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ABSTRACT. Outlier detection over data stream is an increasingly important research in
many fields. Traditional methods are no longer applicable. In this paper, a novel outlier
detection algorithm with enhanced angle-based outlier factor in high-dimensional data
stream (EAOF-0D) is proposed. EAOF-OD aims at improving the performance of outlier
detection and reducing the consumption of memory. To measure the deviation degree
of potential outliers accurately in sophisticated high-dimensional datasets, an enhanced
angle-based outlier factor is introduced. To ensure the high detection rate, the proposed
scheme first locates the cluster centers and divides the dataset into several clusters, and
then outlier detection is carried out within each cluster. Furthermore, an efficient model
based on sliding window and multiple validations is presented in order to decrease the
false alarm rate, which divides data stream into uniform-sized blocks and declares a point
far away from its cluster as candidate outlier. With new block joining in and historical
block moving out, the sliding window reserves the most valuable information including
candidate outliers which need multiple validations. Comparison experiments with existing
approaches on synthetic and real datasets demonstrate that EAOF-OD outperforms some
existing approaches in terms of outlier detection rate and false alarm rate.

Keywords: Outlier detection, Data stream, Enhanced angle-based outlier factor (EA-
OF), Sliding window, Multiple validations

1. Introduction. Outlier detection is to quickly detect abnormal objects that do not
meet the expected behavior from the complex data environment, providing deep analysis
and understanding for users [1]. Outliers are usually generated by unusual mechanism,
which often contain valuable information. Hence, detecting outliers from complex data
environment shows great scientific and engineering importance. With the rapid devel-
opment of network technology and growing popularity of society informatization, the
amount of information keeps on increasing explosively. Many fields are generating high-
speed, infinite and dynamic data streams. Outlier detection has been applied to many
domains such as medical treatment [2], network intrusion detection [3-5], business trans-
action management and analysis [6,7], video surveillance [8,9], and sensor networks [10].
However, as data stream evolves during the time, traditional methods cannot perform
well on them, and an outlier detection algorithm that is applied to dynamic data stream
well becomes necessary.

The study of this paper aims at enhancing the outlier detection rate and decreasing
the false alarm rate of data stream. The proposed algorithm EAOF-OD introduces a
good way to handle the continually increasing amount of data, even in memory limited
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situation. In real life the storage device cannot store all the increasing information forever,
so the model based on sliding window and multiple validations of EAOF-OD will be useful
in many applications. The outlier factor EAOF has a wide applicability in sophisticated
circumstance, and the outlier estimation criterion based on mean and standard deviation
is also applicable in data analysis and data mining. EAOF-OD has good performance in
practical applications such as medical treatment and network intrusion detection, which
will be described in experiment of Section 7.

The rest of this paper is organized as follow. Section 2 discusses related work. Section
3 presents the inspirations of EAOF-OD. Section 4 introduces related definitions. Section
5 shows the model based on sliding window and multiple validations. Section 6 describes
the detail of EAOF-OD. Section 7 presents the experimental results. Finally, Section 8
concludes the paper.

2. Related Work. Most existing outlier detection algorithms in data stream can be
categorized into four groups: distance-based algorithms; density-based algorithms; angle-
based algorithms; clustering-based algorithms.

In distance-based algorithms, distance shows mutual relationship between objects. See
[11] for distance-based algorithm, an object will be reported as an outlier if it does not
have enough neighbors (objects within a specified distance).

Density-based algorithms [12-17] use density to evaluate the outlierness degree of each
potential outlier, and update the outlier factors of each data dynamically. LOF (local
outlier factor) [12] is a popular density-based algorithm used in static dataset. IncLOF
(incremental LOF) [13] applies LOF iteratively after insertion of each new data. N-
IncLOF [14] and I-IncLOF (improved IncLOF) [15] introduce sliding window to cut down
the consumption of memory resource. Enlightened by LOCI (local correlation integral)
[16], INCLOCI (incremental LOCI) algorithm [17] calculates the high-granularity devia-
tion factor of each data to detect outliers.

