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Abstract. Energy Harvesting-Wireless Sensor Network (EH-WSN) has got increas-
ing attention in recent years. During its actual deployment, we find that the energy
that can be harvested from the environment is always continually changing and unpre-
dictable. This paper aims to investigate the energy management approach of EH-WSN
under such circumstance and propose a corresponding dynamic scheme to optimize the
network throughput. Here we adopt a Cooperative Reinforcement Learning (CRL) method
for analysis. Firstly, we model the external environment status, and then the CRL al-
gorithm based on Q-learning starts regulating the EH-node’s duty cycle according to the
external energy’s variation; meanwhile, the feedback reward takes responsibility for the
evaluation of CRL’s regulation. Different from traditional reinforcement learning, CRL
facilitates EH-nodes to share their local knowledge with others periodically. With this
information, EH-node chooses which action to take for the current time slot: (i) idling,
(ii) sensing, (iii) calculating, and (iv) transmitting. Experimental results show that the
proposed scheme can make EH-node work energy-balanceable, and satisfy the network
throughput requirement effectively, and it also improves the energy utilization efficiency
obviously in contrast with existing strategies.
Keywords: Energy harvesting, Wireless sensor network, Energy management, Cooper-
ative reinforcement learning, Energy neutral, Throughput

1. Introduction. The limited available lifetime is a key bottleneck for most battery-
powered Wireless Sensor Networks (WSNs). Therefore, harvesting energy from the en-
vironment has been widely investigated to ensure the sustainability of the network. As
for this Energy Harvesting-WSN (EH-WSN), many studies have been carried out [1-5].
Ongaro and Saggini propose a power management architecture that utilizes both super-
capacitor and lithium battery as energy storages for a solar-powered WSN [1]. Lee et
al. develop a cross-layer optimization-based scheduling scheme called binding optimiza-
tion of duty cycling and networking through energy tracking (BUCKET) to maximize
the utilization of solar energy [2]. In [3], the authors propose an energy prediction al-
gorithm that uses the light intensity of fluorescent lamps in an indoor environment, and
then an optimal transmission interval is calculated using the amount of predicted har-
vested energy and residual energy. The authors in [4] just propose a stochastic Markov

DOI: 10.24507/ijicic.14.06.1993

1993



1994 Y. WU, W. LIU AND Y. LIU

chain framework, which captures the degradation status of the battery to improve the
lifetime of sensor while guaranteeing the minimum required Quality of Service (QoS).
[5] considers the problem of communication coverage for sustainable data forwarding in
EH-WSN, where an energy-aware deployment model of relay nodes is proposed. From
these achievements, we can see that the main research issue lies in two aspects: how to
maximize the harvested energy and how to maximize the energy utilization efficiency;
plus one research target: keeping the EH-node “energy-neutral” [6]. Therefore, the en-
ergy management algorithm of EH-WSN is particularly attractive because it is just like
the “brain” of whole system. This paper proposes a novel energy management strategy
using the Cooperative Reinforcement Learning (CRL) method to regulate the EH-node’s
work/sleep duty cycle based on the incoming energy’s changing status, with the purpose
of maximizing the number of sampled data aggregated at the sink while keeping all the
EH-nodes working under “energy-neutral” mode.

Recently, there are several works in which the authors used RL method to optimize
WSN’s performance. Pourpeighambar et al. considered a routing problem in the cogni-
tive radio networks such that each cognitive user wants to select best route that minimizes
its own end-to-end delay provided that the QoS requirements of the primary users are
met [7], and they used a multi-agent Q-learning algorithm for solving the routing problem
that can avoid information exchange between the competing cognitive users. In [8], Khan
and Rinner proposed a method for scheduling the tasks using cooperative reinforcement
learning where each node determines the next task based on the observed application be-
havior. By exchanging data among neighboring nodes, they could further improve the en-
ergy/performance tradeoff. Simulations showed that cooperative approaches are superior
to non-cooperative approaches in a target tracking application. Chen et al. investigated
a reinforcement learning based sleep scheduling for coverage algorithm in rechargeable
time-slotted sensor networks [9]: it includes the precedence operator-based group forma-
tion algorithm and the Q learning-based active node selection algorithm. Experiments
on a solar-powered wireless sensor network were presented, and the results showed that it
could effectively adjust the working modes of nodes. In addition, it achieved the energy
consumption balance between nodes while maintaining the desired coverage. Especially
[10] introduced a cooperative reinforcement learning scheme, namely Cooperative Q, to let
cognitive radios learn and adapt to the environment they are in, and share their informa-
tion among themselves. Its proposal aimed to maximize energy efficiency while ensuring
buffer occupancy kept below some predetermined level. However, none of the previous re-
searches have investigated the adaptivity of their algorithms to changes in environmental
energy and task allocation, much less on the optimization of precise duty cycle.

