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Abstract. This paper investigates the problem of observer-based model reference state
tracking control over a finite-time interval. Matched and unmatched cases respectively
are considered as part of the system. In order to attain the objective of state tracking for
an unmeasured state over a finite-time interval, both a state observer and a controller are
designed for the system under consideration. Additionally, a switching law is designed
via the state tracking error, with the considered tracking error being finite-time bounded
and the considered system achieving finite-time weighted H∞ performance, with average
dwell-time. The conservatism of the considered system is investigated, by defining the
variable boundaries. Finally, a numerical example is provided as a means of illustrating
the effective design method.
Keywords: State tracking, Finite-time bounded, Average dwell-time, Switched control,
Conservative analysis

1. Introduction. Model reference control (MRC) has been confirmed as an effective
mechanism for engineering systems [1-8]. In [9], an optimal linear quadratic Gaussian
controller is devised, according to an internal reference model. Both reference signal
and system error are evaluated during the control design. As a means of obtaining the
precise tracking performance in [10], a time-varying model-based controller is assessed
according to the model principle. A two-stage controller is presented in [11], with the
study proposing a control scheme based on the model-based networked predictive output
tracking control approach, which enables tracking performance. In [12], a novel output
tracking controller is designed according to a specified reference model, which guarantees
the tracking error dynamics as robustly stable. Nevertheless, the MRC system can be
regarded as a switched system, comprising of both matched and unmatched subsystems.
Through this means, the traditional MRC issue can be transformed, achieving the stability
offered by switched systems. Based on the multiple Lyapunov function approach of [13,14],
an appropriate switching law and a state feedback controller are constructed in order to
obtain the desired disturbance attenuation and global stabilization necessary for tracking
control. In [15], a priori awareness of the maximum asynchronous duration is assessed.
Utilizing the method of average dwell-time (ADT), the state error is converged up to a
stated threshold by the proposed laws and switching signals with uncertainties in [16].
In order to match the distinct reference models in [17], controllers are switched through
adopting the switched control approach.

Contemporarily, finite-time state tracking has attracted increasing attention in terms
of the MRC field. Nevertheless, during various practical applications [18-20], finite-time
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stability (FTS) and finite-time bounded (FTB) have been desirable properties; therefore,
one may feel concerned with regard to system trajectories over a fixed time interval. As a
means of estimating the reference trajectory in [21], finite-time estimators are constructed,
while the finite-time convergence property is analyzed. Applying the method of finite-time
convergent observer design, in addition to finite-time output feedback control design, the
problem of finite-time output feedback trajectory tracking control is investigated in [22].
In [23], the finite-time attitude control law is proposed, stating that the requisite attitude
can be monitored for a rigid body over a finite-time interval. Additionally, the issue
of finite-time output tracking control is assessed in relation to matched and unmatched
disturbances for n-order multi-agent systems. Furthermore, a finite-time disturbance
observer is proposed in [24], resulting in the attainment of finite-time output consensus
tracking, regardless of all the disturbances.

It is important to observe that not all states can be measured precisely in engineering
systems [25-27]. In [28], an extended state observer is designed as a means of ensuring
the tracking error within a given boundary, while stability is analyzed via the Lyapunov
theory. In [29], a switched fuzzy state observer is devised as a means of estimating the
unmeasured states, while the tracking errors are confined to all times within the prescribed
parameters. Through applying the Lyapunov-Krasovskii functional approach as in [30],
the Luenberger-type observer is devised for state estimation, while the observer-based
controller is developed further. Utilizing a set of linear matrix inequalities in [31], a state
observer is developed with bounded unknown inputs and measured disturbances, which is
guaranteed to produce a precisely asymptotic state. It should be noted that the scheme of
observer-based adaptive iterative learning control is proposed for nonlinear systems with
unknown time-varying parameters and delays [32].

Motivated by the above literature, the issue of finite-time MRC for state tracking
control over a finite-time interval is investigated through the switched control method.
The contribution of this paper can be outlined as follows. Firstly, a state observer has
been proposed to resolve the state-unmeasured cases. Secondly, sufficient conditions for
the design of a switching signal and a controller are established to guarantee the tracking
error is finite-time bounded, while the considered system attained the finite time weighted
H∞ performance. Meanwhile, both matched and unmatched cases are considered within
the system, by the error Lyapunov-like function. Furthermore, the conservatism of the
considered system is analyzed with various parameters.

