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Abstract. Generally speaking, Karnik-Mendel algorithm is a standard way to calculate
the centroid and perform type-reduction (TR) for interval type-2 fuzzy sets and systems.
In this paper, an efficient centroid type-reduction strategy for general type-2 fuzzy sets is
introduced based on Karnik-Mendel (KM) algorithm, enhanced Karnik-Mendel (EKM)
algorithm, enhanced iterative algorithm+stopping condition (EIASC). The strategy uses
the result of α-plane representation, performs the centroid type-reduction on each α-plane,
and expands type-reduction algorithms for general type-2 fuzzy logic systems. Simulations
performed and compared by each of three types of algorithms show that they usually need
only several resolution of α values such that the defuzzified values converge to real values.
Compared with the exhaustive computation method, the method can tremendously decrease
the computation complexity from exponential into linear. So it provides the potential
application value for general type-2 fuzzy logic systems.
Keywords: General type-2 fuzzy logic systems, α-plane, KM algorithm, EKM algori-
thm, EIASC

1. Introduction. It is difficult to deploy general type-2 (GT2) fuzzy logic systems (FLSs)
into practical applications, because the computation complexity of them is quite high.
Hence, only an interval type-2 (IT2) FLS [32-34] is the most widely used T2 FLS. Until
recently, GT2 FLSs [1,2] based on α-plane (or z-Slices) theory are used in some fields.

An IT2 FS can account for membership function (MF) uncertainties. However, the
secondary membership grades of an IT2 fuzzy set (FS) all equal 1. The secondary mem-
bership grades of a GT2 FS locate between 0 and 1. So a GT2 FS can be thought of as
a higher order FS uncertainties model than its IT2 counterpart. Both IT2 FSs and GT2
FSs are parametric models. Each FS parameter in an FLS can be considered as one of its
design degrees of freedom. As the number of design degrees of freedom increases, an IT2
FLS or a GT2 FLS may outperform a T1 FLS.

The typical structure of a T2 FLS is shown in Figure 1 [4]. In a T2 FLS, the output
processing is composed by blocks of type-reducer and defuzzifier. However, the output
processing of a T1 FLS is just the defuzzifier block. In this paper, only the type-reducer
is addressed.

Karnik and Mendel [5] develop type-reduction methods, and they are elaborated upon
in [4]. The conventional and efficient Karnik-Mendel (KM) algorithm has been devel-
oped for centroid type-reduction for IT2 FLSs. Although KM algorithm [26] converges
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Figure 1. A T2 FLS

monotonically and super-exponentially fast, it usually achieves the final results from two
to six iterations. In order to reduce computation time, EKM algorithm is developed by
Wu and Mendel [6-8]. Compared with KM algorithm, EKM algorithm can save about
two iterations. Another algorithm called EIASC was proposed in [9], which reduced the
computation time more at the sacrifice of neglecting the uncertainty contained in FOU.
According to [9], “The EIASC outperformed the KM algorithm, especially when N is
small (N ≤ 100, N is the number of discretization points of primary variable x)”. How-
ever, no efficient strategies exist for centroid type-reduction of GT2 FLSs because: (1) in
the wavy-slice representation theory, a T2 FS is expressed as the union of its T2 embed-
ded sets. For a general T2 fuzzy system, centroid type-reduction was just derived from
that theory in the previous idea; (2) the generalized centroid of these T2 embedded sets
was first calculated and then combined into the type-reduced T1 FS; (3) an astronomical
number of T2 embedded sets exists for the union operation, which makes the computation
complexity of centroid type-reduction for GT2 FSs very high.

F. Liu [10] proposed an efficient strategy to perform centroid type-reduction for GT2
FLSs based on fuzzy weighted average [11,12]. The fuzzy weighted average is calculated
on α-cuts. This paper aims to develop the efficient centroid type-reduction strategy for
GT2 FSs based on KM algorithm, EKM algorithm, and EIASC. As shown in Figure 2,
based on an α-plane Representation, a GT2 FS can be decomposed into several α-planes.
For each α-plane, centroid type-reduction is achieved by KM algorithm, EKM algorithm,
EIASC individually to get the α-cut of the type-reduced T1 FS. By combining these
intervals or α-cuts, the type-reduced T1 FS is obtained.