Our work intends to maximize the total number of sampled data under energy harvest-
ing constraints. The distributed and stochastic nature of environment energy model lends
itself to a learning approach. So we design an effective and reliable CRL method which
considers the energy buffer, duty cycle, task schedule, and power consumption together
to improve the energy utilization efficiency. To the best of our knowledge, this paper is
the first to use CRL in network performance optimization of EH-WSN. The main jobs
and innovations are as follows.

(1) A novel CRL formulation that can jointly optimize the duty cycle, the energy
balance and the throughput has been introduced. The optimized result notably improves
the information quality.

(2) The EH-WSN equipped with our novel algorithm can adapt to the energy changes
in environment effectively and sensitively.
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(3) We evaluate the performance of our CRL algorithm with a different non-cooperative
method. Results show that CRL outperforms non-cooperative way in terms of collected
data quantity and operation stability.

The rest of this paper is organized as follows. Section 2 explains our system model
and describes the problem formulation. Section 3 presents the cooperative RL approach
and our CRL based online duty-cycle regulation algorithm. Section 4 discusses simulation
results for a solar powered EH-WSN application. In Section 5, we conclude this paper
with a brief summary.

2. System Model and Problem Statement. We consider an EH-WSN that is formed
with a set of cooperative EH-nodes which seek for data transmissions to the sink. Each
EH-node mainly contains three parts: energy harvesting module, energy storage battery
and wireless sensor node. CRL algorithm takes responsibility for the system parameters
monitoring and optimal energy management. From [11] we know that the energy cost
of EH-node is proportional to its working duty cycle; therefore, CRL should calculate
the optimal duty ratio to make EH-node work in “energy-neutral” strategy. A structural
diagram of EH-node is shown below in Figure 1.

Figure 1. Electrical diagram of an EH-node with CRL

At the beginning of each time slot, every EH-node should start to harvest energy based
on its battery buffer level (here it is assumed to have two kinds: insufficient and adequate).
If the buffer shows insufficient, the node should turn down to low power state and harvest
energy until the energy level changes to adequate; otherwise, the node would take jobs of
three contents: data collection, data processing and data transmission. Note that these
three operations also consume different energy costs. Hence, the node would run a task
chosen from a certain combination of three actions under “energy-neutral” constraints, as
shown in Figure 2.

The objective of each EH-node is to transmit the packets with maximum volume while
not causing energy exhaustion. Therefore, when the environment energy available for
harvesting has changed, the EH-node should automatically regulate its work/sleep duty
cycle and decide on an action sequence to execute for this time round.

Meanwhile, the whole network works in a common operation status based on a pre-
setting routing protocol, i.e., the relay node needs to receive former node’s packets and
transmit it with its own data to the next, and repeat the process until the sink. Hence,
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Figure 2. A typical duty cycle sequence (Assume that energy harvesting
is always running)

every EH-node still needs to cooperate with its front and back nodes to choose the optimal
next action.

2.1. Energy buffer model. We can deduce the energy model of each EH-node:

Ei(τ) = Ei(τ − 1) + EEH,i(τ)− I[ai(j, k)] · ETrans − bi(m) · EProcess − ci(n) · ECollect (1)

Ei(τ) is the residual energy of node i at the end of time round τ , EEH,i(τ) is the harvested
energy of node i during round τ ; I[·] is a binary indicator function and ai(j, k) is the event
that node i receives data from node j and transmits packets to node k, bi(m) and ci(n) are
the events that node i executes data process or data collectionm and n times, respectively;
ETrans , EProcess and ECollect just represent the energy consumption of data transmission,
data processing and data collection.

