International Journal of Innovative
Computing, Information and Control ICIC International ©)2015 ISSN 1349-4198
Volume 11, Number 6, December 2015 pp. 2001—2012

FPGA PLACEMENT BASED ON SELF-ORGANIZING MAPS

MOTOKI AMAGASAKI, MASAHIRO [IDA, MORIHIRO KUGA
AND TOSHINORI SUEYOSHI
Graduate School of Science and Technology
Kumamoto University

2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
{ amagasaki; iida; kuga; sueyoshi } @cs.kumamoto-u.ac.jp

Received May 2015; revised September 2015

ABSTRACT. A wide variety of field-programmable gate array (FPGA) routing structures
have been proposed, as exemplified by three-dimensional stack and hierarchical-type FP-
GAs. However, since traditional FPGA tools are limited to island-style routing archi-
tectures, great effort is needed to construct various routing structures. To overcome this
problem, we develop an FPGA design framework that is focused on improving exploration
efficiency for various FPGA routing architectures. In the paper, we propose an FPGA
placement method based on Kohonen self-organizing maps (SOMs). SOMs are one type
of unsupervised learning artificial neural network. Because a lattice structure is typi-
cally used for the output layer of an SOM, the routing structure (routing topology) of
an FPGA can be directly represented by the output layer. This is known as topological
mapping, and it allows for various FPGA routing structures to be handled flexibly. We
report the result of experimentally evaluating two types of FPGA structures: hierarchical
fault-tolerant FPGAs and three dimensional FPGAs.

Keywords: FPGA, Placement, SOM

1. Introduction. A field-programmable gate array (FPGA) is an integrated circuit de-
signed to be configured by a user after manufacturing. In recent years, a wide variety of
routing structures have been proposed, as exemplified by three-dimensional stack [1 [2]
and hierarchical-type FPGAs [3]. Thus, it is necessary to develop electronic design au-
tomation (EDA) tools that can flexibly support different routing structures. Furthermore,
increasing integration densities due to process scaling have made it necessary to obtain
high-quality solutions as quickly as possible. FPGA placement has a large effect on exe-
cution time and circuit performance. Simulated annealing (SA) is often used as a solver
for FPGA placement. Although SA-based placement methods [4] offer high-quality so-
lutions, they require extensive computation, which is expected to become a problem for
handling large-scale circuits in the future. Furthermore, for the majority of placement
tools, adding support for routing structures that are not island-style structures requires
major modifications to the program code.

To overcome this difficulty in creating various routing structures and handling the
resulting computational complexity, we therefore propose an FPGA placement method
based on Kohonen self-organizing maps (SOMs) [5]. SOMs are one type of unsupervised
learning artificial neural network. The proposed placement algorithm projects the set
of input patterns (the input vectors) onto the output layer according to degree of sim-
ilarity. Because a lattice structure is typically used for the output layer of SOMs, the
routing structure (routing topology) of an FPGA created in this way can be directly rep-
resented by the output layer. This is known as topological mapping, and it allows for
various FPGA routing structures to be handled flexibly. Furthermore, in order to increase

2001

2002 M. AMAGASAKI, M. IIDA, M. KUGA AND T. SUEYOSHI

computational efficiency, we employ a batch-learning-type SOM algorithm, which allows
high parallelization and good convergence. Although some SOM-based FPGA placement
algorithms [0, [7] have been studied, most tools are used under limited conditions. In
this study, the proposed SOM-based placement tool is compared with traditional FPGA
placement tools under various routing topologies.

Note that problems with limits on allowed topologies occur in the routing process,
too. Our research group has developed EasyRouter [§], which represents various wiring
topologies by using routing-resource graphs and performs routing on the obtained graphs,
to address this. This paper is concerned with the placement problem. The structure of
the rest of this paper is as follows. We briefly discuss related work in Section 2. We
describe an FPGA placement problem in Section 3. We describe the proposed method
in Section 4 and discuss modeling of the FPGA routing structure in Section 5. We then
present the results of performance evaluation in Section 6 and, finally, summarize the
paper in Section 7.

