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Abstract. This paper presents a new approach for robust control against unmodeled
system dynamics and additive noises based on the introduction of fractional order func-
tions in the control loop. An intensive research effort is focusing nowadays on fractional
order control (FOC). The main reason for this rapidly growing interest is their advan-
tageous properties allowing the improvement of the plant performance and robustness
versus external noises and disturbance. The proposed design approach for fractional or-
der systems and their application in control engineering is symmetrically opposed to the
classical methodologies which approximate the fractional order operators by a finite set
of integer order transfer elements. This new concept consists in approximating integer
order transfers by a set of fractional order filters, allowing the system designer to intro-
duce fractional order dynamics and properties to the rational control system under study.
The integrator in the PID control algorithm and the classical model reference adaptive
control (MRAC) law is fractionalized in order to robustify the control system. The im-
plementation of the fractionalized terms is realized by means of the singularity function
numerical approximation method. Illustrative simulation examples show that the distur-
bance rejection has been significantly improved for both fixed and adaptive controllers.
This technique may be easily implemented to a large variety of control schemes.
Keywords: Fractional order control, Fractional integrator, Robust control, Fractional-
ization, MRAC, PID control, Noise rejection

1. Introduction. Even if the great popularity of fractional calculus is very recent mainly
regarding its application in science and engineering, its history goes 300 years back. Partic-
ularly, control theory and applications is one of the major fields of application of fractional
order systems, with a quickly growing quantity of theoretical and experimental research
production [1].

The reason for this success is due to the advantageous properties of fractional order
control (FOC) systems and their interesting ability to improve the process robustness
against disturbances and noises. A good confirmation is the fact that the first FOC
scheme ever proposed in the literature, the so-called “Commande Robuste d’Ordre Non
Entier” (CRONE) controller [2], deals with robust control. It uses the constant phase
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property of the ideal Bode’s transfer function 1/sα to obtain a robust feedback control
against gain variations.

Another factor is that using fractional order filters in feedback control applications,
presents a certain advantageous action on the system dynamical behavior. This is due to
the hereditary property of fractional order operators [3] offering an interesting robustness
improvement versus external noises [4, 5, 6].

A great research effort is focused nowadays on the design and analysis of new robust
fractional order controllers on the basis of the CRONE control approach [2]. Another pi-
oneering contribution was the proposition of combining the classical well-established PID
controller with fractional order differentiation, introduced by Podlubny [7]. He developed
a generalization of this controller called the PIλDµ controller, involving an integration
action of order λ and a differentiation action of order µ. The problem of tuning and per-
formance improvement of fractional order PID controllers was the new challenge towards
practical usage of this generalized PID controller in industrial processes (see [8, 9, 10]).

Consequently, the number of robust fractional order control applications is growing
exponentially touching various physical processes as can be found in the fractional control
literature [11, 12, 13].

In the domain of adaptive control, Model Reference Adaptive Control (MRAC) is a
very attractive approach, because it offers a high level of performance while being very
easy to implement. This scheme is mainly used to deal with unknown or slowly varying
plants. The desired dynamical behavior of this adaptively controlled system is imposed
by means of a reference model chosen by the designer. Adjustment of parameters is
achieved using the error between the plant’s output and the model reference output.
Many control researchers are attempting to improve the MRAC robustness in order to
deal efficiently in real time with the potential external disturbance that usually affects
industrial plants. Control engineering literature counts various robustification techniques
that were introduced in elementary adaptive control algorithms (see for instance [14, 15]).

Many efforts have been reported in the literature focusing on new MRAC control con-
cepts design using fractional order differential operators, with important results for tem-
poral behavior and robustness versus external perturbation (see [4, 6, 16, 17, 18] and
recently [19]).

This paper proposes a new design approach for fractional order systems and their appli-
cation in control engineering that is symmetrically opposed to the classical methodologies
[2, 20] which approximate the fractional order operators by a finite set of integer order
transfer elements (see Figure 1). The new concept consists in approximating integer order
transfers in the feedback control loop by a set of fractional order filters. This technique
allows the control designer to introduce fractional order dynamics and properties to the
rational system under study.