2.2. Data traffic model. We can deduce the energy model of each EH-node. As an
important part of energy management, data transmission cost model plays a crucial role.
In the paper we refer to a simple transmission consumption model in [12], and to power
an l bit of messages over distance d, the consumed energy is:

ESend(l, d) = Eelec · l + ξamp · l · d2 (2)

Moreover, to receive this message, the consumed energy is:

EReceive(l) = Eelec · l (3)

where Eelec is the radio dissipation, and ξamp is the emission amplification factor.

2.3. Actions and outcomes. Each EH-node should decide to stay sleep or collect data
or do something, etc., and acts based on the outcome of its choice. The cost (both time
and energy) of switching from one operation mode to another is ignored in order for a
convenient calculation: for example, CC2530 chip opens a radio connection during a setup
phase (10.5 mS) and closes it during a teardown phase (2.8 mS), compared with the time
length of one slot (1 S) in our experiment the mode switching cost is relatively negligible.
Following we would present all possibilities resulting in various throughput and energy
consumption.

(i) Stay Sleep. Independent of the data collecting state, the EH-node decides to stay
sleep for this time slot due to internal factors such as out of power or external factors
such as next hop node disabled. The energy consumption in this state is assumed to be
zero, also as no packets are transmitted, throughput Φ = 0 in this case.

(ii) Turn on Collection. When the battery shows adequate, EH-node should start to
work. Data collection is a fundamental step to accomplish the design target of EH-WSN.
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The energy consumption in this case can be formulated as:

E = c(n) · ECollect (4)

Here c(n) means that the node chooses to collect data in n continuous slots during one
time round. Consequently, we think the node produces n byte data; however, these
outputs cannot be transferred directly, which still need data processing in advance.

(iii) Turn on Processing. When the data collection action completes, it needs to
conduct data processing operation. As for the EH-node nowadays always has a relatively
strong computational capability, we regard that only one slot data processing is enough
for the above continuous sampled data, and it yields n byte output. Note that data
collection could be discontinuous in a time round due to many reasons, but it must be
closely followed by a one-slot data processing procedure. The energy consumption of this
case is:

E = b(m) · EProcess (5)

Here m means that data collections turn on m times intermittently in one time round, so
the throughput Φ = m× n bytes afterwards.

(iv) Turn on Transmission. EH-node wants to transfer its data to the sink based on
a usable routing path. We think every node could send data freely to its forward node if
there is enough energy; on contrast it could also receive the former node’s message except
in sleep state. In light of using the Direct Memory Access (DMA) technique, we can
use just one slot to represent the whole communication procedure, and we consider that
one slot is long enough to receive and send all the available data. The resulting energy
consumption of this state is:

E = ESend(l + ϕ, d) + EReceive(l) (6)

Consequently the throughput Φ = l + ϕ bits (ϕ is the node’s own data, while l is the
received data).

(v) Continuous Collection, Processing and Transmission. In this case, EH-
node chooses to act according to a sequential order based on a sufficient battery level.
For example: the node executes an n continuous slots data collection, a one-slot data
processing and a one-slot data transmission. Therefore, the whole energy consumption is:

E = n · ECollect + EProcess + ESend(l + 8n, d) + EReceive(l) (7)

and the throughput Φ = l + 8n bits.
(vi) Intermittent Collection, Processing and Transmission. If the energy stored

in battery cannot afford a continuous activities employment, then the node could work
in a discontinuous mode: it may first enter in collection state of n1 slots, followed by one
slot processing; after that it turns down to sleep unless the energy buffer shows to be
adequate; once it wakes up to collect data again, the above process might repeat until
near the end of a round; and when coming to this last moment, the node should prepare
to transmit all the data to its next hop node. Hence, the energy utilization during this
case is:

E = (n1 + n2 + · · ·+ nm) · ECollect +m · EProcess

+ ESend [l + 8 · (n1 + n2 + · · ·+ nm), d] + EReceive(l)
(8)

and the whole throughput Φ = l + 8 · (n1 + n2 + · · ·+ nm) bits.
(vii) Interrupted Transmission. Once the EH-node completes its data collection

and processing, it needs to transmit all the valid data to next hop node. However, if the
next node is in extremely low battery condition, and cannot wake up to receive messages,
this EH-node only has to drop the data and turn down to idle. Thus, we regard the case
as a packet loss event that causes severe damage to the network performance. To avoid
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the problem CRL must be adopted to coordinate the neighbor nodes’ status. Energy cost
during this case is considered to be:

E = EEH,i(τ) (9)

Obviously the throughput equals zero.