2. Related Work. The self-organizing principle has been previously applied to the VLSI
placement problem [9, 10, 11, 12, 13]. For example, [9] presented the SOAP algorithm
for circuit placement in arbitrarily shaped regions, including two-dimensional rectilinear
regions and non-planar surfaces of three-dimensional objects. In [10], a three-layer force-
directed SOM designed to resolve the circuit placement problem with arbitrarily shaped
rectilinear modules is proposed. These studies treated VLSI placement only. Several
publications have presented FPGA placement algorithms aimed at achieving short exe-
cution time. Although some SOM-based FPGA placement algorithms [0, [7] have been
studied, most tools are used under limited conditions. In contrast, there are few studies
about using various routing structures. Our proposed placement algorithm offers both
the flexibility to use various structures and a reduction in execution time in comparison
with conventional tools.

3. FPGA Placement Problem. This section describes the basic structure of FPGAs
and defines the FPGA placement problem, which is treated as a combinatorial optimiza-
tion problem.

3.1. Structure of FPGAs. Figure [l shows the structure of traditional island-style FP-
GAs [14], 15, 16]. An FPGA consists of a logic unit of logic blocks (LBs) arranged into
a two-dimensional array, an input-output block (IOB), and a routing unit that connects
the LBs. Figure 2] shows the structure of an LB, which consists of basic logic elements
(BLEs) and local routing for connecting these elements within the LB. A BLE consists of
a lookup table (LUT) for implementing arbitrary combination logics, flip-flops (FFs) for
constructing a sequential circuit, and a selector. An LB that is equipped with multiple
BLEs is called a cluster-based LB. Connections between LBs are implemented by switch
blocks (SBs) and connection blocks (CBs). The routing architectures include different
lengths of wires. Figure Bl shows an example of the segment length structure. Single lines
indicate connections between neighboring SBs, double lines those between SBs that are
two LBs apart, and quad lines those between SBs that are four LBs apart. In this way,
high-speed signal propagation is made possible by directly connecting distant SBs.

3.2. Definition of the FPGA placement problem. In this section, we provide an
overview of FPGA placement as a preliminary step to define the placement problem.
Figure M shows an overview of the placement process. The netlist contains information
about the logic elements and the connection relations between them, as shown in Figure
[d(a). The placement shown in Figure [d(b) is set by a one-to-one mapping between the

SOM-BASED FPGA PLACEMENT 2003

Routing Track

) Tile 111111111
=i cB £ sB E=
T o[

LB cB
ITITIITI]

[T

FIGURE 1. Island-style FPGA

Inputs

1N

Qutput
Vi

1Ny

3
-,
|

—| SB SB. SB SB SB |—
————— » Quad line

— Double line
— Single line

FiGure 3. Example of wiring segmentation distribution

netlist and the logic elements in the FPGA. Next, we define the placement problem.
Let the set of logic elements in the FPGA be (¢, c1,...,¢1) € C, where [is the total
number of logic elements. The circuit to be implemented in the FPGA is given by the
netlist G(M, E). Here, (mg, my,...,m,_1) € M are the n logic modules contained in the
netlist, where each module is a circuit that can be implemented as a single logic cluster or
IOB. The set (eg,e1,...,6,-1) € E contains connections representing the u signal wires
that exist in the netlist.

The FPGA placement problem is to find a mapping of the logic modules M onto
the logic elements C' in a way that satisfies the constraints imposed by the given netlist
G (M, E) and minimizes the score on some objective function. As a result, valid mappings

2004 M. AMAGASAKI, M. IIDA, M. KUGA AND T. SUEYOSHI

Set of Logic Modules M Set of Logic Elements C

il () b
i () (] o))
E§>EHHDDD
3 3][]]
Dmim] IE
0 @

Logic elementC;

(a) netlist (b) FPGA

FIGURE 4. FPGA placement problem: (a) graph representation of netlist,
(b) result of FPGA placement

satisfy the following conditions.
p: M —C, m—=c (1)

Placement is performed with the primary goal of minimizing the wiring length. How-
ever, it is difficult to calculate a realistic value of the total wiring length for each trial.
Therefore, a cost function that estimates the virtual wiring length, such as by using a
bounding box [4], is typically chosen for the objective function.

