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Abstract. In this paper, the fault detection (FD) problem is investigated for networked
control systems with random packet losses, stochastic time-delays, sensor saturation as
well as randomly occurring faults. A series of random variables is utilized to describe
the occurring probability of packet losses, time-delays and faults where all the variables
are independent but satisfy the Bernoulli distribution. The measured output is subject
to sensor saturation which is described by sector-nonlinearities. Then the mathematical
model for networked control systems is established. The aim of this paper is to design an
FD filter such that, for unknown input, the FD problem is converted into H∞ filtering
problem and, the error between the residual signal and the fault signal is made as small
as possible. By Lyapunov stability theory and linear matrix inequalities (LMIs) method,
sufficient conditions for the existence of the desired FD filter are established. Finally,
a numerical simulation is presented to verify the effectiveness and usefulness of the de-
signed method.
Keywords: Fault detection, Networked control systems, Time-delays, Sensor satura-
tion, Random occurring faults, Linear matrix inequality (LMI)

1. Introduction. With the rapid developments of network technology in recent years,
networked control systems (NCSs), which offer many advantages in terms of strong flexibil-
ity, easy installation and convenient sharing, have gained more popularity [1-3]. In NCSs,
controllers, actuators, sensors and other system components are interconnected through
the network. However, the insertion of communication networks will also lead to some
problems such as packet losses, signal quantization and network-induced delays which
will deteriorate the performance of systems and be a source of instability [4,5]. Therefore,
many scholars have devoted themselves to investigating FD problems for NCSs.

Taking the increasing requirement for higher safety and reliability into consideration,
fault detection (FD) problem for NCSs has been a hot topic [6-10]. In addition, due to
the unpredictable network changes, the random occurring phenomena (ROP) in NCSs
usually exist due primarily to the network size, limited battery storage, communication
constraints and spatial deployment. ROP refer to those phenomena that appear intermit-
tently in a random way based on a certain probability law [11]. Recently, ROP have been
investigated in a wealth of literature. For example, by taking the random packet dropout
into account, the FD filter design was investigated for discrete-time system [12]. Multi-
ple randomly occurring nonlinearities were concerned in uncertain time-varying systems
based on which the filter was designed [13]. To deal with the H∞ fuzzy filtering problem
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for discrete-time Takagi-Sugeno (T-S) fuzzy systems with randomly occurring uncertain-
ties and randomly occurring interval time-varying delays, a full-order fuzzy filter design
method was discussed [14]. Unfortunately, an important class of network-induced ran-
domly occurring faults has been largely overlooked in spite of its great importance in
NCSs. To solve the FD problem, most literature assumes that the fault occurs definitely,
which is different from the practical systems where fault occurs randomly and the occur-
rence probability can be estimated via statistical tests. Random faults may occur mainly
because of the aging, disturbances, electromagnetic interference, and temporary failure
of the sensors or actuators. If not properly coped with, the random faults would deteri-
orate the performance of systems or even cause the instability. In previous studies, only
a limited number of results dealt with randomly occurring faults of networked control
systems. For example, finite-horizon fault estimation problem for discrete time-varying
systems with randomly occurring faults was investigated [15]. On the other hand, the
finite-horizon fault estimation problem with randomly occurring fault was discussed for
nonlinear time-varying systems [16]. To deal with the finite-time FD problem of non-
linear quantized large-scale networked systems with randomly occurring nonlinearities
and faults, the mode-dependent observer-based finite-time fault detection filter was con-
structed [17]. In [18], fault was assumed to occur randomly and H∞ fault estimator was
designed for the time-varying systems with fading channels.

Moreover, saturation often exists in sensors due to the physical constraint such that
sensors cannot provide unlimited signals. For some sensors in practical systems such
as temperature sensor and image sensor, saturation is inevitable and could degrade the
performance. A great deal of attention has been paid to various types of systems [19-
23]. For example, the H∞ filter has been designed for nonlinear networked systems with
sensor saturations [21]. In [23], the FD problem has been investigated for Markovian
jump systems with sensor saturation and randomly varying nonlinearities. Besides, the
network-induced delays are inherently varying, random, and mutative [24]. However, most
literature has been concerned with single time-varying delays which are assumed to occur
and ignores the distributed, time-varying state delays which occur randomly in reality.