2.4. Problem formulation. Let b(T ) denote the number of bits received by sink during
time rounds 1 ∼ T , Φi(τ) represents the EH-node i’s corresponding throughput in round
τ , X is the total number of time slots in one time round, and Z is the total number of
EH-nodes in EH-WSN. Then we can formulate the throughput maximization problem as
follows:

Maximize b(T ) =
Z∑

i=1

T∑
τ=1

Φi(τ) (10)

s.t. B ≥ Ei(τ) ≥ 0, ∀i, τ, 1 ≤ i ≤ Z, 1 ≤ τ ≤ T (11)

where B is the battery’s maximum capacity. An EH-node can choose only one action per
time slot from actions (i)-(iv), or carry on one working sequence from (v)-(vii) per time
round. While EH-WSN tries to maximize its total throughput, as described by (10), it
also needs to maintain its “energy-neutral” condition to satisfy the battery constraint as
shown in restriction (11).

Instead of solving this problem, which requires knowledge of vast system parameters,
we propose a learning based throughput computing scheme that is an online algorithm
and approximates the above-defined solution.

3. Duty Cycle Regulation Algorithm with Cooperative Reinforcement Learn-
ing. Here in this section, we introduce cooperative Q-learning based algorithm dubbed
as DR-CRL which makes an EH-node (referred to as agent) learn while taking actions
and making observations in its environment. We first define the states of our system as
well as actions and the corresponding rewards.

3.1. States. We represent the state of an EH-node as a tuple s = [Ei(τ),Φi(τ)]. For sim-
plicity, we quantize the energy buffer occupancy to β levels denoted by β = {0, 1, 2, . . . , B}.
Given ψ = {0, 1, 2, . . . , (X − 2) · 8} is the set of data throughput, then the state space of
our system is β × ψ which consists of (B + 1) · 8 · (X − 2) states.

3.2. Actions. An EH-node can choose one of four actions: stay sleep, turn on collection,
turn on processing, and turn on transmission in every slot during one round, and the
three practical sets of action sequences A in a whole time round: Continuous Collection,
Processing and Transmission; Intermittent Collection, Processing and Transmission; and
Interrupted Transmission. Therefore, there are possibly X + (X2/2) actions an EH-node
can take.

3.3. Rewards. After observing the outcomes of its actions, each EH-node gets a reward.
The reward function rx(s, a) : S×A→ R defines the desirability of an action a performed
on a state s. Reward function takes different values for each possible outcome defined in
Section 2.3. We calculate rx(s, a) as follows.

(i) Stay Sleep. In this case, we think the EH-node is out of energy mainly due to an
extremely low energy-harvesting rate. So the node has no alternative but to sleep until
the energy buffer meets requirement. In addition, we have nothing to adjust unless the
node wakes up at the present circumstances.
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(ii) Continuous Collection, Processing and Transmission. In this case, reward
function may get a positive value that depends on the residual battery level, energy
harvesting rate and action sequence. It is defined as:

rx(s, a) =

[
1− 2

Ei(τ − 1)

B

]
·
[
1− E

EEH,i(τ)

]
· Φi(τ)

X
(12)

Here E, Φi(τ) are the energy consumption and the corresponding throughput in current
time round which is defined in (7), EEH,i(τ) is the energy harvested in the present time
round, and Ei(τ − 1) is the energy state of node i according to last time round τ − 1 as
shown in (1). This reward function aims to enhance the working duty ratio when energy
harvesting rate is relatively high, and vice versa.

