 (17)

Combining (16) and (17), we obtain ∥x̃(k)∥ ≤
√

b
a
e−0.5(α− lnµ

τa
)k∥x̃(0)∥.

Thus, system (4) is GUES satisfying the ADT for any switching signal.
Secondly, we verified that the system satisfies the l2 performance. The weighted l2

performance is established for augmented system (4) for zero initial condition x̃(k0) and
any nonzero w̃(k) ∈ l2 [0, ∞) . Let Γ(k) , rT

e (k)re(k) − γ2w̃T (k)w̃(k), and we have

Vσ(kq)(x̃(k)) ≤ e−αVσ(kq)(x̃(kq − 1)) − Γ(k − 1) (18)

By iterating over (18), we obtain

Vσ(kq)

(
x̃(k)

)
≤ e−α(k−kq)Vσ(kq)

(
x̃(kq)

)
−

k−1∑
s=kq

e−α(k−s−1)Γ(s)

≤ µe−α(k−kq)Vσ(kq−1)

(
x̃(k−

q )
)
−

k−1∑
s=kq

e−α(k−s−1)Γ(s)

≤ · · ·

≤ µNσ(k0,k)e−αkV0

(
x̃(k0)

)
−

k−1∑
s=0

µNσ(s,k)e−α(k−s−1)Γ(s).

Then, under the zero initial condition and due to the fact that V (x̃(k)) ≥ 0, we obtain

k−1∑
s=0

µNσ(s,k)e−α(k−s−1)Γ(s) ≤ 0 (19)

Since Γ(k) , rT
e (k)re(k) − γ2w̃T (k)w̃(k), (19) can be written as

k−1∑
s=k0

(
µNσ(s,k)e−α(k−s−1)

)
rT
e (s)re(s) ≤

k−1∑
s=k0

(
µNσ(s,k)e−α(k−s−1)

)
γ2w̃T (s)w̃(s) (20)

Multiplying both sides of (20) by e−Nσ(k0,k)lnµ, one can obtain

k−1∑
s=k0

(
µ−Nσ(k0,s)e−α(k−s−1)

)
rT
e (s)re(s) ≤

k−1∑
s=k0

(
µ−Nσ(k0,s)e−α(k−s−1)

)
γ2w̃T (s)w̃(s).

Moreover, it follows from (8) that 0 ≤ Nσ(k0, s) ≤ s−k0

τa
≤ (s−k0)α

lnµ
.

From the above and µ ≥ 1, then we have

k−1∑
s=k0

(
µ− (s−k0)α

lnµ e−α(k−s−1)
)
rT
e (s)re(s) ≤

k−1∑
s=k0

(
µ−Nσ(k0,s)e−α(k−s−1)

)
rT
e (s)re(s)

≤
k−1∑
s=k0

(
e−α(k−s−1)

)
γ2w̃T (s)w̃(s).

Since µ− (s−k0)α
lnµ = e−α(s−k0), then we obtain

k−1∑
s=k0

e−α(s−k0)e−α(k−s−1)rT
e (s)re(s) ≤

k−1∑
s=k0

e−α(k−s−1)γ2w̃T (s)w̃(s) (21)
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By integrating both sides of (21) from k = 1 to ∞, it arrives at

∞∑
k=1

k−1∑
s=k0

e−α(s−k0)e−α(k−s−1)rT
e (s)re(s) ≤

∞∑
k=1

k−1∑
s=k0

e−α(k−s−1)γ2w̃T (s)w̃(s).

Redistrict double integral interval, and we have
∞∑

k=s+1

∞∑
s=k0

e−α(s−k0)e−α(k−s−1)rT
e (s)re(s) ≤

∞∑
k=s+1

∞∑
s=k0

e−α(k−s−1)γ2w̃T (s)w̃(s) (22)

Translate double integral into repeated integral in (22), and then we obtain
∞∑

k=s+1

e−α(k−s−1)

∞∑
s=k0

e−α(s−k0)rT
e (s)re(s) ≤

∞∑
k=s+1

e−α(k−s−1)

∞∑
s=k0

γ2w̃T (s)w̃(s) (23)

Since
∑∞

k=s+1 e−α(k−s−1) = 1
1−e−α , (23) can become

1

1 − e−α

∞∑
s=k0

e−α(s−k0)rT
e (s)re(s) ≤

1

1 − e−α

∞∑
s=k0

γ2w̃T (s)w̃(s).

Since 0 < α < 1, we have
∑∞

s=k0
e−α(s−k0)rT

e (s)re(s) ≤
∑∞

s=k0
γ2w̃T (s)w̃(s).