4. Proposed Placement Algorithm. This section describes the proposed SOM-based
FPGA placement algorithm.

4.1. Overview of proposed placement algorithm. Our novel SOM-based placement
algorithm consists of an input layer and an output layer, as in traditional SOMs [5].
The input layer consists of input vectors, which represent the connection relations in
the netlist. In the output layer, correlations are made with the nodes (‘neurons’ in the
model) that reference logic elements in the FPGA. The SOM-based placement method
consists of a competitive process that determines the winning neuron (designated as the
best match unit, or BMU) and a cooperative process that uses the winner for learning. In
the cooperative process, learning is initially performed over a wide range, with the range
becoming gradually narrower as learning progresses. Since this method gradually changes
from global optimization to local optimization, it has the advantage of being resistant to
becoming trapped in only locally optimal solutions. In addition, this method performs
batch learning, which considers that the input set is determined in advance and assumes
convergence of the solution.

4.2. Input vectors. To improve the placement quality, it is necessary to accurately apply
the features of the netlist to the input vectors. Furthermore, it is preferable for the number
of dimensions of the input vectors to be as small as possible to ease the computational
load. In related research [6, [7], the input has been represented as an adjacency matrix.
However, as the size of the netlist becomes large, the input vectors form a huge but sparse
binary matrix. This must be avoided to conserve memory and reduce computational load.

Therefore, we use the Shimbel index [I7] for representing features of the input vectors.
The Shimbel index is an index of adjacency in a graph. In the field of network analysis,
it is used to determine the graph distance from a specially designated node, known as
the observation point, to a target node. First, we define the set of input vectors that
is generated by the netlist. The netlist can be treated as a directed graph with edge

SOM-BASED FPGA PLACEMENT 2005

PO

FiGURE 5. Example of input vector on module mj

directions determined by connection and each of the modules represented as a vertex.
For modules m;, m; € G in a directed graph G, the shortest graph distance from m; to
m; is denoted by d(m;, m;). Here, we define the set of inputs and outputs in the netlist
as P, which is given by (pg,p1,...,pr_1) € P when the total number of primary inputs
(PIs) and primary outputs (POs) is k. The distance of a logic module m; from p; can be
expressed as d(py, m;), with d agreeing with the Shimbel index everywhere. Thus, each
logic module m; has k distance relations in the set of inputs and outputs. In other words,
the input vectors that correspond to a logic module m; are defined as follows, where 7;
is the k-dimensional input vector of m; and n is the total number of logic modules.

When the distance is found by using the Shimbel index, we trace along the fan-out
direction (when a PI is taken as the observation point) or along the fan-in direction
(when a PO is taken as the observation point).

Creation of the input vectors is described with reference to Figure[Bl At the logic module
mg, there are four input directions, Pls (mg,my, ma, m3), and two output directions,
POs(mq3, m14). Applying the formula for Shimbel index, the distance from each of my,
my, Mo, and mgy is 1; the distance from each of m;3 and mq4 is 3; the ms input vector is
expressed as follows.

My = [d(mg,m5),d(m1,m5),d(mQ,m5),d(mg,m5),d(m13,m5),d(m14,m5)]
= [1, 1,1,1, 3, 3]

Although this example was calculated by taking the Shimbel index between nodes to
be 1, it could also be calculated with weights applied to the nodes. In the above method,
because the circuit inputs and outputs are taken as the observation starting points, the
input vector is k-dimensional and does not depend on the number of modules. Therefore,
it is anticipated that the computational load and memory usage will be less than when
using an adjacency matrix.