The paper is organized as follows. Section 2 introduces the state observer and the
considered systems. In addition, the relative controller and switching signal are also given
in this section. Section 3 demonstrates the property of finite-time tracking error bounded
via average dwell-time approach. Meanwhile, the finite-time weighted H∞ performance
has achieved. An example is given to show the feasibility of the designed approach of state
observer, controller and switching signal in Section 4. It is noted that the conservatism
of the considered system has studied with different boundaries in this section. Some
conclusions of this paper are given in the last section.

Notation: For a matrix A, AT denotes its transpose. For a symmetric matrix, A > 0
(A ≥ 0) and A < 0 (A ≤ 0) denote positive-definiteness (positive semi-definite matrix)
and negative-definiteness (negative semi-definite matrix), respectively. λ(A) is used to
define the eigenvalues of the matrix A. Rn and Rm×n denote the n-dimensional Euclidean
space and the set of all real m×n matrices. ∥A∥ denotes the absolute value of the matrix
A.
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2. Problem Formulation. Consider the following continuous-time system:

ẋ(t) = Ax(t) + Buσ(t)(t) + Ew(t),

y(t) = Cx(t),
(1)

where x(t) ∈ Rn×1 is the state vector, y(t) ∈ R is the output, w(t) is the exogenous
disturbance, uσ(t)(t) ∈ R is the control input and the matrices A ∈ Rn×n, B ∈ Rn×1,
C ∈ R1×n and E ∈ Rn×1 are constant matrices.

The control objective for the system (1) is to make the state of x(t) track the reference
state xm(t) exactly over a finite-time interval, which is generated from the reference model:

ẋm(t) = Amx(t) + Bmum(t), (2)

where Am ∈ Rn×n is a constant Hurwitz matrix, Bm ∈ Rn×1 is a constant matrix, um(t) ∈
R is a bounded input signal and xm(t) is the desirable state for x(t) to track.

In some engineering environment, the state of x(t) is difficult to measure, such that the
state observer is required. Consequently, a state observer can be obtained as follows:

˙̂x(t) = Ax̂(t) + Buσ(t)(t) + G(y − Cx̂(t)), (3)

where x̂(t) denotes the estimate of x(t), G is the gain matrix of the state observer with
appropriate dimension. Therefore, the observer error can be defined:

ē(t) = x(t) − x̂(t) (4)

and

˙̄e(t) = Ax(t) + Buσ(t)(t) + Ew(t) − (Ax̂(t) + Buσ(t)(t) + G(y − Cx̂(t)))

= Aē(t) + Ew(t) − GCē(t) = (A − GC)ē(t) + Ew(t). (5)

Similarly, the tracking error is defined as follows:

ẽ(t) = x̂(t) − xm(t) (6)

and

˙̃e(t) = Ax̂(t) + Buσ(t)(t) + GCē(t) − (Amxm(t) + Bmum(t))

= Amẽ(t) + (A − Am)x̂(t) + GCē(t) + Buσ(t)(t) − Bmum(t). (7)

In order to realize the state tracking, we propose the controller uσ(t)(t) as follows:

uσ(t)(t) = k1x̂(t) + k2um(t) + k3(t), (8)

and the parameters of the controller are determined by the following equations:

k1 = MP (A − Am), k2 = NBm, k3(t) = −ζGCE
√

dw t,

where M ∈ R1×n and N ∈ R1×n are the adjust matrices for the controller uσ(t)(t), ζ is

the adjust matrix and
√

dw is the upper bound of the disturbance. The positive definite
matrices P and Q satisfy the following inequality

AT
mP + PAm ≤ −Q.

Before giving our results, we define two kinds of working cases: matched and unmatched
cases. Given a threshold value ξ, if the state error exceeds the threshold ξ, we define system
(1) is running in the unmatched cases. On the contrary, if the state error is within the
threshold ξ, we define system (1) is running in the matched cases, respectively, as follows:{ ∥x̂(t) − xm(t)∥ ≤ ξ, matched cases

∥x̂(t) − xm(t)∥ > ξ, unmatched cases
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Thus, we have designed an appropriate switching signal to solve the problem of state
tracking for matched and unmatched cases, as follows:{ ∥x̂(t) − xm(t)∥ ≤ ϑ, low level signal

∥x̂(t) − xm(t)∥ > ϑ, high level signal

and ϑ is a tolerance of state tracking for system (1).