The rest of this paper is organized as follows. Section 2 provides background material
about T2 FSs, centroid of an IT2 FS, KM algorithm, EKM algorithm, EIASC. Section 3
introduces the definition of α-plane, α-plane representation, and the strategy to perform
centroid type-reduction for GT2 FS. Section 4 gives the numerical simulations, compares
and summarizes the test results, and analyzes the computation complexity of the proposed
strategy. Finally, Section 5 gives the conclusions and expectations.

2. Backgrounds. This section provides background material about T2 FSs, the centroid
of such FSs and KM algorithm, EKM algorithm, EIASC.

2.1. Reviews on T2 FSs. A T2 FS Ã is characterized by a T2 MF µÃ(x, u), i.e.,

Ã = {((x, u), µÃ(x, u))|∀x ∈ X, ∀u ∈ Jx ⊆ [0, 1]} or Ã =
∫

x∈X

∫

u∈Jx
µÃ(x, u)/(x, u), in
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Figure 2. The key idea of centroid type-reduction for a GT2 FLS

which 0 ≤ µÃ(x, u) ≤ 1, Jx is the primary membership, and
∫∫

denotes all admissible x
and u.

A secondary membership function (MF) is a vertical slice of µÃ(x, u). It is µÃ(x = x′, u)
for x′ ∈ X and ∀u ∈ Jx′ ⊆ [0, 1], i.e., µÃ(x = x′, u) ≡ µÃ(x′) =

∫

u∈J
x′

fx′(u)/u, Jx ⊆ [0, 1].

Uncertainty in the primary memberships of a T2 FS, Ã, consists of a bounded region
that we call the footprint of uncertainty (FOU). It is the union of all primary memberships,
i.e.,

FOU(Ã) =
⋃

x∈X

Jx = {(x, u) ∈ X × [0, 1]|µÃ(x, u) > 0} (1)

which represents the uncertainty in the primary memberships of a T2 FS Ã. FOU(Ã) is
bounded by lower membership function (LMF) and upper membership function (UMF),

which are denoted as µ
Ã
(x) and µÃ(x) [or LMF(Ã) and UMF(Ã)], respectively, where

[16]

LMF(Ã) = µ
Ã
(x) = inf {u|u ∈ [0, 1], µÃ(x, u) > 0} (2)

UMF(Ã) = µÃ(x) = sup {u|u ∈ [0, 1], µÃ(x, u) > 0} . (3)

An embedded T1 FS Ae is determined by µÃ(x, u), i.e.,

Ae = {(x, u(x))|∀x ∈ X, u ∈ Jx}. (4)

A T2 FS Ã can be expressed as a collection of its vertical slices, i.e.,

Ã =

∫

x∈X

∫

u∈Jx

µÃ(x, u)/(x, u) =

∫

x′∈X

[
∫

u∈Jx

µÃ(x = x′, u)/u

]/

x′ =

∫

x′∈X

µÃ(x′)/x′

(5)
for continuous, and

Ã =
∑

x∈X

[

∑

u∈Jx

µÃ(x, u)/u

]/

x =

N
∑

i=1





∑

u∈Jxi

µÃ(xi, u)/u





/

xi (6)

for discrete case. This representation is called the vertical slice representation. A T2 FS
Ã can also be represented as the union of its embedded T2 FSs, i.e.,

Ã =

n
∑

j=1

Ãj
e. (7)

The above representation is called the wavy-slice representation. It is useful for theoretical
analysis [13,14].

Because the secondary grades of an IT2 FS [15,16] are all the same, an IT2 FS is
completely described by its FOU [3], and consequently by its LMF and UMF. An example
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Figure 3. IT2 FS and related quantities [17]

of the FOU of an IT2 FS is depicted in Figure 3. Also, the lower and upper MFs for such
an FOU [18,19], the primary membership at x = x′, and an example of an embedded T1
FS are shown in this figure.