It is worth mentioning that FD problem with stochastic distributed time-varying delays,
packet losses and randomly occurring faults for discrete networked systems subject to
sensor saturation has not been researched to the best of our knowledge. For instance, in
[25], FD problem for NCSs with randomly occurring faults was considered while stochastic
time-delays and sensor saturation were not investigated. In [26], delays and faults were
implicitly assumed to occur despite their randomness in practical systems. Summarizing
the above discussion, in this article, we will deal with the FD filter design for NCSs
involving packet losses, sensor saturation, stochastic distributed time-delays and randomly
occurring faults. The purpose of this paper is to design the FD filter so that we can
determine whether faults occur in NCSs. Sufficient conditions are established for the
existence of the desired FD filter.

The remainder of this paper can be listed as follows. Section 2 formulates the problem
under consideration. In Section 3, the H∞ performance analysis and FD filter design are
addressed. A numerical example is presented in Section 4. Finally, Section 5 concludes
this article.

Notations: The notations used throughout the paper are as follows. Rn denotes the n-
dimensional Euclidean space; 0 and I represent the zero matrix and identity matrix with
compatible dimensions. The notation P > 0 (≥ 0) means that P is real symmetric and
positive definite (semidefinite). L2[0,∞) is the space of square summable vectors. E is
the mathematical expectation and prob{·} means the occurrence probability of the event.
In symmetric block matrices or complex matrix expressions, we use ∗ to represent a term
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that is induced by symmetry and diag{·} denotes the block diagonal matrix. Matrices, if
their dimensions are not explicitly stated, are assumed to have compatible dimensions.

2. Problem Statement and Preliminaries. Consider the following discrete-time net-
worked control system with randomly occurring faults and stochastic time-delays: x(k + 1) = Ax(k) +B

q∑
i=1

bi(k)x(k − τi(k)) +D1w(k) + α(k)Ef(k)

y(k) = σ(Cx(k)) +D2w(k)

(1)

where x(k) ∈ Rn is the state vector; y(k) ∈ Rm is the system output with saturation;
w(k) ∈ Rq is the disturbance input, which belongs to L2[0,∞); f(k) ∈ Rl is the fault
to be detected; τi(k) (i = 1, 2, . . . , q) are time-varying communication delays satisfying
τm ≤ τi(k) ≤ τM , where τm and τM are constant positive scalars representing the lower
and upper bounds of the communication delays; A, B, C, D1, D2, E are known constant
matrices with appropriate dimensions.

The stochastic variables bi(k) (i = 1, 2, . . . , q) and α(k) are mutually uncorrelated
Bernoulli distributed white-noise sequences and a natural assumption on the sequences
bi(k) (i = 1, 2, . . . , q) and α(k) is made as follows.

Prob{bi(k) = 1} = E{bi(k)} = bi

Prob{bi(k) = 0} = E{1 − bi(k)} = 1 − bi

Var{bi(k)} = E
{(
bi(k) − bi

)2}
= bi

(
1 − bi

) (2)

Prob{α(k) = 1} = E{α(k)} = α

Prob{α(k) = 0} = E{1 − α(k)} = 1 − α

Var{α(k)} = E
{
(α(k) − α)2} = α (1 − α)

(3)

where bi ∈ [0, 1] and α ∈ [0, 1] are known constants.
At the kth time point, α(k) = 0 indicates that the fault occurs in the system and

α(k) = 1 shows that the system works normally. The greater the value of α is, the more
probably the fault occurs.

Taking the phenomenon of sensor saturation into account, the saturation function σ(·) :
Rm → Rm is defined as

σ(v) =
[
σT

1 (v1), σ
T
2 (v2), . . . , σ

T
m(vm)

]T
(4)

where σi(vi) = sign(vi) ·min {vi,max, |vi|}, vi,max is the i-th element of the saturation level
vector vmax. It is worth noting that the notation of “sign” denotes the signum function.
σ(·) belongs to [L1, L2] with some given diagonal matrices L1, L2, where L1 ≥ 0, L2 ≥ 0
and L2 > L1. And σ(·) satisfies the following inequality:

[σ(Cx(k)) − L1Cx(k)]
T [σ(Cx(k)) − L2Cx(k)] ≤ 0 (5)