Figure 1. Structure of observer-based MRC control

Remark 2.1. Based on the above definition, system (1) can be seen as a switched system
during the runtime which contains matched and unmatched cases. In order to describe
the matched and unmatched cases over a finite-time interval Tf [t0, Tf ], we denote T�[0, t]
and T�[0, t] to stand for the runtime of matched and unmatched cases, respectively.

Remark 2.2. Given a positive constant η to express the relationship between them. If
T�[t0,Tf ] ≥ η(Tf − t0) holds for any t ∈ Tf [t0, Tf ], we define that the switching signal σ(t)
has the maximum ratio between the runtime of matched and unmatched cases. And the
constant η with this property is called MRRT for simplicity.

Remark 2.3. In this paper, high level signal and low level signal denote that the controller
uσ(t)(t) works or does not work. Meanwhile, they are expressed by 1 and 0 in Figure 2,
respectively.

Assumption 2.1. The external disturbance w(t) is bounded and satisfies∫ Tf

0

wT (t)w(t)dt ≤ dw, dw ≥ 0,

where Tf is the upper bound of a finite-time interval.

Remark 2.4. Assumption 2.1 is a standard assumption for studying finite-time bound-
edness problem, which is presented in [33-35].

Definition 2.1. [36]: For a switching signal σ(t) and each t2 ≥ t1 ≥ 0, let Nσ(t)(t2, t1)
denote the number of discontinuities of σ(t) in the open interval (t1, t2). If there exist two
positive numbers N0 and τa that satisfy

Nσ(t)(t2, t1) ≤ N0 +
t2 − t1

τa

, ∀t2 ≥ t1 ≥ 0,

then, τa is called average dwell-time and N0 is called a chatter bound.
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Definition 2.2. [34]: Given a positive definite matrix R, positive constants t0, Tf , c1,
c2, and c1 < c2. Consider a finite interval [t0, Tf ] and a certain switching signal σ(t). If
∀w(t) satisfies Assumption 2.1 and

xT (t0)Rx(t0) < c1 ⇒ xT (t)Rx(t) < c2, ∀t ∈ [t0, Tf ],

the continuous-time linear system (1) is said to be finite-time bounded with respect to
(c1, c2, Tf , dw, R, σ).

Remark 2.5. This paper investigates the state tracking of MRC in a finite-time interval.
Tracking error reflects the dynamic performance of state tracking directly. Therefore, we
will employ ẽT (t)Rẽ(t) rather than xT (t)Rx(t) in the following researches, particularly.

Lemma 2.1. [37]: If there exist functions ϕ(t) and ν(t) satisfying

ϕ̇(t) ≤ −ξϕ(t) + κν(t)

then

ϕ(t) ≤ e−ξ(t−t0)ϕ(t0) + κ

∫ t−t0

0

e−ξ(t−τ)ν(τ)dτ.

We assume that the trajectory x(t) is continuous at everywhere, that is, the state of
switched system does not jump at switching instants and the switching signal σ(t) has
finite switching number in finite interval time. Meanwhile, t0 and x0 represent the initial
time and initial state respectively.

3. Main Results. In this section, we study the tracking error finite-time bounded for
the MRC problem, and then we will focus on the finite-time weighted H∞ performance
for the linear system (1).

3.1. Finite-time error bounded for the MRC problem. The bounded property for
the error of state tracking over a finite-time interval is a precondition in MRC problem.
Hence, we will analyze the finite-time tracking error bounded property of the continuous-
time system (1) in this section.