4.3. Competition and cooperation. The SOM output layer consists of layers of ref-
erence nodes, and each reference node has the same number of dimensions as the input
vector. Taking the total number of PIs and POs as k, a vector of reference nodes, ¢(t),
can be expressed as follows.

éi(t) = [cio, Ciny - - ci—1] (0<i<1—1) (3)

Here, t is a discrete time coordinate. In an SOM, the reference vectors start in a
randomly initialized state, and learning progresses by iteratively having vectors compete.

2006 M. AMAGASAKI, M. IIDA, M. KUGA AND T. SUEYOSHI

The competition stage determines the winner and the cooperation stage updates the
neurons adjacent to the winner. During each competition stage, all neurons accept all
input vectors n7; simultaneously. At this point, the reference node that is the most similar
to the input vector for the reference vector ¢; is designated as the BMU for that stage
and is represented by the following formula.

cpyu; (t) = argmin || 17; — &(2) || (4)

where cpyp; is the BMU that corresponds to m;.

In the competition stage, the distances of each input vector from all the reference nodes
are calculated, and the reference node corresponding to the shortest distance is taken as
the BMU. The reference node that is selected as the BMU is placed at the logic module
having the corresponding input vector. Minkowski distance is used for calculating the
distance during learning. The Minkowski distance dist between an input vector m; and
a reference vector ¢; is calculated as

k
dist =Y |y —é (5)

When the distances to all the input vectors are calculated and the BMU node is selected,
the SOM learning process transits to the cooperation stage. In the cooperation stage, the
reference vector is selected as the BMU, cpysp; (t), and its neighboring neurons are updated
according to the following equation to move closer to the input data.

-1 -
> i—0 hii(t)epaio,

Z?;ol hyji(t)

blt) = e (i)

Here, h;;, the proximity function, consists of an update range o(¢) and a Gaussian
function; d;; is the distance between the jth BMU node, cpy;, and the reference node
ci- When a simple 4-neighbor network topology is used for the output layer, the Man-
hattan distance can be used. The value of ¢ is large when learning starts but decreases
monotonically as learning progresses. It is defined by the following formula.

o(t) = 0o (1 - %) (8)

Here, T is the total number of learning steps and o represents the initial value. Note
that the connections and weights between reference nodes can be freely defined.

Figurel@lshows pseudocode for the proposed SOM-based placement method. Taking the
number of logic elements as n, the computational complexity is O(n). Since the computa-
tional complexity of the VPR algorithm is O(n*?) [I8], it is clear that the computational
complexity of the proposed method is an improvement.

Gt+1)= (0<i<I—1) (6)

5. Modeling of the FPGA Routing Structure. This section describes how the rout-
ing structure in the FPGA is modeled as the output layer. We take the LBs and IOBs in
the FPGA as the reference nodes in the output layer and the connection relations between
them as the edges between the reference nodes. Further, the edges between the reference
nodes are weighted according to the wiring delays between logic elements. Values nor-
malized by the delay of a single segment are used as the weights of the edges. Taking the
reference vectors corresponding to ¢; and c;, there are some candidates for connection.

SOM-BASED FPGA PLACEMENT 2007

/*program SOM placement algorithm*/

for (y < 0; y < array_size+2; y++){
for (z « 0; z < array_size+2; x++){
for (i < 0; 4 < n; i++)
M [y][z][]] = RANDOM VALUE; /* Set the initial value in output node*/