To deal with the problem of dimension disaster, angle-based algorithms [18,19] introduce
angle-based outlier factor (the variance of angles formed by a target object and all pairs
of other objects) to measure the deviation degree of each data more precisely in high-
dimensional dataset. In [18], ABOD (angle-based outlier detection) is proposed to detect
outliers in static dataset. Based on ABOD, DSABOD (data stream angle-based outlier
detection) algorithm [19] is presented to detect outliers on high-dimensional data stream.
DSABOD updates ABOF (angle-based outlier factor) of each data and declares those data
with high ABOF value as outliers. Angles are more stable than many other measurements
in high-dimensional space, and the angle-based algorithm provides a new perspective to
work out the estimation of outlierness degree of objects.

In clustering-based algorithms [20-30], outliers are those objects which do not belong to
any cluster or deviate far away from the most objects in their clusters. Many traditional
clustering algorithms such as DBSCAN (density-based spatial clustering of applications
with noise) [20] work well on static datasets. Some researchers proposed many clustering
algorithms [21-28] over data stream, which show good performance. Clustering is the first
and important step of outlier detection in clustering-based outlier detection algorithms,
and it directly affects the result of outlier detection. In [29], an unsupervised outlier
detection algorithm based on weighted clustering (denoted as Algorithm Y in shorthand
in the following part) is proposed, which divides the data stream into blocks. Algorithm
Y clusters each block and detects outliers in each block. In clustering part, it combines
DBSCAN and W-K-Mean (weighted-K-Mean clustering) [30], and updates the parameters
needed. Algorithm Y is accurate but tedious. In outlier detection part, it treats small
clusters as outlier groups and determines the scattered outliers based on distance.
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3. Inspirations. Being influenced by the dimension disaster, traditional ways of mea-
suring outlierness of data based on distance or density lose effectiveness as the dimension
increases, resulting in bad performance of outlier detection. According to ABOD al-
gorithm and DSABOD algorithm, the variance of angles can be used to evaluate the
deviation degree of each object, the variance of angles formed by an outlier object and all
pairs of other objects is quite small, while the variance of angles formed by an inlier object
and all pairs of other objects is pretty large, which has been proved to be an effective way
in high-dimensional space.

However, there are some shortcomings of traditional angle-based measurement as shown
in Figure 1 and Figure 2. In Figure 1, though F; is in the center of a u-shaped cluster,
and Fjs is located on the edge which shows less anomalous than E, the variance of angles
formed by F; and pairs of other objects is rather larger than that formed by Es and
others. Similar situation occurs in Figure 2 with D; located between two clusters which
is more like an outlier, and Dy is on the edge of one cluster, the variance of angles formed
by D; and pairs of other objects is larger than that formed by D, and others.

B

FIGURE 1. Exceptional situation 1

FIGURE 2. Exceptional situation 2

All of the above cases do not conform to the traditional theory of angle-based mea-
surement. In order to improve the effectiveness of angle-based measurement, an enhanced
angle-based outlier factor (EAOF) is presented which combines the advantages of distance-
based measurement, density-based measurement and angle-based measurement.

An algorithm of outlier detection with enhanced angle-based outlier factor in high-
dimensional data stream (EAOF-OD) is proposed in this paper. Taking advantage of
the sliding window, EAOF-OD presents an efficient model to reduce the consumption of
limited memory. To evaluate the outlierness of data more accurately, an enhanced angle-
based outlier factor is introduced. The outliers can be determined by an efficient criterion
based on mean and standard deviation which is introduced in Section 6.1.
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4. Related Definitions. EAOF-OD has the following definitions.

Definition 4.1. (Angle-based outlier factor)

Given a d-dimensional dataset S, a point Ae sl ( A= (A, Ay, ... ,Ad)>. For two
pointsé,éesdandé,a#;l,ﬁzé A
represents the Euclidean distance between A and E, and <E, A_C> signifies the scalar
product between AB and AC. The angle-based outlier factor V (21) 15 the variance over

the angles between the difference vectors of;l to all pairs of points in ST weighted by the
distance of the points:
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Definition 4.2. (Local density)

Assuming that N, (p) is the neighbor dataset of p, where points lay within a distance of
T to the center p. Vi, (p) is the angle-based outlier factor constructed by p and points in
N, (p). The local density of p is defined below:

p(p) = Z o (Vn, () (2)

gEN-(p)

From Equation (2), the local density of a point is associated with its position and the
number of its nearest neighbors. A point can get larger local density when it is nearer to
the center and has more neighbors.