Theorem 3.1. For given constants α > 0, β > 0, P > 0, η > 0, µ > 1, c2 > c1 > 0,
τa > 0, N0 ≥ 0 and a finite-time interval [t0, Tf ]. For ∀t ∈ [t0, Tf ], if the following
inequalities hold

T�[t0,Tf ] ≥ η(Tf − t0), (9)

Re λ(A − GC) < 0, (10)

and

λ1 = max
(
λ

(
P̃

))
= max

(
λ

(
R− 1

2 PR− 1
2

))
,

λ2 = min
(
λ

(
P̃

))
= min

(
λ

(
R− 1

2 PR− 1
2

))
,

then, for any switching signal σ with average dwell-time satisfying

τf > τ ∗
f = (Tf − t0) ln µ/F ∗, (11)

the tracking error ẽ(t) in (6) is finite-time bounded with respect to (c1, c2, Tf , dw, R, σ),
where

F ∗ = (η(α + β) − β)(Tf − t0) − ln(λ1c1) + ln

(
λ2c2 +

∫ Tf

t0

yT (τ)y(τ)dτ − γ2dw

)
.
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Proof: Firstly, choose an error Lyapunov-like function as follows

V (t) = V (ẽ(t)) = ẽT (t)P ẽ(t).

a) Error Lyapunov-like function V (ẽ(t)) = ẽT (t)P ẽ(t) is continuous and its derivative
satisfies

V̇ (ẽ(t)) ≤

{
−αV (ẽ(t)) + J, ∀t ∈ T�[t0, Tf )

βV (ẽ(t)) + J, ∀t ∈ T�[t0, Tf )
, (12)

where J(t) , −y(t)T y(t) + γ2w(t)T w(t).
b) V (ẽ(p)) ≤ µV (ẽ(q)) holds on all the switching point ti, ∀

(
σ(ti) = p, σ(t−i ) = q

)
∈

Q×Q, p ̸= q, i ∈ Z+.
At the initial instant t = t0, we will get

V (ẽ(t0)) = ẽT (t0)P ẽ(t0) ≤ λmax

(
P̃

)
ẽT (t0)Rẽ(t0) ≤ λ1c1. (13)

Meanwhile, ∀t ∈ [t0, Tf ], one has

V (ẽ(t)) = ẽT (t)P ẽ(t) ≥ λmin

(
P̃

)
ẽT (t)Rẽ(t) = λ2ẽ

T (t)Rẽ(t). (14)

Thus, we can obtain

ẽT (t)Rẽ(t) ≤ V (ẽ(t))

λ2

. (15)

According to Lemma 2.1 and (12), we achieve

V (ẽ(t)) ≤

{
e−α(t−tk)V (ẽ(tk)) + Γ1(t), ∀t ∈ T�[tk, Tf ],

eβ(t−tk)V (ẽ(tk)) + Γ2(t), ∀t ∈ T�[tk, Tf ],
(16)

where

Γ1(t) ,
∫ t

tk

e−α(t−τ)J(τ)dτ, Γ2(t) ,
∫ t

tk

eβ(t−τ)J(τ)dτ.

Therefore, according to the property b and inequality (16), ∀t ∈ [t0, Tf ], we get

V (ẽ(t)) ≤ e−αT�[tk,t]+βT�[tk,t]V (ẽ(tk)) +

∫ t

tk

e−αT�[τ,t]+βT�[τ,t]J(τ)dτ

≤ µe−αT�[tk,t]+βT�[tk,t]V (ẽ(t−k )) +

∫ t

tk

e−αT�[τ,t]+βT�[τ,t]J(τ)dτ

≤ µe−αT�[tk−1,t]+βT�[tk−1,t]V (ẽ(tk−1)) +

∫ tk

tk−1

e−αT�[τ,t]+βT�[τ,t]J(τ)dτ

+

∫ t

tk

e−αT�[τ,t]+βT�[τ,t]J(τ)dτ

≤ µ2e−αT�[tk−2,t]+βT�[tk−2,t]V (ẽ(tk−2)) + µ2

∫ tk−1

tk−2

e−αT�[τ,t]+βT�[τ,t]J(τ)dτ

+ µ

∫ tk

tk−1

e−αT�[τ,t]+βT�[τ,t]J(τ)dτ +

∫ t

tk

e−αT�[τ,t]+βT�[τ,t]J(τ)dτ

≤ µN[t0,t]e−αT�[t0,t]+βT�[t0,t]V (ẽ(t0)) + µN[t0,t]

∫ t1

t0

e−αT�[τ,t]+βT�[τ,t]J(τ)dτ

+ · · ·
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+ µ2

∫ tk−1

tk−2

e−αT�[τ,t]+βT�[τ,t]J(τ)dτ + µ

∫ tk

tk−1

e−αT�[τ,t]+βT�[τ,t]J(τ)dτ

+

∫ t

tk

e−αT�[τ,t]+βT�[τ,t]J(τ)dτ.