2.2. Centroid of an IT2 FS. The centroid CÃ(x) of an IT2 FS Ã is the union of the
centroids, CÃ(Ae), of all its nA embedded T1 FSs Ae. This means [4,5] that,

CÃ(x) = 1

/

⋃

∀Ae

cÃ(Ae) = 1

/

⋃

∀Ae

N
∑

i=1

xiµAe
(xi)

N
∑

i=1

µAe
(xi)

= 1
/[

cl(Ã), cr(Ã)
]

(8)

where

cl(Ã) = min
∀Ae

cÃ(Ae) = min
∀θi∈[µ

Ã
(xi),µÃ

(xi)]

(

N
∑

i=1

xiθi

/

N
∑

i=1

θi

)

≈ cl(k) =

k
∑

i=1

xiµÃ(xi) +
N
∑

i=k+1

xiµÃ
(xi)

k
∑

i=1

µÃ(xi) +
N
∑

i=k+1

µ
Ã
(xi)

(9)

cr(Ã) = max
∀Ae

cÃ(Ae) = max
∀θi∈[µ

Ã
(xi),µÃ

(xi)]

(

N
∑

i=1

xiθi

/

N
∑

i=1

θi

)

≈ cr(k) =

k
∑

i=1

xiµÃ
(xi) +

N
∑

i=k+1

xiµÃ(xi)

k
∑

i=1

µ
Ã
(xi) +

N
∑

i=k+1

µÃ(xi)

.

(10)

xi (x1 < x2 < · · · < xN ) are the sampled values of the primary variable. KM algorithm,
EKM algorithm, or EIASC can be used to solve the counterparts of cl and cr.

2.3. Three types of type-reduction algorithms. KM algorithm was stated in [21,25],
and given the tabular form in [22, Chapter 2]. Table 1 shows the details of this algorithm.

KM algorithm [20] is one of optimization algorithms that can be used to solve the two
end points cl and cr. A good optimization algorithm requires: 1) a good way to initialize
it, 2) a good way to move from one step to the next, and 3) a good way to stop.

KM algorithm supplies neither a good initialization nor a good stop. However, it
provides a good way to move from one step to the next. So there exists improved space
for the algorithm.
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Table 1. KM algorithm to compute the centroid endpoints of an IT2 FS
[22, Chapter 2]

Step KM Algorithm for cl

cl = min
∀θi∈[µ

Ã
(xi),µÃ

(xi)]

(

N
∑

i=1
xiθi

/

N
∑

i=1
θi

)

1 Initialize θi by setting θi =
[

µ
Ã
(xi) + µ̄Ã(xi)

]

/

2, i = 1, . . . , N , and then compute

c′ = c (θ1, . . . , θN ) =
N
∑

i=1
xiθi

/

N
∑

i=1
θi

2 Find k (1 ≤ k ≤ N − 1) such that xk ≤ c′ ≤ xk+1

3 Set θi = µÃ(xi) when i ≤ k, and θi = µ
Ã
(xi) when i ≥ k + 1, and then compute

cl(k) ≡

k
∑

i=1

xiµÃ
(xi)+

N
∑

i=k+1

xiµ
Ã

(xi)

k
∑

i=1

µ
Ã

(xi)+
N
∑

i=k+1

µ
Ã

(xi)

4 Check if cl(k) = c′. If yes, stop and set cl(k) = cl and call k L. If no, go to Step 5.
5 Set c′ = cl(k) and go to Step 2

Step KM Algorithm for cr

cr = max
∀θi∈[µ

Ã
(xi),µ̄Ã

(xi)]

(

N
∑

i=1
xiθi

/

N
∑

i=1
θi

)