Definition 4.3. (Cluster dissimilarity)

According to Equation (2), local density of each point can be acquired, and listed in
descending order as p (p1) > p(p2) > -+ > p(pn), {pi}i, are the corresponding sequence
numbers of points in dataset, and n is the total number of points. d (p;,p;) denotes the
Buclidean distance between p; and p;. The cluster dissimilarity 0 (p;) is the distance
between p; and the nearest point among those points with higher local density than p;:

min (d (p;, p;j)), ©>2

0= aslowy, i @

Definition 4.4. (Cluster centrality factor)
With local density and cluster dissimilarity, the cluster centrality factor T(p) can be
definite as:

7(p) = p(p) - 0(p) (4)
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The cluster centrality factor is applied to evaluating the centrality degree of a point.
The bigger cluster centrality factor is, the more likely the point is located in the center of
a cluster. Figure 3, Figure 4 and Figure 5 show how the cluster centrality factor works.
Figure 3 shows the distribution of a dataset, obviously there are two clusters, and point
13 and point 25 are the centers.
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F1GURE 5. The cluster centrality factors in descending order

The information about local density (p) and cluster dissimilarity () of each point is
shown in Figure 4. It can be observed that both p and  of point 13 and point 25 are much
larger than the other points. Figure 5 shows the cluster centrality factors of all points
in descending order. Standing out from the rest points, point 13 and point 25 have the
largest cluster centrality factors, which apparently should be identified as cluster centers.
Therefore, cluster centrality factor is an efficient way to find cluster centers, which is a
crucial step of clustering.

Definition 4.5. (Belonging matriz)

Belonging matriz is employed to record the belonging relationships among all points.
Belonging matriz is expressed as F = [fi, fa,..., fu], where f; (i=1,2,...,n) is the
sequence number of the point which is the nearest point of point i among those points
with larger cluster centrality factors than point i. List cluster centrality factors as T(q1) >
7(q2) > -++ > 7(qn), where {q;}j_, are the corresponding sequence numbers of points in
dataset. f,, (j=1,2,...,n) is the q;th element in the belonging matriz, which can be
deried by the method below:

£, = qi, j=1 (5)
% {qi|dist (gi, q;) = min{dist (¢;,q;),1 =1,2,...,5 —1}}, else

Definition 4.6. (Local increment)

Assuming that S¢ is divided into m clusters Cy,Cs, ..., Cy, after clustering. N, (p)
denotes the subset formed by points which belong to the same cluster as p and located
in its r-neighborhood with p as its center and r as its radius. Uy, () (p) represents the
number of points in N, (p). The local increment H(p) can be calculated as:

Hp)= > Un. (6)

quTc (p)
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Definition 4.7. (Sum of distances between k nearest neighbors)

For point p, assuming that the k neighborhood formed by its k nearest neighbors is
denoted as Ny.gistance(p) (D), then the sum of distances between p and its k nearest neighbors
18 measured by:

L(p) = > dist(p,q) (7)

quk-distan(:e(p) (p)

Definition 4.8. (EAOF: enhanced angle-based outlier factor)

Assuming that o is the center of cluster to which p belongs, dist(o,p) is the distance
between point p and the cluster center Vo (p) is the angle-based outlier factor calculated
with points in N,.(p). The enhanced angle-based outlier factor EAOF (p) is defined as:

EAOF(p) dist(o, p) - L(p) (8)

Vo(p) - H(p)

The enhanced angle-based outlier factor not only remains the outstanding performance
of traditional angle-based outlier factor in high-dimensional space, but also combines
the advantages of distance-based measurement and density-based measurement, which
greatly improves the accuracy of estimating deviation degree of point in complex data
environment.