As t = Tf , we have

V (ẽ(t))

≤ µ
N[t0,Tf ]e

−αT�[t0,Tf ]+βT�[t0,Tf ]V (ẽ(t0)) + µ
N[t0,Tf ]

∫ t1

t0

e
−αT�[τ,Tf ]+βT�[τ,Tf ]J(τ)dτ

+ · · ·

+ µ2

∫ tk−1

tk−2

e
−αT�[τ,Tf ]+βT�[τ,Tf ]J(τ)dτ

+ µ

∫ tk

tk−1

e
−αT�[τ,Tf ]+βT�[τ,Tf ]J(τ)dτ +

∫ t

tk

e
−αT�[τ,Tf ]+βT�[τ,Tf ]J(τ)dτ

≤ µ
N0+

Tf−t0
τf e

−αT�[t0,Tf ]+βT�[t0,Tf ]V (ẽ(t0)) +

∫ Tf

t0

e
−αT�[τ,Tf ]+βT�[τ,Tf ]µ

N[τ,Tf ]J(τ)dτ. (17)

It should be noted that

ẽ(t) = eAmTf ẽ(t0) +

∫ Tf

t0

eAm(Tf−τ)
[
(A − Am)x̂(τ) + GCē(τ) + Buσ(τ)(τ) − Bmu(τ)

]
dτ

= eAmTf ẽ(t0) +

∫ Tf

t0

eAm(Tf−τ)

[
(A − Am)x̂(τ) + GC

(
e(A−GC)Tf ē(t0)

+ Buσ(τ)(τ) − Bmu(τ) +

∫ Tf

t0

e(A−GC)(Tf−τ)Ew(τ)dτ

)]
dτ.

As the initial conditions ẽ(t0) = 0 and ē(t0) = 0, we can obtain that

ẽ(t) =

∫ Tf

t0

eAm(Tf−τ)

[
(A − Am)x̂(τ) + GC

∫ Tf

t0

e(A−GC)(Tf−τ)Ew(τ)dτ

+ Buσ(τ)(τ) − Bmu(τ)

]
dτ. (18)

Thus, if matrix (A − GC) satisfies (10), then we can design an appropriate controller
uσ(t)(t) to satisfy the tracking performance.

Combined with (9), then the inequality (17) can be rewritten as

V (ẽ(t)) ≤ µ
N0+

Tf−t0
τf e(β−η(β+α))(Tf−t0)V (ẽ(t0)) +

∫ Tf

t0

−yT (τ)y(τ) + γ2wT (τ)w(τ)dτ

≤ µ
N0+

Tf−t0
τf e(β−η(β+α))(Tf−t0)V (ẽ(t0)) −

∫ Tf

t0

yT (τ)y(τ)dτ + γ2dw. (19)

Thus, we can obtain that

ẽT (t)Rẽ(t) ≤
(

µ
N0+

Tf−t0
τf e(β−η(β+α))(Tf−t0)V (ẽ(t0)) −

∫ Tf

t0

yT (τ)y(τ)dτ + γ2dw

)/
λ2

<

(
µ

N0+
Tf−t0

τf e(β−η(β+α))(Tf−t0)λ1c1 −
∫ Tf

t0

yT (τ)y(τ)dτ + γ2dw

)/
λ2.
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For any switching signal σ with average dwell-time satisfying the inequality (11), we
can achieve that

ẽT (t)Rẽ(t) < c2. (20)

Thus, the tracking error of MRC is finite-time bounded with respect to (c1, c2, Tf , dw, R,
σ), which completes the proof.

3.2. Finite-time weighted H∞ performance analysis for the linear system (1).
We have studied the problem of state tracking for unmeasured state based on the state
observer in a finite-time interval. Furthermore, we know that the tracking error is finite-
time bounded. The next content will discuss the weighted H∞ performance for considered
system (1) in a finite-time interval.