}

for (t + 0; t < t max; t++){ /*Set the number of leaning*/
for (u + 0; u < n; u++){
D* = MAXINT; /*Initialize similarity™*/
for (y «+ MIN.Y; y < MAX_Y; y++) {
for (z + MINX; z < MAX X; z++) {
for (i <— 0; < < DIM; i+4) { /*Calculate BMU node*/
D+ = abs(X[u][i] — M[y][][i])?; /*Calculate similarity*/

if (D* >=D) {
D* = D;
¥ = x;
y* =y

¥

}
}
}
}
for (y + MIN.Y; y < MAXLY; y++) {/*+no update*/
for (z + MIN_X; z < MAXX; z++) {
for (1 < 0; 4 <mn;it++) {
h = exp(—1* (abs(z* — z) + abs(y* — y))%/(2 * 02));
for (j < 0; j < DIM; j++)
M[y] [ZE] [.7] = hdummy * Xdummy [.7];
for (j < 0; j < DIM; j++)
MIl[eIl] += h*XEIL:

}
}
}

placement(M);/* Assign the logic element on LBs*/

FIGURE 6. Pseudo-code in SOM placement

From the above, the shortest distance delay;; between ¢; and c¢; can be formulated as
follows.
_ . 0 1 N—1
delay; ; = oo min | (d(i’j), dii gy - dg gy) 9)
If there are N types of delay paths in the target routing structure, then the minimum
distance along a path that includes each of the delays is delay; ;. This is because the
path that minimizes the delay should be selected for FPGA placement. Two types of
architectures are discussed here as illustrative examples.

5.1. Hierarchical routing structure. Figure[fl(a) shows a fault-tolerant FPGA, which
we proposed in a previous paper [3]. This architecture has a hierarchical structure in

2008 M. AMAGASAKI, M. IIDA, M. KUGA AND T. SUEYOSHI

Normal tile

T {11

Interface(IF)

it
=
o]

Spare tile

L3
I ' ' T T_T o . UTsingle =1

............. “ 2Tsingle
. T T2
“ single
Tgingie + 2TIF
nj = UT;= —r
“_ﬁ H “ single
© ® @

(b) Output layer
Ficure 7. FT-FPGA: (a) FT-FPGA structure, (b) output node of FT-FPGA

which a spare tile for recovering faults and an interface for shifting the circuit structure
to a spare tile (by column) are added to each region, or tile array. During placement, it is
necessary to consider a network that includes spare tiles and interface delays. Figure [7(b)
shows the SOM output layer that corresponds to the setup shown in Figure[7l(a). Stepping
between tile arrays in the vertical direction involves passing through two interfaces; thus,
two interfaces worth of delay are added to edges that correspond to boundary areas. We
represent the wiring delay of a single segment by T;, 4. and the delay of passing through
an interface by T7r. For stepping between tile arrays in the horizontal direction and
passing through the spare tile, the common weight of such edges, UTy4,, is defined as

follows. o7
UTspare _ single

=2 10
Tsingle ()

Similarly, the common edge weight for stepping between tile arrays in the vertical
direction via interfaces, UTrg, is defined as follows.

Tsingle + 2TIF

Tsingle

The distance delay;; between neurons ¢; and ¢; in the diagram is thus given by the
following equation.

5.2. Three-dimensional stacked structure. In this section, we take the example of a
three-dimensional stacked structure, with the structure as shown in Figure §(a). In this
structure, two layers of regular FPGA are stacked on top of each other, with a three-
dimensional SB used to add vertical connections in order to allow connections between
layers, and through-silicon vias (TSVs) used for the wiring in the vertical direction [2].

SOM-BASED FPGA PLACEMENT 2009

(a) 3D-FPGA

— UT =1

single

TTS 14

—_ Uy =
single

(b) Output layer

Ficure 8. 3D-FPGA: (a) 3D-FPGA structure, (b) output node of 3D-FPGA

Figure§(b) shows the SOM output layer that corresponds to FigureB(a). First, the array
of output nodes is extended in the vertical direction to form three-dimensional stacked
layers. Next, a network corresponding to the TSVs is added, and weights are added to
account for the TSV delays. The delay of a single line is represented by Ty, and the
delay from one TSV is represented by Trgy. The value of the TSV delay is normalized
by the delay value of a single line to UTrgy, which can be calculated as follows.