5. Model Based on Sliding Window and Multiple Validations. Data stream con-
sists of a series of data, which is infinite, dynamic and arrives continuously. Due to the
limited memory resource, reserving all the information of the data stream not only is im-
possible, but also increases the time and space complexity. To work out the problem, an
efficient model based on sliding window and multiple validations is presented in this part.
The coming data stream is divided into uniform-sized blocks. Several blocks form a sliding
window. Different from the traditional sliding window [14,15] which moves from point to
point and keeps a constant width. The sliding window constructed in this paper moves
from data block to data block and its width may change a little depending on conditions.
Data stream is being loaded into memory with new block joining in and historical block
moving out and the sliding window only reserves the valuable data. Due to the dynamic
nature of data stream, data behavior may change during the time. As shown in Figure
6(a) and Figure 6(b), at the time of ¢;, P’ shows up like an outlier. While as the sliding
window moves and new data block loaded in, P’ belongs to a new dense cluster at t3. So
evaluating an object for outlierness when it arrives may lead to wrong decisions.
Multiple validations are employed in this framework. Declare those new coming data
which deviate far away from the most other data as candidate outliers, reserve them in
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FIGURE 6. Data distribution in sliding window: (a) data distribution in
sliding window at the time of ¢;; (b) data distribution in sliding window at
the time of #5
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the sliding window and examine their outlierness when the following blocks move in. If
candidate outliers remain anomalous after specified times of multiple validations, declare
them as real outliers, otherwise remove them from memory as normal data.

Figure 7 provides an insight about the way how the efficient model based on the sliding
window and multiple validations works. By, By, Bs,... are the data blocks divided, ¢
(¢ = 2 in Figure 7) blocks form a sliding window. As the sliding window W; at the time of
T; moves to sliding window W;,; at the time of T}, 1, block B, joins in and the historical
block B;_; moves out. At the same time, the candidate outliers in W, validated at the
time of T} are kept in the sliding window for the next validation.

The block diagram of EAOF-OD is given in Figure 8. It is shown in Figure 8. Fast
coming data stream is divided into uniform-sized blocks, and ¢ (¢ = 2 in Figure 8) blocks
form a sliding window. Outlier detection is carried out on the sliding window. Update the
times of multiple validations and the times of being declared to be candidate outlier of
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each point in the sliding window. And declare the points as real outliers if they meet the
condition of multiple validations (described in Algorithm 1 in Section 6.2). The candidate
outliers in the historical blocks which do not satisfy the conditions of being discarded are
kept in the sliding window, waiting for next validation. This framework can not only deal
with data stream effectively but also get high detection rate and low false alarm rate.
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6. Outlier Detection.

6.1. Outlier estimation criterion based on mean and standard deviation.

Corollary 6.1. Let p denote the mean of the angle-based outlier factors of all points in
the same cluster as point p, o is the standard deviation, and & is a specified coefficient.
Point p is declared to be an outlier if EAOF (p) meets the following condition:

EAOF(p) > p+§-o (9)
Proof: According to Chebyshev’s inequality it follows that:
2
1
Pr{EAOF(p) — > &0} < Pr{|[EAOF(p) — p| > ¢ -0} < (5" =@
o

where Pr{ } denotes the probability. It is proved that the Chebyshev’s inequality holds in
any case. It can be concluded that, in a cluster the possibility that the EAOF of a point
is bigger than the sum of mean and £ times the value of standard deviation is no more
than 1/£2, that is rare event. Note that, in real life, the frequency of anomalous patterns
is rare (ranging from 5% to less than 0.01% depending on the application) [13,15]. If the
cluster satisfies Gauss distribution, the value of £ can be set to 3. For other distributions,
in order to reduce the false alarm rate, ¢ is suggested to be set to 2 ~ 3 depending on
specific conditions.

The mean and standard deviation can automatically adjust according to the current
sliding window, so the outlier estimation criterion shows good adaption to dynamic data
stream.