σ(Cx(k)) can be divided into a linear and nonlinear part

σ(Cx(k)) = ϕ(Cx(k)) + L1Cx(k) (6)

The nonlinear vector-valued function ϕ(Cx(k)) satisfies ϕ(Cx(k)) ∈ ΦS and ΦS is
described as:

Φs
∆
=
{
ϕ : ϕT (Cx(k))

[
ϕ(Cx(k)) − LCx(k)

]}
≤ 0 (7)

where L = L2 − L1.
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Then the system output with saturation can be described as:

y(k) = ϕ(Cx(k)) + L1Cx(k) +D2w(k) (8)

Assuming that there is a network channel between the sensor and the fault detection
filter, packet losses are inevitably induced because of the limited bandwidth of the network.
The measurement output is described as:

yf (k) = δ(k)(ϕ(Cx(k)) + L1Cx(k) +D2w(k)) (9)

In (9), the stochastic variable δ(k) is a Bernoulli distributed white-noise sequence with
the probability distribution as follows:

Prob{δ(k) = 1} = E{δ(k)} = δ

Prob{δ(k) = 0} = E{1 − δ(k)} = 1 − δ

Var{δ(k)} = E
{(
δ(k) − δ

)2}
= δ

(
1 − δ

) (10)

where δ is a known constant.
Select the following full-order FD filter:{

x̂(k + 1) = Af x̂(k) +Bfyf (k)

r(k) = Cf x̂(k) +Dfyf (k)
(11)

where x̂(k) ∈ Rn denotes the state vector of the filter; r(k) ∈ Rl is the residual that is
compatible with the fault vector f(k); yf (k) is the measurement output and the filter
input; Af , Bf , Cf , Df are appropriately dimensioned filter matrices to be determined.

Defining ξ(k) =
[
xT (k) x̂T (k)

]T
, θ(k) =

[
wT (k) fT (k)

]T
, e(k) = r(k) − f(k), from

(1), (9) and (11), the filtering error system can be obtained:

ξ(k + 1) =
(
A1 + δ̃kA2

)
ξ(k) +

(
B1 + δ̃kB2

)
ϕ(Cx(k))

+
(
C1 + δ̃kC2 + α̃kC3

)
θ(k) +

q∑
i=1

Adiξ(k − τi(k))

+

q∑
i=1

Ãdiξ(k − τi(k))

e(k) =
(
A3 + δ̃kA4

)
ξ(k) +

(
B3 + δ̃kDf

)
ϕ(Cx(k)) +

(
C4 + δ̃kC5

)
θ(k)

(12)

where

δ̃k = δ(k) − δ, α̃k = α(k) − α, A1 =

[
A 0

δBfL1C Af

]
, A2 =

[
0 0

BfL1C 0

]
,

B1 =

[
0
δBf

]
, B2 =

[
0
Bf

]
, C1 =

[
D1 αE

δBfD2 0

]
, C2 =

[
0 0

δBfD2 0

]
,

C3 =

[
0 E
0 0

]
, Adi =

[
biB 0
0 0

]
, Ãdi =

[
(bi(k) − bi)B 0

0 0

]
,

A3 =
[
δDfL1C Cf

]
, A4 =

[
DfL1C 0

]
, B3 = δDf ,

C4 =
[
δDfD2 −I

]
, C5 =

[
DfD2 0

]
Definition 2.1. When θ(k) = 0, system (12) is said to be exponentially mean-square sta-
ble if there exist constant ϕ > 0 and τ ∈ (0, 1), such that E

{
∥ξ(k)∥2} ≤ ϕτ kE

{
∥ξ(0)∥2},

for all ξ(0) ∈ Rn, k ∈ I+.
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With this definition, the original FD filter design of the system (1) can be further
converted intoH∞ filtering problem: design an FD filter (11) that makes the error between
residual and fault signal as small as possible such that the following two requirements (Q1)
and (Q2) are satisfied. By minimizing the H∞ norm of the difference, the effect of the
disturbance can be minimized and the sensitivity of the residual to fault can be maximized
[27].

(Q1) The filtering error system (12) is exponentially mean-square stable;
(Q2) Under the zero-initial condition, the following H∞ performance index is satisfied.