(iii) Intermittent Collection, Processing and Transmission. Similarly, E, Φi(τ),
m are the parameters defined in (8). Due to its inherent low energy buffer level, EH-node
should try hard to improve the residual battery while maximizing the data throughput.

rx(s, a) =

[
1− E

EEH,i(τ)

]
· m
X
· Φi(τ) (13)

(iv) Interrupted Transmission. In this case, the EH-node should get negative rein-
forcement to evade further interruptions. αInterrupt is the penalty coefficient for interrup-
tion and is problem and algorithm specific, ν is the bit rate that EH-node would transmit,
and Tslot is duration of a time slot.

rx(s, a) = −αInterrupt · ν ·
X · Tslot

EEH,i(τ)
(14)

3.4. Algorithm. After finishing the aforementioned work, we can study the DR-CRL al-
gorithm. Generally speaking, reinforcement learning is a heuristic unsupervised learning
method which tries to search the appropriate policies from interaction with the environ-
ment; Q-learning is frequently used to calculate the accumulative rewards and decide the
best policy [13-17]. Based on this above basis, thus we just propose a novel cooperative
reinforcement learning algorithm that uses neighbor nodes’ interactions: every EH-node
must check out the battery level of its next hop node after every round. If the battery
level of next hop is adequate, then the current node should choose action sequence 5 or
6 based on its local battery level, and it will adjust the parameters n or n1, n2, . . . , nm
based on the reward functions to maximize the whole throughput. Otherwise, if the next
hop node is in an insufficient state (certainly, it should work in the intermittent mode
in the first place), the current EH-node should only work in the intermittent collection,
processing and transmission mode also. The most important task in this case is to keep
the next hop node alive and improve its energy storage level until reaching the adequate
status. The detailed regulation method deals with parameters n1, n2, . . . , nm based on
RL as well. Finally, the special case is that the next hop node has no residual energy.
We consider it is caused by inappropriate management or harsh external condition so the
current node and all the nodes previous along the routing table lost their data during
these time rounds unless it wakes up. Therefore, the current node also has nothing to do
except being idle, but note that it has to wake up to regulate the battery storage level
to prevent overflow. An energy states analytical diagram is shown in Figure 3: the left
side icons represent the energy status of transmitting node, and the right side means the
receiving node’s energy state. Actually if the right side’s energy shows to be sufficient,
then the left current node has two options, i.e., continuous mode or intermittent mode,
based on its energy condition; else if the right side turns to be insufficient, then the right
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Figure 3. Energy state diagram of an EH-node placed in the network

Algorithm 1. Duty cycle Regulation algorithm based on Cooperative Reinforce-
ment Learning
1: Initialize Q(s, a) = 0 and e(s, a) = 0
2: While energy harvesting rate is not equal to zero do
3: Determine current state s by application variable
4: Select an action a, using Exploration-Exploitation Policy

(at = arg maxa∈AQt(s, a))
5: Execute the selected action a
6: Calculate reward for the executed action (Equations (12), (13), (14))
7: Update the learning rate α (Equation (15))
8: Calculate the temporal difference error δt = rt+1 + γ · f i ·Qt(st+1, at+1)

−Qt(st, at)
9: Update the eligibility traces et(s, a):{

et(s, a) = γ · λ · et−1(s, a) + 1 if s = st and a = at

et(s, a) = γ · λ · et−1(s, a) otherwise
10: Update the Q value: Qt+1(s, a)← Qt(s, a) + α · δt · et(s, a)
11: End While

receiving node should work under intermittent mode to save energy above all; hence the
left node only has to work in intermittent mode also to cooperate with it.

As in the above described Algorithm 1, α is the learning rate which controls how much
a learning step will impact the Q-value, and it is calculated as:

α =
ζ

visited(s, a)
(15)

where ζ is a positive constant, and visited(s, a) represents the visited state-action pairs so
far [18]. It is proven that the above Q-learning will converge to the optimal policy that
maximizes rewards, i.e., the optimal action sequences that maximize the throughput.

With regard to the detailed information in the learning procedure of Algorithm 1, we
take the circulation optimization in intermittent mode for example.
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Algorithm 2. Learning loop of intermittent collection, processing and transmission
mode
1: Learning:
2: Loop
3: Observe current state s(n1, n2, . . . , nm) on time round τ − 1
4: Generate a uniform random number R ∈ (0, 1)
5: If R < ε then
6: Select action at ∈ A randomly
7: Else
8: Select action at = arg maxa∈AQt(s, a)
9: If at = [n1′ = (n1 + 1), n2, . . . , nm] then

10: Switch from duty cycle n1, n2, . . . , nm to n1′, n2, . . . , nm
11: Sense the energy consumption and data throughput in time round τ
12: Get reward rt(st, at) according to Equation (13)
13: Update the Q value
14: Else if at = [n1′′ = (n1 + 2), n2, . . . , nm] then
15: · · · · · ·

In Algorithm 2, ε is the exploration ratio and notice that the numerical value of working
slots is n1 + n2 + · · ·+ nm+m+ 1, which must be less than X.