1 Same as Step 1 above
2 Same as Step 2 above
3 Set θi = µ

Ã
(xi) when i ≤ k, and θi = µÃ(xi) when i ≥ k + 1, and then compute

cr(k) =

k
∑

i=1

xiµ
Ã

(xi)+
N
∑

i=k+1

xiµÃ
(xi)

k
∑

i=1

µ
Ã

(xi)+
N
∑

i=k+1

µ
Ã

(xi)

4 Check if cr(k) = c′. If yes, stop and set cr(k) = cr and call k R. If no, go to Step 5.
5 Set c′ = cr(k) and go to Step 2

Paper [5] proved that each KM algorithm needs at most N iterations. In fact, it is
quite conservative. Paper [23] proposed (without proof) that the number of iterations
for each KM algorithm is less than or equal to (N + 2)/4 on average. This is also very
conservative.

Extensive simulation studies show that KM algorithms obtain their final results from
two to six iterations no matter what is the number of N is.

Mendel and Wu [6-8] developed the EKM algorithm, and it is given in Table 2. The
EKM algorithm modifies the traditional KM algorithm in three ways: 1) in order to reduce
the number of iterations, a better initialization is adopted; 2) an unnecessary iteration
is removed by changing the termination condition of the iterations; 3) the computational
cost of each algorithm’s iterations is reduced by using a subtle calculating technique.

The EIASC algorithm is a non-KM algorithm, and it does not satisfy the three design
requirements of a good optimization algorithm. The algorithm is based on the monotonic
properties: cl(k) in (9) first monotonically decreases and then monotonically increases
with increase of k; cr(k) in (10) first monotonically increases and then monotonically
decreases with increase of k. The beautifully simple EIASC is given in Table 3. The
EIASC is the simplest to understand. When one starts with or without an FOU, it can
be used in both two cases. The fastest way to complete may be the EIASC.
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Table 2. EKM algorithm to compute the centroid endpoints of an IT2 FS

Step EKM Algorithm for cl

1 Set k = [N/2.4] (the nearest integer to N/2.4) and compute:

a =
k
∑

i=1

xiµÃ(xi) +
N
∑

i=k+1

xiµÃ
(xi)

b =
k
∑

i=1

µÃ(xi) +
N
∑

i=k+1

µ
Ã
(xi)

Compute c′ = a/b
2 Find k′ ∈ [1, N − 1] such that xk′ ≤ c′ ≤ xk′+1

3 Check if k′ = k. If yes, stop and set c′ = cl, and k = L. If no, go to Step 4.
4 Compute s = sign(k′ − k) and:

a′ = a + s
max(k,k′)
∑

i=min(k,k′)+1

xi

[

µÃ(xi) − µ
Ã
(xi)

]

b′ = b + s
max(k,k′)
∑

i=min(k,k′)+1

[

µÃ(xi) − µ
Ã
(xi)

]

Compute c′′(k′) = a′/b′

5 Set c′ = c′′(k′), a = a′, b = b′ and k = k′ and go to Step 2

Step EKM Algorithm for cr

1 Set k = [N/1.7] (the nearest integer to N/1.7) and compute:

a =
k
∑

i=1

xiµÃ
(xi) +

N
∑

i=k+1

xiµÃ(xi)

b =
k
∑

i=1

µ
Ã
(xi) +

N
∑

i=k+1

µÃ(xi)

Compute c′ = a/b
2 Same as Step 2 above
3 Check if k′ = k. If yes, stop and set c′ = cr, and k = R. If no, go to Step 4.
4 Compute s = sign(k′ − k) and:

a′ = a − s
max(k,k′)
∑

i=min(k,k′)+1

xi

[

µÃ(xi) − µ
Ã
(xi)

]

b′ = b − s
max(k,k′)
∑

i=min(k,k′)+1

[

µÃ(xi) − µ
Ã
(xi)

]

Compute c′′(k′) = a′/b′

5 Same as Step 5 above

3. The α-Plane Representation and Its Application to Centroid Type-Reduc-

tion.

3.1. α-plane representation.