∞∑
k=0

E
{
∥e(k)∥2} ≤ γ2E

{
∞∑

k=0

∥θ(k)∥2

}
(13)

where γ is made as small as possible in the feasibility of (13).
The next step is to introduce a residual evaluation stage including an evaluation function

J(k) and a threshold J(th) which are described as:

J(k) = E


[

k∑
s=0

rT (s)r(s)

]1/2
 , J(th) = sup

ω(k)∈l2,f(k)=0

J(L) (14)

where L represents the maximum time step of J(k). We can detect the occurrence of
fault by comparing J(k) with J(th) according to the following rule:{

J(k) > J(th) ⇒ faults ⇒ alarm
J(k) ≤ J(th) ⇒ no faults

(15)

After above treatments, the randomly occurring fault, stochastic time-delays, packet
losses and sensor saturation are considered in the system (12). To deal with the filtering
error system (12), we need to prove the stability and H∞ performance.

3. Main Results. In this section, firstly, the conditions are investigated under which
system (12) is exponentially mean-square stable and guarantees the performance defined
in (13). Then the fault detection filter design problem will be discussed based on the
results of the stability and H∞ performance analysis. The following lemmas will be used
in the derivation of our main results.

Lemma 3.1. [28]: let V (ξ(k)) be a Lyapunov functional. If there exist real scalars λ ≥ 0,
µ > 0, ν > 0, and 0 < φ < 1, such that

µ ∥ξ(k)∥2 ≤ V (ξ(k)) ≤ ν ∥ξ(k)∥2 (16)

E {V (ξ(k + 1)) |ξ(k)} − V (ξ(k)) ≤ λ− φV (ξ(k)) (17)

Then the sequence ξ(k) satisfies

E
{
∥ξ(k)∥2} ≤ ν

µ
∥ξ(0)∥2 (1 − φ)k +

λ

µφ
(18)

Lemma 3.2. [29]: For matrices A, Q = QT and P > 0 such that ATPA − Q < 0 holds
if and only if there exists a matrix G such that[

−Q ATG
GTA P −G−GT

]
< 0 (19)
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3.1. H∞ performance analysis. In the following theorem, we will present a sufficient
condition such that the filtering error system (12) is exponentially stable in the mean
square and has a guaranteed performance γ.

Theorem 3.1. For given positive scalars α, bi, δ and FD filter parameters Af , Bf , Cf ,
Df , the filtering error system is exponentially stable in the mean square with a guaranteed
performance γ > 0 if there exist positive matrices P > 0 and Qj > 0 (j = 1, 2, . . . , q),
such that the following LMI (20) holds.

Φ =


Φ11 + A

T

3A3 + f 2
1A

T

4A4 ∗ ∗ ∗

Φ21 +B
T

3A3 + f2
1D

T
f A4 Φ22 +B

T

3B3 + f 2
1D

T
f Df ∗ ∗

Φ31 Φ32 Φ33 ∗
Φ41 Φ42 Φ43 Φ44

 < 0 (20)

where

Φ11 = A
T

1 PA1 +

q∑
j=1

(τM − τm + 1)Qj − P + f 2
1A

T

2 PA2

Φ21 = B
T

1 PA1 + f 2
1B

T

2 PA2 + LĈ, Φ22 = B
T

1 PB1 + f2
1B

T

2 PB2 − 2I, Φ31 = ẐTPA1,

Φ32 = ẐTPB1, Φ33 = ẐTPẐ + diag
{
−Q1 + Ã1,−Q2 + Ã2, . . . ,−Qq + Ãq

}
Ãi = bi

(
1 − bi

)
ÂT

dPÂd, Âd =

[
B 0
0 0

]
, Φ41 = C

T

1 PA1 + f 2
1C

T

2 PA2 + C
T

4A3 + f2
1C

T

5A4,

Φ42 = C
T

1 PB1 + f 2
1C

T

2 PB2 + C
T

4B3 + f 2
1C

T

5Df , Φ43 = C
T

1 PẐ,

Φ44 = C
T

1 PC1 + f 2
1C

T

2 PC2 + f 2
2C

T

3 PC3 + C
T

4C4 + f 2
1C

T

5C5 − γ2I, f1 =
√
δ
(
1 − δ

)
,

f2 =
√
α (1 − α), Ẑ =

[
Ad1, Ad2, . . . , Adq

]
, Ĉ =

[
C 0

]
Proof: Choose the Lyapunov functional as follows:

V (k) = V1(k) + V2(k) + V3(k) (21)

where

V1(k) = ξT (k)Pξ(k) V2(k) =

q∑
j=1

k−1∑
i=k−τj(k)

ξT (i)Qjξ(i)

V3(k) =

q∑
j=1

−τm∑
m=−τM+1

k−1∑
i=k+m

ξT (i)Qjξ(i)

We will prove Theorem 3.1 from two aspects. On the one hand, we are ready to confirm
the exponential stability of the system (12) with θ(k) = 0; on the other hand, we will
move to the proof of the H∞ performance for the system (12) with θ(k) ̸= 0.