The proposed approach is used for robust control design by introducing fractional order
integrators in the classical feedback control loop without changing the overall equivalent
closed loop transfer function. The robustification method concerns both of PID and
MRAC control schemes.

Considering a transfer function H(s) element of the initial control loop, the idea is to
“fractionalize” it as follows [21]:

H(s) = H(s)α × H(s)1−α (1)

where α is a real number such that 0 < α < 1.
The problem of robust control and disturbance rejection is a permanent challenge and

an important issue for feedback control designers (see [22, 23, 24]). Different control
techniques have been proposed in order to handle plants with missing information [25,
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Figure 1. Approximation of a fractional order function

26, 27] or in the presence of small disturbances for adaptive controllers [28, 29, 30] and
PID controllers [31].

For that concern, our proposed methodology does not change the original global stable
control scheme, but may improve its robustness against external noise and perturbation,
by taking benefit of the interesting properties of fractional order systems. This new idea
even though simple and easy to implement, opens a new maneuvering margin to the design
engineers dealing with plants in realistic industrial conditions.

This paper is outlined as follows. Section 2 presents some mathematical background on
fractional order integrals and their approximation method in frequency domain together
with the Fundamental Predictor-Corrector Algorithm for numerical integration of frac-
tional order differential equations. Section 3 gives a frequential analysis of a fractionalized
integrator. In Section 4, a fractionalized PID controller is designed and a numerical sim-
ulation example is proposed to illustrate its effectiveness. Then, a fractionalized adaptive
controller is introduced in Section 5, with a simulation example given for comparison
purpose with the classical control scheme. Section 6 is dedicated to the discussion of the
obtained results, and some concluding remarks are then given in Section 7.

2. Fractional Order Integrators. The fractional calculus and fractional order differ-
ential equations attracted a great attention these last decades (see [1]). One of the most
important reasons for this interest is their ability to model many natural systems and
their seducing properties like robustness and dynamical behavior. However, applying
fractional-order calculus to dynamic systems control is just a recent focus of interest
[2, 7].

2.1. Mathematical definitions. Fractional order differentiation is represented as aD
µ
t

where a and t are the bounds and µ (µ ∈ ℜ) the operation order. Many equivalent
definitions of this operator have been proposed in the fundamental literature [1]. The
most popular definition of the general fractional order differential operator is the Riemann-
Liouville (RL) definition:

aD
µ
t f(t) =

1

Γ(1 − µ)

dn

dtn

∫ t

a

(t − ξ)−µf(ξ)d(ξ) (2)

where Γ(.) is the Euler’s Gamma function, (a, t) ∈ R
2 with a < t and n an integer.
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The Laplace transform of the RL fractional derivative/integral (2) under zero initial
conditions for order µ, (0 < µ < 1) is given by

L
{

aD
±µ
t f(t); s

}

= s±µF (s) (3)

The following transfer function represents a general form of a single input single output
(SISO) fractional order system,

F (s) =
bmsβm + bm−1s

βm−1 + . . . + b0s
β0

ansαn + an−1sαn−1 + . . . + a0sα0
(4)

where αi and βj are real numbers such that,
{

0 ≤ α0 < α1 < . . . < αn

0 ≤ β0 < β1 < . . . < βm

and s is Laplace operator.

2.2. Linear approximation of the fractional order integrator. To practically and
easily implement the designed controller has to be of finite dimension whereas the frac-
tional order controllers result in infinite dimension functions.

The approximate implementation of FOC can be classified into

(1) analog approximate implementation method, and
(2) digital approximate implementation method.

In practice, the approximation is preferred in digital form for direct implementation in
computer controlled systems [32].

For the purpose of our approach we need to use an integer order model approximation
of the fractional order transfer function considered in the original control loop. For this
aim, we will make use of the so-called singularity function method [20]. This method
allows the approximation of a fractional order transfer function by a rational function
with a finite number of poles and zeros.