It illustrates further that
∑∞

k=0 e−αkrT
e (k)re(k) ≤

∑∞
k=0 γ2w̃T (k)w̃(k). Therefore, we

have the conclusion that augmented switched system (4) is GUES and satisfies the l2 gain
γ with ADT satisfying (8) for any switching signal. �
Remark 3.1. In Lemma 3.1, we are not concerned about the condition when the delay
time includes switching points, that is k − kq < d, where the state delay d is a positive
integer. For the jth (σ(kq) = j) subsystem of the system, we have Lyapunov-Krasovskii

function: Vj(x̃(k)) = x̃T (k)Pjx̃(k) +
∑k−1

s=k−d eα(s−k+1)x̃T (s)Qjx̃(s). When k − kq < d, we
obtain

Vj(k + 1) − e−αVj(k)

=

[
x̃(k)

x̃(k − d)

]T
[

ÃT
j PjÃj − e−αPj + Qj ÃT

j PjÃdj

∗ ÃT
djPjÃdj − e−αdQj

] [
x̃(k)

x̃(k − d)

]
That is, Equation (11) remains unchanged. Therefore, the condition we are considering

is contained in Lemma 3.1.

Theorem 3.1. Let constants γ > 0, 0 < α < 1, µ > 1. If there exist matrix variables
Âfj, B̂fj, Ĉfj, D̂fj, Yaj, Maj, Nj and symmetric positive-definite matrices

Pj =

 Pj1 Pj2 Pj3

∗ Pj5 Pj6

∗ ∗ Pj9

 > 0, Qj =

 Qj1 Qj2 Qj3

∗ Qj5 Qj6

∗ ∗ Qj9

 > 0, j ∈ L,

satisfying the following inequalities

Ξj1 Ξj2 Ξj3 Ξj4 Ξj5 0

∗ Pj9 − He(Z) Ξj6 0 Ξj7 0

∗ ∗ −e−αPj + Qj 0 0 Ξj8

∗ ∗ ∗ −e−αdQj 0 Ξj9

∗ ∗ ∗ ∗ −γ2I Ξj10

∗ ∗ ∗ ∗ ∗ −I


< 0 (24)
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Pj − µPi ≤ 0, Qj − µQi ≤ 0 j, i ∈ N, i ̸= j (25)

where

Ξj1 =

[
Pj1 − He(Yj) Pj2 − Mj − NT

j

∗ Pj5 − aHe(Nj)

]
, Ξj2 =

[
Pj3

Pj6

]
,

Ξj3 =

[
Y T

j Aj + B̂fjCj Âfj 0

MT
j Aj + aB̂fjCj aÂfj 0

]
, Ξj4 =

[
Y T

j Adj + B̂fjCdj 0 0

MT
j Adj + aB̂fjCdj 0 0

]
,

Ξj5 =

[
Y T

j Ej + B̂fjFj B̂fj Y T
j Bj + B̂fjDj

MT
j Ej + B̂fjFj aB̂fj MT

j Bj + B̂fjDj

]
, Ξj6 =

[
0 0 ZT

j Awj

]
,

Ξj7 =
[

0 0 ZT
j Bwj

]
, Ξj8 =

[
D̂fjCj Ĉfj −Cwj

]T
,

Ξj9 =
[

D̂fjCdj 0 0
]T

, Ξj10 =
[

D̂fjFj D̂fj D̂fjDj − Dwj

]T
,

then augmented switched system (4) is GUES and satisfies the weighted l2 performance
with ADT satisfying (8) for any switching signal. In addition, if (24) and (25) are work-
able, then we can give the following FD filter gains in form of (2)[

Afj Bfj

Cfj Dfj

]
=

[
NT

j 0
0 I

]−1 [
Âfj B̂fj

Ĉfj D̂fj

]
.

Proof: Along the trajectory of switched system (4) and according to Lemma 3.1, we
obtain

Vj(k + 1) − e−αVj(k) − γ2w̃(k)T w̃(k) + re(k)T re(k)

=

 x̃(k)
x̃(k − d)

w̃(k)

T

Θj

 x̃(k)
x̃(k − d)

w̃(k)

 ,

where

Θj =


ÃT

j PjÃj − e−αPj

+ Qj + C̃T
j C̃j

ÃT
j PjÃdj + C̃T

j C̃dj ÃT
j PjB̃j + C̃T

j D̃j

∗ ÃT
djPjÃdj − e−αdQj + C̃T

djC̃dj ÃT
djPjB̃j + C̃T

djD̃j

∗ ∗ B̃T
j PjB̃j − γ2I + D̃T

j D̃j


and

Vj(x̃(k)) − µVi(x̃(k)) = x̃(k)T (Pj − µPi)x̃(k) +
k−1∑

s=k−d

eα(s−k+1)x̃T (s)(Qj − µQi)x̃(s),

j, i ∈ L, i ̸= j.