Definition 3.1. The α-plane Ãα is the union of all primary membership whose secondary

grades are greater than or equal to the value α, i.e.,

Ãα =
⋃

x∈X

{(x, u)|µÃ(x, u) ≥ α} =
⋃

x∈X

(µÃ(x))α =
⋃

x∈X

[aα(x), bα(x)] (11)

where (µÃ(x))α is the α-cut of the vertical slice µÃ(x). The FOU is obviously a specific

α-plane with α = 0.

Some properties for the α-plane Ãα can be summarized in the following.
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Table 3. EIASC [9]

Step EIASC for cl EIASC for cr

1 Initialize Initialize

a =
∑N

i=1 xiµÃ
(xi) a =

∑N
i=1 xiµÃ(xi)

b =
∑N

i=1 µ
Ã
(xi) b =

∑N

i=1 µÃ(xi)

L = 0 R = N
2 Compute Compute

L = L + 1 a = a + xR

[

µÃ(xR) − µ
Ã
(xR)

]

a = a + xL

[

µÃ(xL) − µ
Ã
(xL)

]

b = b +
[

µÃ(xR) − µ
Ã
(xR)

]

b = b +
[

µÃ(xL) − µ
Ã
(xL)

]

cr = a/b

cl = a/b R = R − 1
3 If cl ≤ xL+1, stop, otherwise, go to

Step 2
If cr ≥ xR, stop, otherwise, go to
Step 2

Property 3.1. Ãα1
⊆ Ãα2

, if α1 ≥ α2.

Property 3.2.
(

Ã ∪ B̃
)

α
= Ãα ∪ B̃α.

Property 3.3.
(

Ã ∩ B̃
)

α
= Ãα ∩ B̃α.

Property 3.1 shows that, for the same T2 FS Ã, the α-plane with greater α must be
included in the α-plane with smaller α. Property 3.2 shows that, the α-plane of union of
two T2 FS Ã and B̃ is the same as the union of the two α-plane for the T2 FS Ã and B̃.
Property 3.3 shows that, the α-plane of intersection of two T2 FS Ã and B̃ is the same
as the intersection of the two α-plane for the T2 FS Ã and B̃.

Definition 3.2. The associated T2 FS of the α-plane Ãα is defined as

Ã(α) =
{

(x, u), α|∀(x, u) ∈ Ãα

}

. (12)

Next, the α-plane representation theorem is explained.

Theorem 3.1. A GT2 Ã can be represented as the union of its associated T2 FSs Ã(α),
i.e.,

Ã =
⋃

α∈[0,1]

Ã(α). (13)

In Theorem 3.1, the α-plane representation theory for a T2 FS is proposed. It is
different from the vertical slice representation and embedded set representation.

3.2. Centroid type-reduction. The centroid type-reduction for a T2 FS Ã can be
formulated as

Yc =

∫

u1∈Jx1

· · ·

∫

uN∈JxN

µÃ(x1, u1) × · · · × µÃ(xN , uN)

/

N
∑

i=1

xiui

N
∑

i=1

ui

(14)

where “×” usually denotes the product or minimum t-norm. The minimum t-norm is
used for the centroid type-reduction in the paper. The centroid type-reduced output
Yc(x) is a T1 FS. xi (i = 1, 2, . . . , N) are ordered in centroid type-reduction, for which
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Xi, i = 1, 2, . . . , N have only a single value, and µÃ(xi, ui) is viewed as the vertical slices
of a GT2 FS.

Theorem 3.2. The centroid type-reduction for a T2 FS Ã is the union of its related T2

FSs Ã(α), with α ∈ [0, 1], i.e.,

Yc =

∫

α∈[0,1]

Centroid
(

Ã(α)
)

=

∫

α∈[0,1]

α/domain
(

Centroid
(

Ã(α)
))

(15)

(Yc)α = domain
(

Centroid
(

Ã(α)
))

Yc(α) = Centroid
(

Ã(α)
)

. (16)

Then the centroid type-reduction for a T2 FS can be decomposed into individual cen-
troid type-reduction calculation for its related T2 FS Ã(α), and they can be performed
in parallel. We can also formulate (16) as follows:

Yc(α) = Centroid
(

Ã(α)
)

=

∫

u1∈
αJx1

· · ·

∫

uN∈αJxN

α

/

N
∑

i=1

xiui

N
∑

i=1

ui

= α/ [αyl,
αyr] (17)

where [αyl,
αyr] is the domain of the centroid. Therefore, we can use algorithms like KM,

EKM or EIASC to calculate αyl and αyr.
The strategy to calculate centroid type-reduction for a GT2 FS is:
Step 1: Break the α into ∆ values of 0, 1/∆, 2/∆, . . . , (∆ − 1)/∆, 1. Decompose the

GT2 FS into multiple α-planes Ãα with above α values. Unite all these α-cuts with same
α for the vertical slices.

Step 2: Calculate the centroid α/[αyl,
αyr] for each related T2 FS Ã(α).

Step 3: Calculate the union of all these centroids.

4. Simulations. In this paper, two cases are presented, for which (1) the FOU is derived
from two fired rules, and the FOU is bounded by Gaussian functions or triangular func-
tions, and (2) non-symmetric or symmetric triangular MFs are adopted for the vertical
slices. In practical applications, the T2 FS is usually continuous. In order to perform
centroid type-reduction and defuzzification, the T2 MF needs to be discretized. Attention
that, for any situation, we assumed that x ∈ [0, 10], and x is uniformly sampled. The
number of total samples for x is 200, so that xi+1 −xi = 0.05. The range of ∆ was from 1
to 100. For each α-plane, the KM, EKM or EIASC algorithms were used to compute the
lower and upper bound for the centroid type-reduced interval. By the weighted average
defuzzification, a crisp value was obtained.

Case A: Gaussian function with randomly generated triangular vertical slice.
As shown in Figure 4(a), the UMF of the FOU is composed of the maximum of the two

Gaussian functions:

u1(x) = exp

(

−
(x − 3)2

8

)

(18)

and

u2(x) = exp

(

−
(x − 6)2

8

)

. (19)

The LMF of the FOU is composed of the maximum of the two Gaussian functions:

u3(x) = 0.5 exp

(

−
(x − 3)2

2

)

(20)
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(a) (b)

Figure 4. (a) The FOU for Case A and (b) its corresponding vertical slice
when x = 4

and

u4(x) = 0.4 exp

(

−
(x − 6)2

2

)

. (21)

For any value of x, the related vertical slice is triangular MF, whose apex is decided by a
randomly generated value w(x) ∈ [0, 1] as

Apex = u(x) + w(x) (u(x) − u(x)) (22)

where the lower and upper bounds of the primary membership Jx are u(x) and u(x). The
simulation graphs of three types of type-reduction algorithms of type-reduced MFs for
∆ = 100 and the defuzzified values for ∆ ranging from 1 to 100 are shown in Figures 5
and 6.

Case B: Triangular function with non-symmetric trapezoid vertical slice
This case uses triangular function to bound the FOU. As shown in Figure 7, the upper

UMF of the FOU is composed of the maximum of two triangular functions, i.e.,

u1(x) =











x−1
2

, 1 ≤ x ≤ 3
7−x

4
, 3 < x ≤ 7

0, otherwise

(23)

and

u2(x) =











x−2
5

, 2 ≤ x ≤ 6
16−2x

5
, 6 < x ≤ 8

0, otherwise.

(24)

The upper bound of the FOU is composed of the maximum of the two triangular functions

u3(x) =











x−1
6

, 1 ≤ x ≤ 4
7−x

6
, 4 < x ≤ 7

0, otherwise

(25)
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Figure 5. Three types of type-reduction algorithms of type-reduced MFs
when ∆ = 100 for Case A

Figure 6. Three types of type-reduction algorithms of centroid defuzzified
values of ∆ ranging from 1 to 100 for Case A

and

u4(x) =











x−3
6

, 3 ≤ x ≤ 5
8−x

9
, 5 < x ≤ 8

0, otherwise.