Theorem 3.2. Considering the system (1), let α > 0, β > 0, µ > 1, η > 1 and a
finite-time interval [t0, Tf ]. For ∀t ∈ [t0, Tf ], if the following inequalities hold

T�[t0,Tf ] ≥ η(Tf − t0), (21)∫ Tf

t0

e(β−η(α+β))(τ−t0) − e−N[t0,τ ] ln µdτ ≤ 0, (22)∫ Tf

t0

e(β−η(α+β))(τ−t0)e−N[t0,τ ] ln µdτ ≤ 1, (23)

then the system (1) achieves the finite-time weighted H∞ performance over a finite-time
interval.

Proof: In the front section we have obtained (17) and under the initial condition
ẽ(t0) = 0, we will get

V (ẽ(t)) ≤
∫ Tf

t0

µ
N[τ,Tf ]e

−αT�[τ,Tf ]+βT�[τ,Tf ]J(τ)dτ

=

∫ Tf

t0

e
N[τ,Tf ] ln µ

e
−αT�[τ,Tf ]+βT�[τ,Tf ]J(τ)dτ. (24)

Both sides of (24) by multiplying e
−N[t0,Tf ] ln µ

yield

e
−N[t0,Tf ] ln µ

V (ẽ(t)) ≤
∫ Tf

t0

e−N[t0,τ ] ln µe
−αT�[τ,Tf ]+βT�[τ,Tf ]J(τ)dτ. (25)

According to (21), the inequality (22) can be simplified as follows

e
−N[t0,Tf ] ln µ

V (ẽ(t)) ≤
∫ Tf

t0

e−N[t0,τ ] ln µe(β−η(α+β))(Tf−τ)J(τ)dτ,

which means ∫ Tf

t0

e−N[t0,τ ] ln µe(β−η(α+β))(Tf−τ)yT (τ)y(τ)dτ

≤
∫ Tf

t0

e−N[t0,τ ] ln µe(β−η(α+β))(Tf−τ)γ2wT (τ)w(τ)dτ. (26)

In the case of (22), (23) and (26), we will obtain∫ Tf

t0

e(β−η(α+β))(Tf−t0)yT (τ)y(τ)dτ
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=

∫ Tf

t0

e(β−η(α+β))(τ−t0)e(β−η(α+β))(Tf−τ)yT (τ)y(τ)dτ

≤
∫ Tf

t0

e−N[t0,τ ] ln µe(β−η(α+β))(Tf−τ)yT (τ)y(τ)dτ

≤
∫ Tf

t0

e−N[t0,τ ] ln µe(β−η(α+β))(Tf−τ)γ2wT (τ)w(τ)dτ

≤ γ2

∫ Tf

t0

wT (τ)w(τ)dτ. (27)

Therefore, the proof of finite-time weighted H∞ performance γ has completed.

Remark 3.1. In fact, the problem of standard H∞ performance for switched systems is
an unsolved problem with the constraint of ADT, which is introduced in [38] and is not
solved yet in [39]. Therefore, we solve the problem with weighted H∞ performance over a
finite-time interval.

4. Example. To demonstrate the validity of the state tracking over a finite-time interval,
an example is given in this section. To obtain an excellent performance for the system
(1), the choice of parameters for the reference model is to make the reference model have
a good transient performance and a stable performance. Owing to a numerical simulation
in this paper, the choice of parameters for the system (1) has a wide range. Our object
is to make the state of system (1) track the reference model exactly with designing a
switching signal and a controller. In other words, the considered system (1) achieves
the same performance as the reference model through designing a switching signal and a
controller. The corresponding parameters are given as follows:

Am =

[
−2.3 1.6
−2.2 −3.1

]
, Bm =

[
0.2
−0.1

]
, A =

[
−3.5 1.8
−3.2 −3.5

]
, B =

[
0.4
0.2

]
,

G =

[
1.6
2.3

]
, E =

[
0.2
0.3

]
, C =

[
0.5 0.5

]
, ζ =

[
2
2

]
, Q = I =

[
1 0
0 1

]
.

Given constants α = 0.75, β = 0.8, µ = 1.12, η = 0.65, um = 0.03 and the exogenous
disturbance w = 0.2 sin(2πt). By solving the corresponding linear matrix inequality, we
can obtain the matrix P

P =

[
0.1511 −0.0039
−0.0039 0.1045

]
and its characteristics root can be obtained λ1 = 0.1514 and λ2 = 0.1042 by calculation.