2.3. The Fundamental Predictor-Corrector Algorithm. The following paragraph
recalls the fractional Adams-Bashforth-Moulton method introduced in [33], that we shall
later use it to approximate the fractional order integral operator. In fact it is more
practical to use a numerical fractional integration method rather than the transfer function
approximation methods presented in Section 2.2 to compute fractional order integration
or derivation as the approximating transfer functions are of relatively high orders.

Consider the differential equation

Dαy(x) = f (x, y(x)) (5)

with initial conditions:

y(k)(0) = y
(k)
0 , k = 0, 1, . . . , m − 1 (6)

where m = [α] and the real numbers y(k)(0), k = 0, 1, . . . , m−1, are assumed to be given.
This approach is based on the analytical property that the initial value problem (5),

(6) is equivalent to the Volterra integral equation

y(x) =

[α]−1
∑

k=0

y(k)(0)
xk

k!
+

1

Γ(α)

∫ x

0

(x − t)α−1f (t, y(t)) dt (7)

Introducing the equispaced nodes tj = jh with some given h > 0 and by using the
product trapezoidal quadrature formula with these nodes to replace the integral in (7),
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the corrector formula is given by

yh(tn+1) =

[α]−1
∑

k=0

tn+1

k!
y(k)(0) +

hα

Γ(α + 2)
f

(

tn+1, y
P
h (tn+1)

)

+
hα

Γ(α + 2)

n
∑

j=0

aj,n+1f (tj , yh(tj)) (8)

where

a0,n+1 = nα+1 − (n − α)(n + 1)α (9)

aj,n+1 = (n − j + 2)α+1 + (n − j)α+1 − 2(n − j + 1)α+1 (1 ≤ j ≤ n)

and yP
h (tn+1) is given by,

yP
h (tn+1) =

[α]−1
∑

k=0

tn+1

k!
y(k)(0) +

1

Γ(α)

n
∑

j=0

bj,n+1f (tn, yh(tj)) (10)

where now

bj,n+1 =
hα

α
((n + 1 − j)α − ((n − j)α) , (0 ≤ j ≤ n) (11)

3. Frequency Domain Analysis of a Fractionalized Integrator. In this section, the
proposed fractionalization approach is analyzed by considering its application to trans-
fer functions elements of a feedback control system given in (1). In order to show the
effectiveness of this technique, let us consider an integrator given by its Laplace transform:

G(s) =
1

s
(12)

The fractionalization of the classical integrator (12) as represented in Figure 2 leads to,

1

s
=

1

sα
·

1

s1−α
(13)

where α is a real number such that 0 < α < 1. Let us take the fractional value α = 0.4.

Figure 2. Fractionalization of integral operator
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Using the singularity approximation method presented in Section 2.2 with the ap-
proximation parameters: ωb = 0.1rad/sec, ωh = 1000rad/sec, δ = 1.5dβ, we get the
approximated functions hα(s) and h1−α(s) given bellow.

hα(s) = h0.4(s) = 3.862×10−13s10+6.846×10−9s9+2.326×10−5s8+0.01793s7+3.243s6+138.8s5+1406s4+3372s3+1897s2+242.1s+5.923
6.429×10−16s11+2.703×10−11s10+2.178×10−7s9+0.000398s8+0.1707s7+17.33s6+416.7s5+2375s4+3201s3+1013s2+72.69s+1

and
h1−α(s) = h0.6(s) =

9.045×10−17s11+5.882×10−12s10+7.332×10−8s9+0.0002073s8+0.1376s7+21.6s6+803.6s5+7084s4+1.477×104s3+7231s2+802.9s+17.09
8.002×10−19s12+9.254×10−14s11+2.051×10−9s10+1.031×10−5s9+0.01217s8+3.398s7+224.8s6+3527s5+1.311×104s4+1.153×104s3+2380s2+111.4s+1

Figure 3 shows a comparison in the frequency domain between the integer order integral
operator 1

s
and the product of the approximating filters of the fractional order integral

operators 1
s0.4 and 1

s0.6 , that is h0.4(s)× h0.6(s). It is clear that this filters product gives a
satisfactory approximation of the integral operator in the frequency interval of interest.