(26)

For any value of x, the related vertical slice is trapezoid MF, whose top left and right
end-points are decided by

L(x) = u(x) + 0.6w (u(x) − u(x))

R(x) = u(x) − 0.6(1 − w) (u(x) − u(x)) (27)
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where the lower and upper bounds of the primary membership Jx are u(x) and u(x), and
w = 0 is chosen for this test. The simulation graphs of three types of type-reduction
algorithms of type-reduced MFs for ∆ = 100 and the defuzzified values for ∆ ranging
from 1 to 100 are shown in Figures 8 and 9.

Observing from these experiments, note that, regardless of the nature of the secondary
MFs: (1) for three types of type-reduction algorithms, the α-cut with greater α is always
included in the α-cut with small α. From Property 3.1, we can also see that, the α-plane
with greater α is always included in the α-plane with small α; (2) for three types of type-
reduction algorithms, the shape of the type-reduced T1 FS depends on the shape of the
secondary MF, that is, the first test with triangular secondary MF derived a triangular-
looking T1 MF, and the second test with trapezoid secondary MF derived a trapezoid-
looking T1 MF. It can be easily deduced from the α-plane representation theory; (3) for

(a) (b)

Figure 7. (a) The FOU for Case B and (b) its corresponding vertical slice
when x = 2

Figure 8. Three types of type-reduction algorithms of type-reduced MFs
when ∆ = 100 for Case B
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Figure 9. Three types of type-reduction algorithms of centroid defuzzified
values of ∆ ranging from 1 to 100 for Case B

three types of type-reduction algorithms, as ∆ increases, the centroid defuzzified values all
converge to real values, and the real values can be viewed as the defuzzified values of the
continuous T2 FSs; (4) for three types of type-reduction algorithms, from Figures 5, 6, 8,
9, we can find that the grades of centroid type-reduced MFs and the centroid defuzzified
values are different in Case A, the grades of left endpoints of centroid intervals are almost
the same, and the centroid defuzzified values for KM algorithms and EKM algorithms
are almost the same in Case B (this shows that KM and EKM are very similar); (5) for
three types of type-reduction algorithms, they demand only one α-planes when the error
between a defuzzified value and the constant is smaller than 0.05.

Additionally, compared with the exhaustive computation method α-plane theory based
type-reduction algorithms are more efficient for centroid type-reduction. Assume that the
primary variable x is sampled for N points, and u(x) is sampled for M points. There are
MN embedded T2 FSs included in the GT2 FS. For each embedded T2 FS, N multiplica-
tions, 2(N −1) additions and one division are needed for centroid computation, and N −1
comparisons are needed for the t-norm operation. Therefore, the computation complexity
of exhaustive computation method is about O(4MNN). For the proposed strategy (α-
plane theory), no matter which of the above three types of type-reduction algorithms we
are choosing, N samples are needed for x, and k samples are needed for α-plane. From
[12,26], for each α-plane, O(2 × 4N × n), where n (the number of iterations) is usually
smaller than 6. So the proposed strategy requires about O(8N × n × k) to confirm the
centroid FS, which tremendously decreases the computation complexity from exponential
into linear. Because the computation for each α-plane is completely independent, the
computations can be performed in parallel. Besides, these two lower and upper bounds of
the interval are also independent. Therefore, if 2k parallel processors are used to compute
in parallel, the complexity of the proposed strategy is only O(4N × n).

5. Conclusions and Expectations. This paper investigates three types of type-reduc-
tion algorithms for GT2 FLSs based on α-plane theory. According to two numerical
simulation examples, as ∆ increases, the centroid defuzzified values for three types of
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type-reduction algorithms all converge to real values. Compared with the exhaustive
computation method, the proposed method can greatly decrease the computation com-
plexity from exponential into linear.

There are much interesting works that lie ahead, including the study of type-reduction
[10] of GT2 FLSs, the parametric optimization of GT2 FLSs [1,27]. Future research will
be concentrated on GT2 FLSs design, algorithms that are based on [24,27-31] and this
paper.
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