When θ(k) = 0, defining ∆V (k) = V (k + 1)− V (k) and taking mathematical expecta-
tion, we can get

E {∆V1(k)}
= E

{
ξT (k + 1)Pξ(k + 1) − ξT (k)Pξ(k)

}
= E

{[(
A1 + δ̃kA2

)
ξ(k) +

(
B1 + δ̃kB2

)
ϕ(Cx(k)) +

q∑
i=1

Adiξ(k − τi(k))
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+

q∑
i=1

Ãdiξ(k − τi(k))

]T

P

[(
A1 + δ̃kA2

)
ξ(k) +

(
B1 + δ̃kB2

)
ϕ(Cx(k))

+

q∑
i=1

Adiξ(k − τi(k)) +

q∑
i=1

Ãdiξ(k − τi(k))

]}

= E

{
ξT (k)

[
A

T

1 PA1 + f2
1A

T

2 PA2 − P
]
ξ(k) + 2ϕT (Cx(k))

[
B

T

1 PA1

+f 2
1B

T

2 PA2

]
ξ(k) + ϕT (Cx(k))

[
B

T

1 PB1 + f 2
1B

T

2 PB2

]
ϕ(Cx(k))

+ 2

(
q∑

i=1

Adiξ(k − τi(k))

)T

PA1ξ(k) + 2

(
q∑

i=1

Adiξ(k − τi(k))

)T

PB1ϕ(Cx(k))

+

(
q∑

i=1

Adiξ(k − τi(k))

)T

P

(
q∑

i=1

Adiξ(k − τi(k))

)

+

q∑
i=1

bi
(
1 − bi

)
ξT (k − τi(k))Â

T
dPÂdξ(k − τi(k))

}

(22)

E {∆V2(k)}

≤ E

{
q∑

j=1

(
ξT (k)Qjξ(k) − ξT (k − τj(k))Qjξ(k − τj(k)) +

k−τm∑
i=k−τM+1

ξT (k)Qjξ(k)

)}
(23)

E {∆V3(k)} ≤ E

{
q∑

j=1

(
(τM − τm)ξT (k)Qjξ(k) −

k−τm∑
i=k−τM+1

ξT (k)Qjξ(k)

)}
(24)

According to (7), we have

−2ϕT (Cx(k))ϕ(Cx(k)) + 2ϕT (Cx(k))LĈξ(k) ≥ 0 (25)

Denoting ς(k) =
[
ξT (k) ϕT (Cx(k)) ξT (k − τ1(k)) . . . ξ

T (k − τq(k))
]T

and combin-
ing (22)-(25), we have

E {∆V (k)} ≤ ςT (k)Φ1ς(k) (26)

where Φ1 =

 Φ11 ∗ ∗
Φ21 Φ22 ∗
Φ31 Φ32 Φ33

.

It is obvious that Φ < 0 represents Φ1 < 0. For nonzero ς(k), Φ1 < 0 indicates that
E {∆V (k)} < 0, and then we can get

E {∆V (k)} = E {V (k + 1)} − E {V (k)} ≤ −λmin (−Φ1) ς
T (k)ς(k)

< − λmin (−Φ1) ξ
T (k)ξ(k) < −αξT (k)ξ(k)

(27)

where 0 < α < min{λmin(−Φ1), σ}, σ := max{λmax(P ), λmax(Q1), . . . , λmax(Qq)}

α ∥ξ(k)∥2 < V (k) ≤ σ ∥ξ(k)∥2 (28)

∆V (k) < −αξT (k)ξ(k) < −α
σ
V (k) := −ψV (k) (29)

Therefore, according to Definition 2.1 and Lemma 3.1, we can conclude that system
(12) is exponentially mean-square stable.