6.2. EAOF-OD: Outlier detection with enhanced angle-based outlier factor in
high-dimensional data stream. Due to the dynamic nature of data stream, outlier
detection algorithm is supposed to have strong adaptive capacity, be able to deal with
datasets with various distributions, and be applied to high-dimensional data environment.
EAOF-OD first identifies the cluster centers and then assigns each data point to the
proper cluster. EAOF (enhanced angle-based outlier factor) is calculated to evaluate the
outlierness of each data point in the scope of each corresponding cluster, and data points
with high EAOF are identified as (candidate) outliers. The idea of performing outlier
detection after clustering can improve the accuracy of detection. Only when candidate
outliers are identified to be outliers during the whole multiple validations can they be
declared as real outliers. The whole scheme of EAOF-OD combines the model based on
sliding window and multiple validations with efficient outlier detection algorithm, not only
can deal with the data stream in real time, but also has low time and space complexity.

Let S be the set of data in sliding window at a certain time, n be the number of data
points in S, and S can be described as S = {X;, Xs,...,X,}. The detailed steps of
EAOF-OD are presented in Algorithm 1.

In Algorithm 1, there are several parameters which need to be set in the first step.
They are the number of nearest neighbors k, the radius of spatial neighborhood r, the
number of data blocks contained in a sliding window ¢, the times of multiple validations
A, the coefficient for outlier estimation criterion £. For the number of nearest neighbors
k and the radius of spatial neighborhood r, DBSCAN provides good recommendations:
k is set to 4 and 7 is set to the value of the first “valley” in the k-dist graph (mapping
each point to the distance from its k-th nearest neighbor). The number of data blocks
contained in a sliding window ¢ can be set depending on conditions. When the memory is
large enough, the blocks contained in a sliding window can be a bit more. In this paper,
¢ is recommended to 2 ~ 5. The times of multiple validations A can be set to 3, and too
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6.1 the coefficient for outlier estimation criterion can be set to 2 ~ 3.

6.3. Effectiveness. Two synthetic datasets (shown in Figure 9(a) and Figure 10(a))

are created to show the effectiveness of EAOF-OD intuitively. There are three normal

clusters (N1, N2, N3) and two outlier clusters (N4, N5) in the 2-dimensional dataset. The

3-dimensional dataset consists of three normal clusters and one outlier cluster. Figures

9(b)-9(d) and Figures 10(b)-10(d) are the performance after applying EAOF-OD on these
two synthetic datasets.

Algorithm 1. EAOF-OD: outlier detection with enhanced angle-based outlier factor
in high-dimensional data stream

Input: S: the set of data in sliding window at a certain time

k: the number of nearest neighbors

r: the radius of spatial neighborhood

¢: the number of data blocks contained in a sliding window
A: the times of multiple validations

&: the coefficient for outlier estimation criterion

Output: O: outliers set

Begin
1:
2:

Initialize the parameters k, r, €, A, &;
According to Equations (1), (2), (3), (4), calculate the cluster centrality
factor 7(X;) of every point;
List all 7(X;) in descending order 7(X,,) > 7(Xy,) > -+ > 7(X,,), get
the belonging matrix F' = [fi, fs, ..., fu] by Equation (5);
Identify the cluster centers:

Let Cienterig be the cluster center 1D, C\ysier 1aper be the cluster label.

®: Initialize Ocentenid =0 and Cclustenlabel (qu) - Oa
@:. rfori=2:n do
®: while the distances between X, and X, (j =1,2,...,i — 1) meet
dist (Xqi,qu) >r do
@: Ccent@nid = Ccenter,id + ]-a
®: Cclustenlabel (qu) = Ccenter,id;
®: end //end of while
@: L end //end of for
Cluster:
@ rfori=1:n do
@: Ccluster,label(i) = Ccluster,label(fi);
®: L end //end of for
@: Cluster points with the same cluster labels into one cluster, get
Cleenteria clusters C1, Cy, ..., C);
Outlier detection:

Let G be the candidate outlier set which stores the candidate outliers.
- for i = 1: CLenteria, and with respect to each cluster C; do
Use Equations (1), (6), (7), (8) to obtain the FAOF(X;) of each
point X; in Cj;
®: Compute the mean p and standard deviation ¢ of all EAOF's of
points in C}, identify the suspicious points, put them in candidate

outlier set G;
@: L end //end of for

©O
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7: Multiple validations
Let v(X;) be the times of being validated of point X;, a(X;) be the times of
showing suspicious, initialize them to zero.
a: ¢ if y(X;) <e then
. |  if X, is detected as normal in the validation then

c: v(Xi) = v(X;i) + 1, declare X; as normal point, remain X; in the
sliding window;
: else
e: Y(X;) =v(Xi) + 1, a(X;) = a(X;) + 1, declare X; as candidate
outlier, keep X; in the sliding window for next validation;
f: | L end //end of if

g: | elseif v(X;) =¢ and a(X;) < y(X;) then

h: Stop the validation of X;, declare X; as normal data point, delete
X; from memory;

i: | elseife <~v(X;) <A then

j: | r if X, shows suspicious in the validation then
k: Y(X;) =v(Xi) + 1, a(X;) = a(X;) + 1, declare X; as candidate
outlier, remain X, in the sliding window for next validation;
I: else
m: End the validation of X, declare X; as normal data point, remove
X; from memory;

n: | L end //end of if
o: | else if y(X;) =\, a(X;) =\ then

p: Stop the validation of X;, declare X; as real outlier, remove X;
from the candidate outlier set (G, store X; in the real outlier set
O, output O

q: else

I Stop the validation of X;, declare X; as normal data point, delete

X; from memory;

s: - end //end of if

Exit.

It can be observed from Figures 9(a)-9(d) that 2 outlier clusters and 15 scattered out-
liers in 2-dimensional dataset can be detected effectively by EAOF-OD with none outlier
missed. From Figure 9(d), it is obvious that there are 3 normal objects falsely detected as
outliers. Though these 3 normal points are generated from Gaussian distributions which
belong to normal clusters, they deviate quite far from normal clusters and show suspicious
during all the A\ (A = 3) times of multiple validations.

From Figures 10(a)-10(d) it is clear that the performance of EAOF-OD in 3-dimensional
dataset is still satisfying. Outliers including the outlier cluster and 47 out of 48 scattered
outliers are detected with just one scattered outlier left out. The reason which leads to
the missing outlier is that this scattered outlier is located so close to normal cluster that
it is declared as normal point during multiple validations.

7. Experimental Result and Comparative Analysis. To verify the effectiveness
of the EAOF-OD, the quality evaluation and time complexity evaluation experiments
are performed over several synthetic and real datasets with EAOF-OD, Algorithm Y, I-
IncLOF and DSABOD. The information about the datasets is shown in Table 1. The 8
datasets represent different kinds of datasets with different number of dimensions, different
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FiGURE 9. Performance of EAOF-OD on a 2-dimensional synthetic
dataset: (a) distribution of the 2-dimensional synthetic dataset; (b) real
outliers in the 2-dimensional synthetic dataset (denoted by circles); (c) de-
tected outliers (denoted by circles); (d) falsely detected outliers (denoted

by circles)

TABLE 1. Characteristics of the datasets

Dataset name Number of instances | Number of attributes
Synthetic dataset 1 1615 2
Synthetic dataset 2 860 3

Yeast 1484 8
Abalone 4177 8
Breast Cancer 699 10
Mushroom 8124 22
Ionosphere 351 34
KDD1999 973959 41

sizes, different distributions. All experiments were conducted in matlab R2014a on Intel
Core i5-3230M, 2.6GHz with 4GB memory running on Windows 10 x 64.

Synthetic dataset 1 is composed of 1615 data instances of which there are 1600 data
records generated from 5-modal mixture of 2-dimensional Gaussian distributions and 15

scattered data records.

The dataset consists of three normal clusters each containing

500 data records, two outlier clusters each having 50 data instances, and 15 scattered
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FicUurRE 10. Performance of EAOF-OD on a 3-dimensional synthetic
dataset: (a) distribution of the 3-dimensional synthetic dataset; (b) real
outliers in the 3-dimensional synthetic dataset (denoted by circles); (c) de-
tected outliers (denoted by circles); (d) missing outliers (denoted by circles)

data records being generated based upon domain knowledge (statistical characteristics
like mean, standard deviation, class distribution, etc.).