Figure 3. Comparison of the integration 1
s

with the approximation
h0.4(s) × h0.6(s)

4. Fractionalized PID Control. The PID control scheme is modified here to get more
robustness against noise and perturbation. The new PID control law is obtained by
using the fractionalization of a control system element, and the integral operator 1/s is
fractionalized as represented in (13) and Figure 2; that is,

1

s
=

1

sα
·

1

s1−α

where α is a real number such that 0 < α < 1.
The feedback control loop of the fractionalized integer order system is shown in Figure

4.
In Figure 4

• Cf is the fractionalized controller transfer function,
• G(s) is the system or plant transfer function,
• y is the output signal,
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Figure 4. Fractionalized feedback control scheme

• uc is the reference signal,
• u is the control signal.

The fractionalization of the integer-order PID controller to be designed is given in the
following form,

Cf(s) = Kp

(

1 +
1

Tis
+ Tds

)

=
1

s

(

KpTds
2 + Kps +

Kp

Ti

)

(14)

=
1

sα
·

1

s1−α

(

KpTds
2 + Kps +

Kp

Ti

)

where, 0 < α < 1.

Simulation example. To show the viability of the proposed robustified control design,
let us study an illustrative example. The plant model is given by the following transfer
function:

G(s) =
10(s + 1)

s2 + 2s + 2
(15)

A PID controller is designed using the Ziegler-Nichols rule for the the system model
G(s) with the following PID parameters: Kp = 10, Ki = 0.6, Kd = 1.5.

The resulting PID controller is ‘fractionalized’ as shown in (15) with integrator frac-
tional order α = 0.3. Applied to the system G(s) of (15) in the case of ideal conditions
and in presence of additive noises, we get the responses of Figure 5 and Figure 6.

To have a more comprehensive idea on the robustness improvement obtained by us-
ing the fractionalization method, we will compare the results for different values of the
fractional order integral α.

The evaluation of the control system performance will be realized by defining a qua-
dratic error criterion Jα given by,

Jα =

∫ tF

tI

(y(t) − uc(t))
2dt (16)

where α is the order of integration in the fractionalized PID (in the classical control
scheme, α = 1). tF is the time window limit and tI is the criterion calculus beginning
time (chosen to avoid the convergence phase).

Taking tI = 0.2 s and tF = 1 s, we obtain the criterion values of Table 1, for different
values of the fractionalizing integration order α.

The comparison of the conventional PID control and the proposed robust fractional
order control algorithm is provided in Table 1. With the proposed method, noise behavior
can be reduced with about 22% of magnitude and the tuning technique is very simple
because there is no requirement of PID parameters’ adjustment.
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Figure 5. System responses to PID and fractionalized PID controllers for
α = 0.3 (Ideal case)
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Figure 6. System responses to PID and fractionalized PID controllers for
α = 0.3 (In presence of additive noises)

Table 1. PID quadratic error criterion versus fractional integration order
α in case of additional input noises

α 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Jα 0.0483 0.0468 0.0476 0.0464 0.0455 0.0466 0.0480 0.0472 0.0488 0.0581

5. Fractionalized Adaptive Control. In this paper, the Model Reference Adaptive
Control (MRAC) strategy, and particularly the M.I.T. Rule algorithm is considered, be-
cause of its simplicity and its high level of performance. A new adaptive scheme is
proposed, based on the introduction of fractional order operators in order to improve
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Figure 7. Direct Model Reference Adaptive Control

Figure 8. Classical adaptation algorithm

the robustness of MRAC against the effect of external noises and perturbations. In this
approach the desired performance is specified by the choice of a reference model. Adjust-
ment of parameters is achieved by means of the error between the plant’s output and the
model reference output. This can be represented in Figure 7 (see [34]).