T
UTrgy = TTSV (13)
single
The distance d; ; between output nodes n; and n; in the diagram is given by the following
equation.

delayi,j =4+ UTTSV (14)

6. Evaluation.

6.1. Evaluation target. The two different architectures described in Section 5 are used
for the evaluation. The values after layout are used as the delay values for determining the
edge weights. The number of LUT inputs is set to six, and the number of logical clusters
is set to four. The SB wiring topology is set to Wilton type [19], and the flexibility is set
to F, = 0.3. The fault-tolerant FPGA shown in Figure [7is set to have a tile array size of
2 x 2.

6.2. Evaluation procedure and evaluation environment. In this section, we report
the result of experimentally evaluating two types of FPGA structure: hierarchical fault-
tolerant FPGA and three dimensional FPGA. Figure 9 shows the design flow of the
evaluation in the proposed tool, SOM-Placer. Topology mapping is performed on the
MCNC benchmark circuit [20] by using ABC [21], and clustering is performed using T-
VPack [22]. Placement is performed on the obtained netlist by using SOM-Placer, VPlace
(a VPlace [4] placement tool developed by Toronto University), and TPR. [23] (a placement

2010

I
Benchmark Circuits J
(.blif)

Technology Mapping ¥ L
(ABC) Placement Placement
(SOM-Placer) (VPR or TPR)
Clustering
(T-Vpack) C =

Placement files Placement files
[

. (p) (p)

Benchmark Circuits
(-net) Routing Routing
(EasyRouter) (EasyRouter)

— |

FIGURE 9. Evaluation flow

tool for three-dimensional FPGAs). VPlace uses an SA-based placement method, and
TPR uses a partitioning-based placement method that relies on hMetis [24]. We believe
that these benchmarks and placement tools are practical in FPGA academic region. Note
that VPlace is used with modifications for hierarchical FPGAs. The placement files were
routed by EasyRouter [8], which was previously developed by our research group, and the
results were compared. EasyRouter is a routing tool that allows for architectures to be
defined by writing C# scripts, which makes it easy to support various wiring structures.
Note that SOM-Placer is coded in C++, whereas VPlace and TPR are coded in C. To
account for the effect of the initial placement, the evaluation used the average values
obtained from starting with 5 different seed values. The parameter o, was initially set to
70% of the output layer size.

6.3. Evaluation results and discussion. Table[llsummarizes the evaluation results for
the fault-tolerant FPGA. Compared with the SA-based VPlace, SOM-Placer increased the
total wiring length by 14% and the maximum delay by 19% but decreased the execution
time by 96%.

The wiring segments in the target three-dimensional stacked FPGA are treated as single
lines, and the TSV delay value and wiring length are assumed to be the same as those for
single lines. Furthermore, the number of TSVs is assumed to be the same as the number
of horizontal channels. The evaluation results are summarized in Table 2l The existing
TPR method is a partitioning-based placement tool that uses hMetis and is based on
an algorithm that seeks to optimize wiring length. Compared with TPR, the proposed
method increased the total wiring length by 2% but reduced the maximum delay by 12%.
Furthermore, the execution time was reduced by 78%. Although the performance of SOM-
Placer is low compared with SA-based VPR, execution time is greatly improved. Both the
performance and the execution time of SOM-Placer are improved relative to partitioning-
based TPR. In conclusion, our algorithm is efficient for exploring FPGA architectures by
using relative evaluation.