Hence, if the following inequalities are established

Θj < 0 (26)

Pj ≤ µPi, Qj ≤ µQi, j, i ∈ L, j ̸= i,

then switched system (4) is GUES with ADT satisfying (8) for any switching signal and
satisfies a weighted l2 performance according to Lemma 3.1.
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The convex conditions will be established, and we write (26) as follows Ãj Ãdj B̃j

I 0 0
0 I 0

T  Pj 0 0
∗ −e−αPj + Qj 0
∗ ∗ −e−αdQj

 Ãj Ãdj B̃j

I 0 0
0 I 0



+


C̃T

j C̃j C̃T
j C̃dj C̃T

j D̃j

∗ C̃T
djC̃dj C̃T

djD̃j

∗ ∗ −γ2I + D̃T
j D̃j

 < 0 (27)

Denote

Υj =


Pj 0 0 0

∗ −e−αPj + Qj + C̃T
j C̃j C̃T

j C̃dj C̃T
j D̃j

∗ ∗ −e−αdQj + C̃T
djC̃dj C̃T

djD̃j

∗ ∗ ∗ −γ2I + D̃T
j D̃j

 ,

and then we can get that (27) can be obtained
Ãj Ãdj B̃j

I 0 0
0 I 0
0 0 I


T

Υj


Ãj Ãdj B̃j

I 0 0
0 I 0
0 0 I

 < 0 (28)

On the other hand, it is equivalent to
0 0 0
I 0 0
0 I 0
0 0 I


T

Υj


0 0 0
I 0 0
0 I 0
0 0 I

 < 0 (29)

According to Lemma 2.1, (28) can be written as

Υj + He




−I

ÃT
j

ÃT
dj

B̃T
j

Wj

[
I 0 0 0

]
 < 0 (30)

where Wj introduced by Lemma 2.1 is an additional appropriate dimensions’ matrix
variable. The partitioning of Wj in form is given by

Wj =

 Yj Mj 0
Nj aNj 0
0 0 Zj

 .

According to Schur complement, (30) is equivalent to

Pj − He(Wj) W T
j Ãj W T

j Ãdj W T
j B̃j 0

∗ −e−αPj + Qj 0 0 C̃T
j

∗ ∗ −e−αdQj 0 C̃T
j

∗ ∗ ∗ −γ2I D̃T
j

∗ ∗ ∗ ∗ −I


< 0 (31)
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Define Âfj = NjAfj, B̂fj = NjBfj, Ĉfj = Cfj, D̂fj = Dfj, and then (31) becomes
(24). Thus, if inequalities (24) and (25) are established, augmented switched system (4)
for any nonzero w(k) ∈ l2[0,∞) is GUES and satisfies a weighted l2 performance gain γ.
Therefore, the proof is completed. �

3.2. Algorithm. It should be noted that the conditions (24) and (25) are both convex.
Thus, the problem of FD filters design can be converted into the problem of optimization
directly as follows:

min γ (32)

s.t. (24), (25), j, i ∈ L

Remark 3.2. The l2 gain γ is related to µ and α, and we can obtain Âfj, B̂fj, Ĉfj,

D̂fj, Nj and calculate the admissible ADT for the system by getting the solution of the
optimization problem.

The filters’ gain matrices Afj, Bfj, Cfj, Dfj can be derived from a standard procedure.

As follows, the Âfj, B̂fj, Ĉfj, D̂fj, Nj are expressed as the optimal solution of (32):

Afj = N−1
j Âfj, Bfj = N−1

j B̂fj, Cfj = Ĉfj, Dfj = D̂fj (33)

4. Example. Two examples are given in this section. Example 4.1 is given to illustrate
the feasibility of the design approach, and Example 4.2 is given for comparison to show
the advantage of this work.

Example 4.1. We give an example to illustrate the feasibility of the design approach
in Example 4.1. Switched system (1) with two subsystems is considered, and subsystem
parameters are given separately. The specific example is referenced from [22], which stud-
ied the controller design for a switched time-delay systems with quantized feedback. The
discrete-time state feedback controller is of the form u(k) = Kjx(k), where Kj is the state
feedback gain, u(k) is the control input, and x(k) is the state in [22].

In order to get stable systems, the parameters are set as Aj = A
′
j + B

′
jKj, Cj =

C
′
j +D

′
jKj, where A

′
j and B

′
j are the matrices of state, and C

′
j and D

′
j are the matrices of

control input in [22]. Bj and Dj are given by authors, which are matrices with appropriate
dimensions of the fault vector, and other parameters are the same as [22].[

A1 Ad1 B1 E1

C1 Cd1 D1 F1

]
=

 0.36346 −0.1129 −0.2 0.1 1.3 0.4
−0.15481 0.18065 0.2 0.15 1.6 0.5
−0.15481 −0.11935 0.02 0 1.4 0.1

 ,

[
A2 Ad2 B2 E2

C2 Cd2 D2 F2

]
=

 −0.37225 0.64933 −0.06 0.04 1.5 0.2
0.1185 0.06622 0.02 0.06 1.2 0.6
0.0185 0.06622 0 0.06 1.5 0.2

 .