5.1. M.I.T. rule. We consider a closed loop system where the controller has an ad-
justable parameter vector θ. A model whose output is ym specifies the desired closed loop
response. Let e be the error between the closed loop system output y and the model one
ym, a possibility is to adjust the parameters so that the cost function:

J(θ) =
1

2
e2 (17)

is minimized. This leads to the normalized control law given by [34],

θ = −
γ

s
·

eϕ

ǫ + ϕT · ϕ
(18)

where ǫ > 0 is a real number. This last formula indeed improves the stability of the
adaptive control loop against high variations of signals.
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The control signal is computed using the following relation,

u = ϕT θ (19)

where ϕ is the regression vector containing the measured input and output signals u and
y and the input reference signal uc.

This leads to the scheme of Figure 8, where:

• Gm: Reference model transfer function
• G: Plant transfer function
• uc: Reference signal
• u: Command signal
• y: Plant output
• ym: Reference model output
• θ: Parameter vector
• γ: Adaptation gain

5.2. The proposed fractionalized adaptation law. In order to improve the system’s
robustness against environmental disturbances we will modify the MRAC control algo-
rithm, by introducing data filtering blocks. The key idea for improving the original control
law is fractionalization of the integral action in the MIT rule as presented in (1).

The integral operator 1/s in the adaptation law (18) is developed as explained in Figure
2 and Equation (13),

1

s
=

1

sα
·

1

s1−α

where α is a real number such that 0 < α < 1.
Replacing in the adaptive control law (18) we get,

θ = −
γ

sα · s1−α
·

eϕ

ǫ + ϕT · ϕ
(20)

and by defining the variable ξ we get,

ξ =
1

s1−α
·

eϕ

ǫ + ϕT · ϕ

θ = −
γ

sα
· ξ (21)

which is the new fractionalized adaptation law represented in Figure 9. We can write
also:

0D
1−α
t ξ(t) =

eϕ

ǫ + ϕT · ϕ

0D
α
t θ(t) = −γ · ξ(t) (22)

The Adams-Bashforth-Moulton method of Equations (8)-(11) presented in Section 2.3 is
then used to compute a numerical approximation of θ(t) from (22).

5.3. Simulation example. The resulting fractionalized model reference adaptive control
algorithm is now applied in numerical simulation to the control of the following transfer
function which represents the experimentally identified model of a DC motor for the online
angular velocity control [35],

G(s) =
81018

s2 + 260.7s + 2394
(23)

and the standard second order reference model given by

Gm(s) =
100

s2 + 9s + 100
(24)
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5.3.1. Classical MRAC response. Applying the classical MRAC scheme of Figure 8 to
the plant model (23) with the reference model (24), we obtain the simulation response of
Figure 10 with the following initial parameters values: u(0) = 0, θ0 = 0.01[1 − 3 2 1]T ,
γ = 0.7 and ǫ = 1.

5.3.2. Fractionalized MRAC response. Now we apply the fractional MRAC of Figure 9
with the new adaptation algorithm of Equation (22) taking the order α = 0.4. We obtain

Figure 9. Fractionalized adaptation algorithm
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Figure 10. Process behavior with classical MRAC
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Figure 11. Process behavior with fractionalized MRAC for α = 0.4

the simulation response of Figure 11 with the following initial parameters values: u(0) = 0,
θ0 = [0 0 0 0]T , γ = 0.0007 and ǫ = 0.001.

Figure 11 illustrates the good behavior of the controlled plant under the proposed
adaptive control scheme. One has to explain the apparent settling time extension (longer
parameter convergence time) by the necessary time for additional calculus brought by the
fractional order integral approximation involving a growing number of measure data.

5.3.3. Control robustness in noisy conditions. In order to validate the proposed fraction-
alized approach described in the previous sections, regarding the system robustness en-
hancement, let us perturb the controlled plant by introducing an additional external
random noise to the output with an amplitude of 8% of the reference signal one. Apply-
ing the classical MRAC control algorithm to the perturbed plant we obtain the simulation
results of Figure 12.