Synthetic dataset 2 is composed of 860 data records of which there are 791 data records
forming 3 normal clusters and 21 data records constituting an outlier cluster. Besides 48
scattered outliers are planted in Synthetic dataset 2 based on the statistical characteristics
(min, max, mean and standard deviation) of attributes.

Real datasets are taken from UCI machine learning repository [31]. There are total
1484 data instances in Yeast dataset forming 10 classes. CYT, NUC, MIT, ME3, cover
maximum of data records and other classes cover small portion. In experiments 50%
records of ME2, ME1, EXC, VAC, POX are removed and the rest 50% are treated as
outliers. Abalone contains 4177 examples with 8 attributes, there are 28 classes in the
dataset and those classes containing instances less than 60 are treated as outlier clusters
(groups of outliers). In Breast Cancer dataset there are 699 data records making up 2
normal classes. 4.86% additional outlier objects are planted into the dataset for a better
performance analysis based on the statistical characteristics of attributes. The Mushroom
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dataset consists of two classes 4208 in Edible and 3916 in Poisonous. 2.15% of Poisonous
are selected as outliers. Ionosphere dataset has 351 data records, wherein 225 data records
are Good and 126 data records are Bad. In experiments, 8.73% of Bad remain as outliers.
KDD1999 contains the records of 7 weeks of network traffic. There are 972781 instances
of normal data, whereas the number of attack records is too high to be considered as
outliers (3925650). In order to make the dataset more realistic, the rare attack types
(U2R and R2L) are selected as outliers so that outliers become a small ratio of normal
instances.

7.1. Quality evaluation. Outlier detection rate and false alarm rate are used to evaluate
the quality performance of algorithms. Detection rate refers to the ratio between the
number of correctly detected outliers to the total number of actual outliers. False alarm
rate is the ratio between the number of normal objects that are misinterpreted as outlier
to the total number of alarms. In the experiment, EAOF-OD is applied with e =2, A = 3,
¢ = 2.5, and parameters k and r are set as DBSCAN described in Section 6.2.

Table 2 shows detailed comparative experiment results of EAOF-OD vs. Algorithm
Y, I-IncLOF and DSABOD on 8 synthetic and real datasets. The graphical comparison
results are shown in Figure 11 and Figure 12.

TABLE 2. EAOF-OD vs. Algorithm Y, I-IncLOF and DSABOD

Algorithm Y I-IncLOF DSABOD EAOF-OD
Dataset  |detection 5:;21 detection j:j; detection 5;1:; detection 832521
rate/% rate/% rate/% rate/% rate/% rate/% rate/% rate/%
Synthetic 98.26 | 0.40 | 97.39 | 5.58 | 37.39 | 23.53 | 100.00 | 0.20
dataset 1
synthetic g7 15 | 050 | 9565 | 0 | 8986 | 2.63 | 98.55 | 0
dataset 2

Yeast 95.13 2.39 93.94 4.35 75.76 | 20.83 | 94.57 1.46
Abalone 70.12 2.25 69.23 5.93 65.38 | 11.76 | 86.94 | 1.25
Breast Cancer| 91.17 0.43 82.35 7.22 91.18 18.92 | 94.12 0
Mushroom 92.28 | 12.38 | 97.73 2.24 97.15 | 24.81 | 98.69 | 1.02
Ionosphere 7273 | 9.09 | 7273 | 54.55 | 91.67 | 31.25 | 83.33 | 16.67
KDD1999 91.09 | 14.02 | 86.14 | 32.56 | 57.43 | 31.58 | 91.27 | 9.56