Choose the matrices of fault weighting systems in the form of (2) as follows

Aw1 = Aw2 = −0.6, Bw1 = Bw2 = 0.5, Cw1 = Cw2 = 0.9, Dw1 = Dw2 = −0.4.

Let α = 0.05, µ = 1.1, d = 4, a1 = a2 = 2. The optimal performance gain is γ = 0.9754
by solving the problem of convex optimization. And FD filters’ gain matrices are obtained[

Af1 Bf1

Cf1 Df1

]
=

 0.0025 −0.0008 −0.0002
−0.0008 0.0033 −0.0045
0.1537 0.0902 −0.5791

 ,
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Af2 Bf2

Cf2 Df2

]
=

 −0.0019 0.0028 −0.0008
0.0023 −0.0014 −0.0021
−0.0103 −0.1310 −0.5712

 .

We choose w1(k) = w2(k) = 0.8 sin(0.2πk)e−0.02k as the disturbance of each subsystem
to demonstrate simulation results of FD purposes. The minimal ADT τ ∗

a must be satisfying
τ ∗
a = ceil

[
lnµ
α

]
= 2. In this paper, we choose the ADT of switching signal τa > 2, which

is shown in Figure 1.

Figure 1. Switching signal with ADT τa > 2

Figure 2. Residual signal of the filers r(k) (left) and the residual evalua-
tion function Jr(k) (right) for case (1)

Case (1): The fault for the 1st subsystem occurs from 50 steps to 90 steps, and the
fault here is a unit amplitude. In the left chart of Figure 2, the dotted line is the residual
signal r(k) with no fault and the solid line is the residual signal r(k) with fault. When the
fault occurs, the residual signal r(k) changes sharply for the residual signal tracks the fault
signal. In the right chart of Figure 2, the straight dotted line is the threshold Jthr(k)

, the

dotted line is the residual evaluation function Jr(k) with no fault and the solid line is the
residual evaluation function Jr(k) with fault. When the residual evaluation function Jr(k)
is greater than the threshold Jthr(k)

, the fault is detected. Through the simulation results,

we can see that when the fault of the 1st subsystem occurs at k = 50, Jr(k) > Jthr(k)
at

k = 50 steps. Thus, we can detect the fault of the 1st subsystem.
Case (2): The fault for the 2nd subsystem occurs from 100 steps to 140 steps, and the

fault here is a unit amplitude. In the chart of Figure 3, the meaning of curve’ form is the
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Figure 3. Residual signal of the filers r(k) (left) and the residual evalua-
tion function Jr(k) (right) for case (2)

Figure 4. Residual signal of the filers r(k) (left) and the residual evalua-
tion function Jr(k) (right) in Example 4.2 for case (1)

same as Figure 2. Through the simulation results, when the fault of the 2nd subsystem
occurs at k = 100, Jr(k) > Jthr(k)

at k = 100 steps. Thus, the fault of 2nd subsystem is
detected.

Example 4.2. Example 4.2 is referenced from [23], which studied robust FD for switched
systems with time-delay, but the requirements of network transmission are not considered.
Switched system (1) with two subsystems is considered, and subsystem parameters are
given in [23].

In Example 4.2, the disturbance of each subsystem w1(k), w2(k) and the ADT parameter
setting are the same as Example 4.1. The FD filters are designed.

The fault for the 1st subsystem occurs from 50 steps to 90 steps, the simulation results
are shown in Figure 4. For purposes of comparison, the simulation results which use the
matrices of FD filters in [23] are shown in Figure 5. The fault here is a unit amplitude.
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Figure 5. Residual signal of the filers r(k) (left) and the residual evalua-
tion function Jr(k) (right) in [23] for case (1)

The curves of different forms represent the same meaning as Example 4.1. The simulation
results of the 1st are shown in Figure 4, when the fault occurs at k = 50, Jr(k) > Jthr(k)

at k = 51 steps. Then, it is easy to draw from Figure 5 that the fault of the 1st subsystem
can be detected at k = 53. By comparing the simulation results of Figure 4 and Figure 5,
although [23] can also achieve the purpose of FD, it is clear that the speed of FD is slow
in Figure 5.

5. Conclusions. The problem of the FD filter design for discrete-time switched time-
delay systems with quantization effects has been studied in this paper. First of all, an l2
performance for the system has been proposed. Subsequently, sufficient conditions have
been obtained to character given performance. The FD filters are represented by a formula
as LMI conditions, and by searching for solutions of convex optimization problems, we
can get the gains of the filters. Finally, an example is given to demonstrate the feasibility
of the proposed approach. The future work is to consider the effect of packet dropout on
the FD design for switched systems with quantizer.
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