At each time step, the above Algorithms 1 and 2 use the exploration-exploitation mech-
anism to learn the states iteratively, and choose the action with the highest reward based
on the Q-value table.

Finally, if the interrupted mode appears, the current EH-node should keep idle in the
whole time round and monitor the battery status. In case of a high-energy harvesting rate,
the node must take some energy-extensive consumption tasks to prevent energy overflow.
For it is not the main concern of this paper, we just use a general duty cycle ratio for
regulation which is based on Equation (14).

4. Experimental Results and Evaluation. We present the empirical studies in this
section to evaluate the performance of our proposed algorithm DR-CRL. Simulations are
carried out on MATLAB platform. We compare the performance of our algorithm against
existing algorithms from five aspects respectively that are EH-node’s residual energy, the
work/sleep duty cycle ratio, the action sequence versus the energy-harvesting rate, the
individual EH-node’s throughput and whole EH-WSN’s throughput.

4.1. Simulation setup. The parameters used in the simulations are shown in Table 1.
For the communication parameters, we use the value obtained from [9]. We consider

that each round lasts for 20 minutes. The demarcation point of battery shortage is set
to 40% to strengthen its robustness. For the Q-learning parameters, as with most RL
problems, these values were determined empirically rather than through mathematical
methods. We evaluated the system with different values of parameters and chose the
combination that performed the best. The system is somewhat sensitive to the values
of α and ε. Using high values for α (learning rate) and ε causes large oscillations in Q-
values during training. Therefore, we chose smaller values but compensated with a larger
number of iterations during learning.

We design an EH-WSN with the topology shown as Figure 4, where nodes have been
half-arbitrary placed around the sink. Each node’s transmission distance is listed as
follows: nodes 1, 2, 3, 4 are linked directed with the sink and d1 = d2 = d3 = d4 = 10
m; node 5 and node 6 also transmit to sink straightly and d5 = 10

√
2 m, d6 = 5

√
2 m
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Table 1. Simulation parameters

Parameter Values

Number of time rounds (T ) 10

Number of time slots in one time round (X) 20

Time slot duration (Tslot) 1 s

Number of EH-nodes (Z) 10

Radio dissipation (Eelec) 50 nJ/bit

Emission amplification factor (ξamp) 100 pJ/bit/m2

Energy consumption of data collection (ECollect) 120 mW·Tslot

Energy consumption of data processing (EProcess) 80 mW·Tslot

Battery energy level of insufficient 40%

Battery’s maximum capacity (B) 7000 mAH

Bit rate that agents transmit (ν) 3.5 Mbps

Penalty coefficient for interruption (αInterrupt) 1.2

Q-Learning Parameters

Exploration probability ε 0.03

Discount rate γ 0.9

Learning parameter α, λ 0.5

Figure 4. Topology of the proposed EH-WSN

respectively; however, node 7 needs to transfer data to node 6 first and then be relayed
to the sink, so d7 = 10

√
2 m; similarly node 3 is responsible for relaying node 8’s data

and d8 = 5
√

10 m; as well node 9 uses node 1 as the relay station and d9 = 10 m; at last
the node 1 is also in charge of relaying node 10’s data additionally, and d10 = 5

√
5 m.
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Figure 5. Operation diagram of selected energy harvesting module

Moreover, we adopt an energy-harvesting module (solar panel) with typical electrical
values from [19], and its output energy during one week is recorded in Figure 5. Because
in the database the collection of solar radiation occurs at the rate of about a quarter of
an hour, when the present round is within a certain quarter, the solar radiation is viewed
as a constant in this round.

So based on the above basis, we could have the following experiments aiming at testing
and evaluating the individual node’s energy sustainability, task scheduling capability and
the overall network throughput performance. We choose to neglect the energy and time
cost caused by the proposed DR-CRL algorithm for the convenience of calculation.