Next, we will prove that the performance defined in (13) is guaranteed.
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When θ(k) ̸= 0, defining η(k) = [ςT (k) θT (k)]T , the following inequality can be
obtained according to (20):

E {∆V (k + 1)} − E {∆V (k)} + E
{
eT (k)e(k)

}
− γ2θT (k)θ(k) = ηT (k)Φη(k) < 0 (30)

Summing up (30) from 0 to ∞ with respect to k yields:

∞∑
k=0

E
{
∥e(k)∥2} ≤ γ2E

{
∞∑

k=0

∥θ(k)∥2

}
+ E {∆V (0)} − E {∆V (∞)} (31)

Considering the zero initial condition ξ(0) = 0, we have

∞∑
k=0

E
{
∥e(k)∥2} ≤ γ2E

{
∞∑

k=0

∥θ(k)∥2

}
(32)

So we can know that the H∞ performance constraint is achieved and the proof is complete.

3.2. FD filter design. Having proved that the system is exponentially mean-square
stable and satisfies the H∞ performance constraint based on Theorem 3.1, we are in a
position to deal with the design of FD filter.

Theorem 3.2. For given positive scalars α, bi and δ, the filtering error system is expo-
nentially stable in the mean square with a guaranteed performance γ > 0 if there exist
positive matrices P > 0, Qj > 0 (j = 1, 2, . . . , q), matrices G, Af , Bf , Cf and Df

satisfying the following inequality:

Ξ =

 Ξ1 ∗ ∗
0 Ξ2 ∗
Ξ3 Ξ4 Ξ5

 < 0 (33)

Moreover, if (33) is feasible, the parameters of the desired FD filter can be given by[
Af Bf

Cf Df

]
=

[
G−T

3 0

0 I

][
Af Bf

Cf Df

]
(34)

where

P =

[
P1 P2

P T
2 P3

]
, G =

[
G1 G2

G3 G3

]
, Ξ1 =

 −P +
q∑

j=1

(τM − τm + 1)Qj ∗

LĈ −2I


Ξ2 = diag

{
−Q1 + Ã1,−Q2 + Ã2, . . . ,−Qq + Ãq,−γ2I

}

Ξ3 =


Ξ311 Ξ312

Ξ321 Ξ322

Ξ331 Ξ332

Ξ341 Ξ342

0 0

 , Ξ4 =



0 Ξ412

0 Ξ422

GT Ẑ Ξ432

0 Ξ442

0 Ξ452


Ξ5 = diag

{
−I,−I, P −G−GT , P −G−GT , P −G−GT

}
, Ξ311 =

[
δDfL1C Cf

]
Ξ312 = δDf , Ξ321 =

[
f1DfL1C 0

]
, Ξ322 = f1Df

Ξ331 =

[
GT

1A+ δBfL1C Af

GT
2A+ δBfL1C Af

]
, Ξ332 =

[
δBf

δBf

]
, Ξ341 =

[
f1BfL1C 0

f1BfL1C 0

]
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Ξ342 =

[
f1Bf

f1Bf

]
, Ξ412 =

[
δDfD2 −I

]
, Ξ422 =

[
f1DfD2 0

]
Ξ432 =

[
GT

1D1 + δBfD2 αGT
1E

GT
2D1 + δBfD2 αGT

2E

]
, Ξ442 =

[
f1BfD2 0

f1BfD2 0

]
, Ξ452 =

[
0 f2G

T
1E

0 f2G
T
2E

]
Proof: Notice that (20) can be rewritten as follows

[
Ξ1 ∗
0 Ξ2

]
+


A

T

3

B
T

3

0

C
T

4




A

T

3

B
T

3

0

C
T

4


T

+


f1A

T

4

f1D
T
f

0

f1C
T

5




f1A

T

4

f1D
T
f

0

f1C
T

5


T

+


A

T

1

B
T

1

ẐT

C
T

1

P

A

T

1

B
T

1

ẐT

C
T

1



T

+


f1A

T

2

f1B
T

2

0

f1C
T

2

P

f1A

T

2

f1B
T

2

0

f1C
T

2


T

+


0

0

0

f2C
T

3

P


0

0

0

f2C
T

3


T

< 0

(35)

Based on Schur complement, we can transform (35) into the form of (36)