7. Conclusions. In this paper, we proposed an SOM-based FPGA placement algorithm,
which we have implemented as SOM-Placer. SOM-Placer facilitates easy modeling of new
FPGA architectures without any limitations, which can significantly shorten the develop-
ment cycle. In SOM-Placer, we consider the FPGA routing structure as the output layer

SOM-BASED FPGA PLACEMENT 2011

TABLE 1. Evaluation results of FT-FPGA

Circuit | Placement | Total number | Delay | Execution
of wires (ns) | time (s)

alu4 | SOM-Placer 4,794 | 63.70 0.08
VPR 4,575 | 53.16 3.34

apex2 | SOM-Placer 11,329 | 69.29 0.18
VPR 9,890 | 56.06 6.28

apex4 | SOM-Placer 9,118 | 88.44 0.13
VPR 7,237 | 75.68 5.49

exbp | SOM-Placer 5,129 | 68.05 0.29
VPR 4,887 | 53.42 5.45
ex1010 | SOM-Placer 10,861 | 77.51 0.08
VPR 9,343 | 74.11 6.04
misex3 | SOM-Placer 5,584 | 63.64 0.08
VPR 4,811 | 57.64 3.50

seq | SOM-Placer 10,645 | 82.69 0.59
VPR 10,006 | 71.51 9.57

spla | SOM-Placer 35,983 | 142.44 0.92
VPR 29,689 | 108.59 22.40

TABLE 2. Evaluation results of 3D-FPGA

Circuit | Placement | Total number | Delay | Execution
of wires (ns) | time (s)

alu4 | SOM-Placer 4,708 | 9.46 0.04
TPR 4,232 | 11.09 0.57

apex2 | SOM-Placer 8,586 | 11.96 0.07
TPR 8,262 | 12.29 0.92

apex4 | SOM-Placer 7,338 | 11.24 0.14
TPR 7,128 | 11.68 0.79

exbp | SOM-Placer 4,178 | 10.06 0.21
TPR 6,543 | 15.55 0.43
ex1010 | SOM-Placer 8,461 | 11.19 0.12
TPR 8,211 | 14.66 0.87
misex3 | SOM-Placer 4,953 | 8.75 0.12
TPR 4,533 | 9.73 0.55

seq | SOM-Placer 9,128 | 11.96 0.35
TPR 10,547 | 15.61 0.99

spla | SOM-Placer 28,855 | 22.98 0.51
TPR 25,685 | 22.81 2.42

of SOM. We evaluated the proposed FPGA design flow by testing two different devices
to show its performance and extensibility. In this evaluation, two types of FPGA struc-
tures, a hierarchical fault-tolerant structure and a three-dimensional FPGA structure,
were treated. Although the critical path delay of our method is 19% longer than that of
VPlace, its execution time is 96% faster on average. In contrast, the critical path delay
of our method is 12% shorter than that of VTR, and its execution time is 78% faster
on average. In conclusion, our algorithm is efficient for exploring FPGA architectures by
using relative evaluation.

2012 M. AMAGASAKI, M. IIDA, M. KUGA AND T. SUEYOSHI

REFERENCES

[1] M. J. Alexander, J. P. Cohoon, J. L. Colflesh, J. Karro, G. Robins and C. Science, Three-dimensional
field-programmable gate arrays, Proc. of the 8th Annual IEEE International ASIC Conference and
Exhibit, pp.253-256, 1995.

[2] A. Gayasen, V. Narayanan, M. Kandemir and A. Rahman, Designing a 3-D FPGA: Switch box
architecture and thermal issues, IEEE Trans. VLSI Systems, vol.16, no.7, pp.882-893, 2008.

[3] M. Amagasaki, Q. Zhao, M. Tida, M. Kuga and T. SUeyoshi, Fault-tolerant FPGA: Architectures
and design for programmable logic intellectual property core in SoC, IEICE Trans. Information and
Systems, vol.E98-D, no.2, 2015.

[4] J. Luu, I. Kuon, P. Jamieson, T. Campbell, A. Ye, M. Fang and J. Rose, VPR 5.0: FPGA CAD and
architecture exploration tools with single-driver routing, heterogeneity and process scaling, Proc. of
ACM Symposium on FPGAs, pp.133-142, 2009.

[5] T. Kohonen, The self-organizing map, Proc. of IEEE, vol.78, pp.1464-1480, 1990.