It can be observed from Table 2, Figure 11 and Figure 12 that generally EAOF-OD
outperforms Algorithm Y, I-IncLOF and DSABOD with higher outlier detection rate and
lower false alarm rate. It is because EAOF-OD utilizes more accurate way to estimate
outlierness, as well as multiple validations. Algorithm Y updates parameters including
weight of each attribute when new instance joins in, which improve its effectiveness and
ability of adaptation to data stream in multi-dimensional space. Algorithm Y does well
in some datasets. Although in Yeast dataset its detection rate is higher than EAOF-OD,
its false alarm rate is higher than EAOF-OD, too. And in higher dimensional space,
the detection rate of Algorithm Y is worse than EAOF-OD due to its distance-based
and density-based nature. As is shown in Table 2, I-IncLOF achieves 97.39% as the
outlier detection rate and 5.58% as the false alarm rate on Synthetic dataset 1, which is
satisfying. However, when coming to Abalone dataset with 10 attributes, outlier detection
rate decreases to 69.23%, and to Ionosphere dataset with 34 attributes the false alarm
rate increases to 54.55%, and to KDD1999 dataset with 41 attributes the false alarm
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rate gets to 32.56%. And I-IncLOF has poor adaptation, when the characteristics of
data stream vary (such as the Abalone dataset and the Breast Cancer dataset), I-IncLOF
performs worse. From the results of EAOF-OD and DSABOD, it can be concluded that
generally when dimension increases the advantage of angle-based algorithm gets more
prominent. However, when there are outlier clusters in dataset (such as Synthetic dataset
1, Synthetic dataset 2, Yeast and Abalone) and the distribution is unbalanced (such as the
KDD1999), the traditional angle-based algorithm DSABOD loses effectiveness due to the
shortcomings described in Section 3. Although the dimension increases and characteristics
vary, generally EAOF-OD performs well and outperforms Algorithm Y, I-IncLOF and
DSABOD quite a lot.

7.2. Time complexity evaluation. The EAOF-OD performs better than the other
three algorithms in terms of detection rate and false alarm rate, but this performance
benefit does not come without cost. The time complexity of EAOF-OD is O(n?). The
time complexity of Algorithm Y is O(n?). The time complexity of I-IncLOF is O(n-logn).
And for DSABOD, when a new data record comes, the outlier factors of all the history
data records need to be updated, so the time complexity of DSABOD is O(n?®). It is
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obvious that the time complexity of EAOF-OD is the same as DSABOD, and higher than
Algorithm Y and I-IncLOF. EAOF-OD needs to cluster the data first, which DSABOD
does not have to do so. Although the time complexity of EAOF-OD is the same as
DSABOD, EAOF-OD is a little more time-consuming than DSABOD. Figure 13 shows
the execution time for the four algorithms when experiment on KDD1999. The time is
recorded every 2000*" data. In the experiment, EAOF-OD is applied with ¢ = 2, A = 3,
¢ = 2.5, and parameters k and r are set as DBSCAN described in Section 6.2.

As is shown in Figure 13, execution times of algorithms fluctuate within a small range,
which is because the sliding window keeps the number of data records almost unchanged.
On average EAOF-OD takes 1.5 times more than Algorithm Y, 5 times more than I-
IncLOF and 0.04 millisecond more than DSABOD. Generally the execution time of
EAOF-OD is less than 1.2 milliseconds. The data frequency lower than 1.2 millisec-
ond is impractical for most of the current data stream applications, so the execution
time of EAOF-OD is quite acceptable. The little more extra time is worthy for EAOF-
OD because it offers a good performance improvement over Algorithm Y, I-IncLOF and
DSABOD in terms of outlier detection rate and false alarm rate.

8. Conclusion and Future Work. In this paper, an outlier detection algorithm with
enhanced angle-based outlier factor in high-dimensional data stream (EAOF-OD) is pro-
posed. EAOF-OD fast identifies cluster centers and clusters the dataset in time. En-
hanced angle-based outlier factor (EAOF) is described to evaluate the deviation degree
accurately in high-dimensional data space. Efficient model based on sliding window and
multiple validations is utilized to decrease the false alarm rate. Besides, EAOF-OD re-
serves and removes the records selectively, which makes sure that the limited memory is
consumed properly. Experiments on several synthetic as well as real datasets demonstrate
that EAOF-OD outperforms some existing algorithms with higher outlier detection rate
and less false alarm rate especially in high-dimensional data environment. For future
work, more efforts will be put into the investigation of less dependence of parameters.
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