To satisfy the tracking performance between matched and unmatched cases, we have
designed a switching signal. The result is shown in Figure 2. In the research of this paper,
we set ξ = ϑ = 0.5. Thus, Figure 2 shows clearly that the state tracking error is less
than the given tolerance ϑ at the initial time. After a brief time, the switching control
signal appears high level signal. That means the state tracking error exceeds the given
tolerance ϑ, and the controller uσ(t)(t) is needed to reduce the tracking error at this time.
By means of the controller uσ(t)(t), the state error is controlled within the given tolerance
ϑ. A finite number jumps later, the switching control signal becomes continued low level
signal. Therefore, the state tracking error is controlled within the given tolerance ϑ finally.

Figure 3 shows the output of the controller uσ(t)(t). It is obvious that a large amplitude
jitter appears at the initial time. Then, the output of controller uσ(t)(t) changes to zero
after a few minor fluctuations. This implies that the state tracking error is controlled
within the given tolerance ϑ and the switching is terminated.



1626 D. CHEN, Z. WANG AND J. LI

Figure 2. Switching signal

Figure 3. Output of the controller uσ(t)(t)

Figure 4 shows the state trajectory of model reference system (2). The control object
is to make the state of system (1) track the state of model reference (2). The observation
error between x̂(t) and x(t) is shown as Figure 5. From Figure 5 we know that the
observation error is presented in the form of sine signal, which is consistent with Equation
(5).

Figure 6 shows the state tracking error curves between x̂(t) and xm(t). In the process
of state tracking, there is a large tracking error in the first 1.5 seconds. With the help
of controller uσ(t)(t), the tracking error ẽ(t) reduced to zero gradually. Obviously, the
reference state xm(t) can be tracked by x̂(t) over a finite-time interval.
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Figure 4. Model reference state

Figure 5. Observation error

Set constants

c1 = 1.5, c2 = c2i (c2i as shown in Table 1),

t0 = 0, Tf = 5, γ2 = 0.08, R = I =

[
1 0
0 1

]
.

Given initial condition ẽT (t0) = [0 0], the trajectory of ẽT (t)Rẽ(t) can be shown in
Figure 7. From Figure 7 we know that the value of ẽT (t)Rẽ(t) is less than the given
boundary c2i over the finite-time interval. That means system (1) is finite-time bounded
with the controller (8).
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Figure 6. Tracking error

Table 1. The value of τfi with different c2i

Para. Value Value Value Value Value Value Value Value
Tf 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00
c1 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5
γ2 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08
c2i 3.2 3.5 3.8 4.1 4.4 4.7 5.0 5.3
τa 0.546 0.546 0.546 0.546 0.546 0.546 0.546 0.546
τf 0.367 0.349 0.334 0.321 0.309 0.300 0.291 0.283

Figure 7. Trajectory of ẽT (t)Rẽ(t)
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Figure 8. ADT of τa and τfc2i

As the constants Tf , c1 and γ2 are respectively unified, we can learn from Table 1 and
Figure 8 that the larger c2i produces the shorter ADT τf for the system (1). It means
that with the loss of the system requirements for boundary c2i, the ADT τf will decrease
accordingly. What is more, there exists a unique and the smallest ADT τf for any given
boundary c2i. In addition, with the method of finite-time control, the ADT τf we have
achieved is less than the traditional ADT τa, which can be seen from both Table 1 and
Figure 7.

5. Conclusions. This paper has considered the problem of model reference state track-
ing control for a continuous-time system with unmeasured state over a finite-time interval.
As a means of estimating the unmeasured state of the system under consideration, a state
observer was designed initially. Following this, a switching signal and a controller were
devised for the continuous-time system with matched and unmatched cases. In order to
guarantee that the investigated system state can monitor the state of the reference sys-
tem over a finite time interval, we have provided the maximum ratio of time occupancy.
Subsequently, sufficient conditions were established for the continuous-time system, se-
curing both finite-time tracking error bounded and finite-time weighted H∞ performance.
Through defining the various parameters c2, we were able to determine the interaction
between conservatism and boundary c2. The future work is to consider the solutions of
nonlinear and delayed on the state tracking systems over a finite-time interval.
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