[6] M. Maniatakos, S. Xu and W. L. Miranker, Constraint-based placement and routing for FPGAs using
self-organizing maps, Proc. of IEEE International Conference on Tools with Artificial Intelligence,
pp.465-469, 2008.

[7] M. S. Zamani and G. R. Hellestrand, A neural network approach to the placement problem, Proc.
of ASP-DAC, pp.413-416, 1995.

[8] Q. Zhao, K. Inoue, M. Amagasaki, M. lida and T. Sueyoshi, FPGA design framework combined
with commercial VLSI CAD, IFICE Trans. Information and Systems, vol.E96-D, no.8, pp.1602-
1612, 2013.

9] S. S. Kim and C. M. Kyung, Circuit placement on arbitrarily shaped regions using the self-
organization principle, IEEE Trans. CAD, vol.11, no.7, 1992.

[10] R. I. Chang and P. Y. Hsiao, VLSI circuit placement with rectilinear modules using three-layer
force-directed self-organizing maps, IEEE Trans. Neural Networks, vol.8, no.5, 1997.

[11] C. X. Zhang and D. A. Mlynski, Mapping and hierarchical self-organizing neural networks for VLSI
placement, IEEE Trans. Neural Networks, vol.8, no.2, 1997.

[12] M. S. Zamani and F. Mehdipur, Using Kohonen map for the placement of regular VLSI designs, Proc.
of International Conference on Computational Intelligence and Multimedia Applications, pp.65-69,
1999.

[13] C. Aykanat, T. Bultan and I. Haritaoglu, A fast neural-network algorithm for VLSI cell placement,
Neural Netw., pp.1671-1684, 1998.

[14] Altera Corporation, StraizIII Device Handbook, 2007.

[15] V. Betz, J. Rose and A. Marquardt, Architecture and CAD for Deep Submicron FPGAs, Kluwer,
New York, NY, 1999.

[16] Xilinx, VIrtex-5 User Guide, 2008.

[17] A. Shimbel, Structural parameters of communication networks, Bulletin of Mathematical Biology,
vol.15, no.4, pp.501-507, 1953.

[18] A. Marquardt, V. Betz and J. Rose, Timing-driven placement for FPGAs, Proc. of FPGA, pp.203-
213, 2000.

[19] G. G. Lemieux and D. M. Lewis, Analytical framework for switch block design, Proc. of FPL,
pp.122-131, 2002.

[20] K. McElvain, IWLS’93 benchmark set: Version 4.0, The MCNC' International Workshop on Logic
Synthesis, 1993.

[21] A. Mishchenko et al., ABC: A System for Sequential Synthesis and Verification, http://www.eecs.
berkeley.edu/ alanmi/abc/, 2009.

[22] A. Marquardt, V. Bets and J. Rose, Using cluster-based logic blocks and timing-driven packing to
improve FPGA speed and density, Proc. of FPGAs, pp.37-46, 1999.

[23] C. Ababei, H. Mogal and K. Bazargan, Three-dimensional place and route for FPGAs, IEEE Trans.
CAD of Integrated Circuits and Systems, vol.25, no.6, pp.1132-1140, 2006.

[24] N. Selvakkumaran and G. Karypis, Multi-objective hypergraph partitioning algorithms for cut and
maximum subdomain degree minimization, IEEE Trans. CAD of Integrated Circuits and Systems,
vol.25, no.3, pp.504-517, 2006.

	1. Introduction
	2. Related Work
	3. FPGA Placement Problem
	3.1. Structure of FPGAs
	3.2. Definition of the FPGA placement problem

	4. Proposed Placement Algorithm
	4.1. Overview of proposed placement algorithm
	4.2. Input vectors
	4.3. Competition and cooperation

	5. Modeling of the FPGA Routing Structure
	5.1. Hierarchical routing structure
	5.2. Three-dimensional stacked structure

	6. Evaluation
	6.1. Evaluation target
	6.2. Evaluation procedure and evaluation environment
	6.3. Evaluation results and discussion

	7. Conclusions
	REFERENCES