Ψ =

 Ξ1 ∗ ∗
0 Ξ2 ∗

Ψ3 Ψ4 Ψ5

 < 0 (36)

where

Ψ3 =

[
A

T

3 f1A
T

4 A
T

1 f1A
T

2 0

B
T

3 f1D
T
f B

T

1 f1B
T

2 0

]
, Ψ4 =

[
0 0 ẐT 0 0

C
T

4 f1C
T

5 C
T

1 f1C
T

2 f2C
T

3

]
Ψ5 = diag {−I,−I,−P−1,−P−1,−P−1}

By the application of Lemma 3.2, we can notice that (36) holds if and only if there
exists real matrix G, such that the following inequality (37) holds

Γ =

 Ξ1 ∗ ∗
0 Ξ2 ∗
Γ3 Γ4 Ξ5

 < 0 (37)

where

Γ3 =


A3 B3

f1A4 f1Df

GTA1 GTB1

f1G
TA2 f1G

TB2

0 0

 , Γ4 =


0 C4

0 f1C5

GT Ẑ GTC1

0 f1G
TC2

0 f2G
TC3


Then let us partition P and G respectively as:

P =

[
P1 P2

P T
2 P3

]
, G =

[
G1 G2

G3 G3

]
(38)

Denote

Af = GT
3Af , Bf = GT

3Bf , Cf = Cf , Df = Df (39)
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After some conventional matrix operations, it can be clearly seen that (37) is equivalent
to (33). Furthermore, from the condition (34), we know that G3 is invertible, and then
the parameters of FD filter can be obtained from (39) immediately.

Therefore, if the conditions (33) and (34) hold, we can derive the conclusion that the
obtained filter in the form of (11) makes the system (12) exponentially mean-square stable
with an H∞ performance γ. The proof is completed.

Remark 3.1. For the purpose of obtaining the parameters of FD filter, we use slack matrix
variables G1, G2 and G3 so as to decouple Lyapunov matrix and the system matrices. The
results obtained may be less conservative because the method here is better than special
structure constraints on Lyapunov matrix adopted in the most existing literature.

Remark 3.2. (33) is an LMI over both the matrix variables and the scalar γ2. γ2 can
also be included as an optimization variable for LMI (33). Among these feasible solutions,

the minimum attenuation level γmin =
√
γ2 for the FD dynamics (12) can be obtained and

the sub-optimal FD filter can be readily found by solving the following convex optimization
problem.

Minimize : γ2

subject to (33) over P, Qj, G, Af , Bf , Cf , Df (40)

4. Numerical Example. In this section, a numerical example is employed to verify the
effectiveness and usefulness of the proposed method. Inspired by the model proposed in
[20], we consider the discrete-time networked control system with the following parame-
ters:

A =

 0.2 0 0.1
0.1 −0.3 0.1
0.1 0 −0.2

 , B =

 0.2 0 0.1
0.1 −0.3 0.1
0.1 0.1 0.2

 , D1 =

 −0.2 0 0.1
−0.1 0.1 0.1

0 0.2 0.1

 ,
E =

 0.6
0.1
0.2

 , C =

 10 0.8 0.7
−6 0.9 0.6
0.2 0.3 0.1

 , D2 =

 0.9 −0.6 0.1
0.5 0.8 0.1
0.2 0.3 0.1

 ,
L1 =

 0.6 0 0
0 0.7 0
0 0 0.6

 , L2 =

 0.8 0 0
0 0.8 0
0 0 0.8


2 ≤ τi(k) ≤ 3 (i = 1, 2, . . . , q)

Supposing that the stochastic parameters α = 0.4, b1 = 0.4, b2 = 0.6, δ = 0.3, the
sensor nonlinearity is given by

ϕ(Cx(k)) =
L1 + L2

2
Cx(k) +

L2 − L1

2
sin(x(k))

By using the MATLAB LMI toolbox, for system (12), from Theorem 3.2 we can obtain
the minimal H∞ performance index γmin = 1.603 and the desired FD filter parameters as
follows:

Af =

 0.4143 0.0423 0.1336
0.1780 −0.5254 0.0805
0.2394 −0.0476 −0.1828

 , Bf =

 −0.1433 0.2891 1.0350
0.3507 0.0026 −1.8620
0.1199 0.2357 −0.1808


Cf =

[
−0.0937 −0.0194 −0.0749

]
, Df =

[
−0.0741 −0.2072 0.3743

]
It should be pointed out that the obtained optimal performance index γmin will change

as the values of α, b1, b2 and δ change. Letting b1 = 0.4 and δ = 0.3, it can be observed
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Table 1. γmin for different α and b2

γmin α = 0.4 α = 0.6 α = 0.7 α = 0.8

b2 = 0.5 1.487 1.832 2.009 2.190

b2 = 0.6 1.603 1.991 2.191 2.395

b2 = 0.8 1.935 2.433 2.694 2.959

b2 = 0.9 2.174 2.747 3.048 3.355

Table 2. γmin for different δ

δ = 0.1 δ = 0.3 δ = 0.7 δ = 0.8

γmin 2.038 1.991 1.914 1.897

from Table 1 that the corresponding optimal performance, namely, the disturbance at-
tenuation performance deteriorates with increased α and b2 which is in consistent with
the actual engineering application. In addition, the disturbance attenuation performance
also degrades as the δ increases and can be observed from Table 2 by letting α = 0.6,
b1 = 0.4 and b2 = 0.6.

From Tables 1 and 2, we can see that it makes sense to study the randomness of packet
losses, time-delays and faults which have an important impact on NCSs.

The initial states are selected as x(0) =
[

0 0 0
]T

, x̂(0) =
[

0 0 0
]T

. Without
loss of generality, the disturbance input and the fault signal are supposed to be

w(k) =

 e−0.02k sin (0.2k)
e−0.03k sin (0.3k)
e−0.04k sin (0.4k)

 , f(k) =

{
0.6 + 0.2 sin(k), 70 ≤ k ≤ 150
0, else

Under the conditions of α = 0.4, b1 = 0.4, b2 = 0.6 and δ = 0.3, the residual response
r(k) and evolution of residual evaluation function J(k) are shown in Figures 1 and 2.

According to (14), we select the threshold J(th) = supf=0E
{[∑400

k=0 r
T (k)r(k)

]1/2
}

. An

average value J(th) = 1.2184 is obtained by using 400 Monte Carlo simulations and the

0 50 100 150 200 250 300 350 400
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

time step k

r(
k
)

Figure 1. Residual signal with α = 0.4
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Figure 2. Residual evaluation function with α = 0.4

Table 3. Thresholds and time steps for different α

α = 0.4 α = 0.6 α = 0.7 α = 0.9 α = 1
Thresholds 1.2184 1.0236 0.7779 0.5472 0.5114
Time steps 15 10 7 4 2

0 50 100 150 200 250 300 350 400
0

0.5

1

1.5

2

2.5

3

time step k

J
(k

)

 

 

Fault Case

J(th)

Figure 3. Residual evaluation function with α = 0.6

fault can be detected in 15 time steps after its occurrence. By letting b1 = 0.4, b2 = 0.6
and δ = 0.3, for different values of α, the values of J(th) and time steps are listed in Table
3 and the evolutions of residual evaluation function are shown in Figures 3-6.

It is worth mentioning that the fault occurs definitely when α = 1 and can be quickly
detected in 2 time steps. Obviously, the more probably the fault occurs, the shorter the
detecting time of a fault would be. The designed FD filter is sensitive to the occurrence
of fault and the simulation results demonstrate the usefulness of the method presented in
this paper.
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Figure 4. Residual evaluation function with α = 0.7
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Figure 5. Residual evaluation function with α = 0.9
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Figure 6. Residual evaluation function with α = 1
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5. Conclusions. In this paper, we have investigated the FD problem for NCSs with
random packet losses, stochastic distributed time-varying delays, sensor saturation and
randomly occurring faults. Different from the existing literature, the time-delays are
assumed to be varying and random, and fault is supposed to occur randomly as well.
Sufficient conditions have been derived such that the filtering error system is exponentially
mean-square stable and satisfies the H∞ performance constraint. FD filter has been
designed to be the residual generator and we determine whether fault occurs on the basis
of residual evaluation stage. A numerical example has been given to demonstrate the
effectiveness and usefulness of the addressed method. Further, the closed-loop networked
control systems with random sensor saturation and nonlinear perturbations will be our
future topic of research.
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