4.2. Energy-neutral testing. First of all, we do some research on the performance of
EH-nodes’ energy variation trend: we assume that all nodes endure the same energy
harvesting condition of Figure 5 in this exam, and the DR-CRL mechanism has been
loaded on all, then we set the nodes with different initial energies in the battery, and
introduce a statistic analysis on the duty cycle ratio (for a direct perception, we classify
the ratio into 5 sorts: 0%, 25%, 50%, 75% and 100%, P.s. data collection, processing
and transmission are all seemed as working state), and the record of some node’s residual
energy variation and duty cycle changes are shown in Figure 6.

In Figure 6(a), we can see that the residual energy of node 2 rises to approximately 75%
from day 1 to day 4, and maintains around 65%-70% in days 5, 6, 7. Figure 6(b) shows
the detailed work/sleep ratio variations from day 1 to day 7, apparently the ratio rises to
100% when coming up to the noon hour and drop to 0% when is in the dark night, and
the average ratio is lower than 55% in the first four days in order to increase the residual
energy, and improves to near 60% in the last three days to maximize the throughput. From
these data, we can infer that the proposed energy management algorithm can effectively
charge the EH-node that is given a lower initial energy, and make it work reliably.

Next, we check the node 6’s performance that has been set with a medium initial energy,
and the result is shown in Figure 7.

We can see that the residual energy rises up quickly in the first day, and stays between
52%-66% during day 2 to day 6, and then gradually increases to 65% in day 7. While
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(a)

(b)

Figure 6. (a) Changes of residual energy (node 2 with 20% initial elec-
tricity) and (b) changes of duty cycle ratio (node 2 with 20% initial elec-
tricity)

the average work/sleep ratio in day 1 is lower than 40%, keeps up between 50%-60% at
day 2 to day 5, and finally achieves stabilization in days 6 and 7. This result proves
that DR-CRL could maintain the energy-neutral status of EH-node with a medium level
starting energy.

Thirdly, we measure the node 1’s energy profile and its duty cycle, as shown in Figure
8.

Node 1 is equipped with a higher initial energy as for it has to relay two front nodes’
data, from Figure 8(a) we discover that the battery level rises to 90% rapidly after day
1, and then it declines slowly to about 60% after day 3. The average duty-cycle ratio
is higher than 65% in the first three days with more energy consumption that aims at
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(a)

(b)

Figure 7. (a) Changes of residual energy (node 6 with 48% initial elec-
tricity) and (b) changes of duty cycle ratio (node 6 with 48% initial elec-
tricity)

reducing the residual energy, and then it stays around 50%-60% in the last four days to
keep energy balance.

From what has been mentioned above, we may find that the proposed DR-CRL al-
gorithm can make EH-nodes with different initial energies work in the “energy-neutral”
state effectively and efficiently, which satisfies the principal rule of EH-WSN.

4.3. Action sequence vs. energy harvesting rate. In this part, we study the action
sequences of EH-nodes when the energy harvesting rate changes. In theory, the EH-nodes
would automatically regulate their working time ratio based on the current harvested
energy under DR-CRL mechanism. For individual node the action carried out in every
slot needs to follow two principles: one is the “energy-neutral” rule of itself, and the other
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(a)

(b)

Figure 8. (a) Changes of residual energy (node 1 with 80% initial elec-
tricity) and (b) changes of duty cycle ratio (node 1 with 80% initial elec-
tricity)

is the cooperation with the rest nodes on the routing table. Here we choose node 3 as an
illustration, some operation sequences of certain moment are shown in Figure 9, action
time order from left to right.

As can be seen from the diagram, node 3 first needs to charge the battery to an
adequate level, so it has to sleep most of the time; next when approaching the noon hour,
it has gathered enough energy to collect, process and transmit data as much as possible
in a majority of time; then if coming to the nightfall, node has to turn down to sleep
discontinuously because of the insufficient residual energy and declined harvesting rate.
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(a) Node 3 in day 3 at 5:00 AM

(b) Node 3 in day 4 at 12:15 PM

(c) Node 3 in day 5 at 6:30 PM

Figure 9. (color online) Typical action sequences of node 3 with 20%
initial capacity (Here blue slot means sleep, red means data collection, and
green means data process, yellow means data transmission)