The proposed fractionalized adaptive controller gives the response of Figure 13.
From a simple visual comparison it is obvious that the output variations around the ref-

erence signal are less important in the case of the fractionalized scheme, which illustrates
the effectiveness of this proposed approach to reject additional noises and disturbance.



USING A FRACTIONALIZED INTEGRATOR FOR CONTROL ENHANCEMENT 2025

0 20 40 60 80 100 120
−0.04

−0.03

−0.02

−0.01

0

0.01

0.02
Parameters Estimation

Time (s)
0 20 40 60 80 100 120

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04
Control signal

Time (s)

0 20 40 60 80 100 120
−1.5

−1

−0.5

0

0.5

1

1.5
Output signal

Time (s)

y
y

m

Figure 12. Process behavior with classical MRAC with random output
noise of 8% of the reference signal amplitude

In order to be able to quantify the control system performance evaluation, let us define
a quadratic error objective criterion Jα similar to (16), given by,

Jα =

∫ tF

tI

(y(t) − ym(t))2dt (25)

where α is the order of integration in the fractionalized MRAC.
Taking tI = 20 s and tF = 120 s, we obtain the cost function values of Table 2, for

different values of the fractionalizing integration order α.

Table 2. Fractional MRAC objective function in case of random output
noise of 8% of the reference signal magnitude

α 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Jα 2.67 2.28 2.24 2.88 2.64 2.97 2.77 2.97 2.82 5.61

One may remark from Table 2 that we obtain a certain diminution of the noise effect of
about 50% comparatively to the integer order MRAC results in the scope of this criterion.

6. Discussion and Remarks. The proposed fractionalization technique is based on
the replacement of rational (integer order) transfer function by a cascaded fractional
order elements. The global feedback control system must be equivalent to the original
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Figure 13. Process behavior with Fractionalized MRAC for α = 0.4, with
random output noise of 8% of the reference signal amplitude

one, for a tolerated approximation error and a working frequency bandwidth. It opens
new perspectives for designing more robust and reliable control systems. The following
comments can emerge from the examination of the two illustrative applications examples.

• The examination of the numerical example results shows that the use of the fraction-
alization approach is advantageous for disturbance rejection because as it appears
in (2), the calculus of the fractional derivative is dependent on all the history of the
signal, which moderates the effect of variations and external random noises [4, 36].
This robustification leaded to an improvement in noise rejection of about 20% for
PID control and 50% for MRAC control.

• Notice that the gain parameter γ value is much smaller in the case of fractional inte-
grators, which advantageously augments the stability margin of the overall adaptive
control system [4, 17].

• The proposed fractionalized MRAC control is less sensitive to the initial values of
the parameter vector θ than for the classical MRAC case. In fact, the initial value
θ0 has been fixed to zero for all the values of the fractional integral order α in Table
2.

• This new robustification approach can be implemented in a larger class of adaptive
and non adaptive control systems as MRAC and PID controllers (fractionalization
of the integer order integrator).
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7. Conclusions. A novel approach for robust control has been proposed. This technique
consists in introducing fractional order integrators in the classical feedback control loop
without changing the overall equivalent closed loop transfer function.

The new control structure is based on the simple idea of using fractional order filters
in the control system loop instead of the pure integrator. The fractionalization approach
leads to a similar behavior in perfect experimental conditions but brings an important
improvement in noises rejection and robustness. Thus, more conservative performances
are guaranteed with a very easy implementation procedure.

In particular, the reported numerical examples for both fixed and adaptive control
schemes, show that if fractional order double-integrators are introduced, significant re-
duction in the output-tracking errors can be achieved with the classical integer order
integral scheme in presence of disturbances and additive noises.

Further research will concern the extension of this technique to the fractionalization of
more general integer order functions, in order to obtain desired fractional dynamics in the
closed loop feedback control system.
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