(a) Node 8 in day 3 at 5:00 AM

(b) Node 8 in day 4 at 12:15 PM

(c) Node 8 in day 5 at 6:30 PM

Figure 10. (color online) Typical action sequences of node 8 with 50%
initial capacity (Here blue slot means sleep, red means data collection, and
green means data process, yellow means data transmission)

Figure 11. (color online) Action sequences of testing node with a fixed
duty cycle of 50%

Moreover, we still need to check the previous node’s status, i.e., node 8; therefore,
we synchronously record its action sequences at the exact time with node 3 and display
in Figure 10. It can be figured out that node 8 has a more active sequence due to its
comparatively adequate initial energy, besides it is not required to relay a former node’s
data. However, note that it uses an intermittent mode in Figure 10(c), as its next hop
node (node 3) is in an insufficient state regardless of current node’s state.

4.4. Data throughput. In this part, we evaluate the performance of our proposed
method with a comparison to the following algorithms: one is for single node-level
throughput comparison, we use a fixed duty cycle solution (50%, as shown in Figure
11) for the task arrangement in every time round, simply because it is in close proximity
to the optimized numerical model described above, and then we statistically analyze the
detailed data throughput of two algorithms during the same testing period; the other is
for whole network-level contrast, where optimization mechanism RLTDPM [20] is used
to satisfy the throughput on demand requirements, we also calculate and comparatively
discuss the variance.
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The first comparison results are shown in Figures 12 and 13, in which node 4’s through-
puts and node 7’s throughputs during day 4 are recorded: here node 4 transfers directly
to the sink and node 7 uses node 6 as a relay. It can be seen in Figure 12 that node 4
under our proposed algorithm wakes up much earlier and falls into deep sleep later than
the case with fixed duty cycle, mainly due to its automatically self-regulation based on
the external energy harvesting rate, and obviously the total throughput in DR-CRL is
greater than the comparative object in fixed duty cycle. The other contrasting result is
represented in Figure 13, where nodes 6 and 7 both experience with the fixed duty cycle
sequence. We can find that node 7’s throughput in DR-CRL is less than node 4, for it
has a longer transmission distance and an unstable changing relay. However, it is greater

Figure 12. Throughput comparison of node 4 with 36% initial energy

Figure 13. Throughput comparison of node 7 with 45% initial energy
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Figure 14. Throughput comparison of whole EH-WSN

than the fixed duty cycle version, mostly because of the intermittent transmission mode
caused by the relay.

Then we conduct the whole throughput evaluation of EH-WSN, we run the two algo-
rithms separately and calculate the number of whole data received by the sink in day
7, and results are shown in Figure 14. From the figure it can be deduced that both two
algorithms keep up with the changing environmental energy sensitively, the total numbers
of output data are almost identical until a sudden sinking of external energy, after that
the DR-CRL resumes the total data transmission quickly and dependably, on the contrary
RLTDPM mechanism could not handle the accident timely and result in a poorer perfor-
mance during the subsequent period, on account of lacking the task schedule method in
each time round.

In conclusion, these simulations indicate that the proposed DR-CRL algorithm could
effectively keep the EH-nodes working in “energy-neutral” status, and efficiently regulate
the task schedule to maximize the whole throughput. We also see that our definitions
of the state result in a highly adaptive behavior. Our proposed method is able to adapt
to changes in initial battery electricity, weather, and device parameters, which make the
EH-node robust in its operation. In addition, our state definition and general reward
formulation scheme allows for general application of our power management method such
as wind energy harvesting, radio frequency energy harvesting and biological energy har-
vesting.

5. Conclusions. In this paper, a novel algorithm for sustaining perpetual operation of
EH-WSN as well as maximizing its corresponding throughput by utilizing cooperative re-
inforcement learning method, named DR-CRL, was proposed. Numerical simulations are
evaluated for a solar-power WSN to analyze the performance of the proposed algorithm.
Parameters such as the EH-node’s residual energy, the work/sleep duty cycle ratio, the
action sequence versus the energy-harvesting rate, the individual EH-node’s throughput
and whole EH-WSN’s throughput have been analyzed and reviewed. Results show the
effectiveness and efficiency of the proposed DR-CRL algorithm. Future work will focus
on the proposal of a Medium Access Control (MAC) protocol for EH-WSN and consider
cluster-based topology structures.
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