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ABSTRACT. The sparse representation based classification method can be divided into
two categories: holistic approaches and local feature-based approaches. In spite of the
significant success in face recognition, improvements on higher robustness or lower com-
putational complexity are still necessary for its real application. Thus, we first propose
a novel Block Weighted Sparse Representation based Classification (BW-SRC) method
based on the mazimum likelihood model. Then, to ensure the accuracy of BW-SRC, we
conduct a pre-alignment process by utilizing the locations of local feature points (in this
article, we use SIFT keypoints). Combining the pre-alignment process and BW-SRC,
we establish a novel framework for robust face recognition, which is more effective and
more robust than the state-of-the-art methods in practical scenarios. Finally, by con-
ducting experiments on AR and Yale databases, the performance of our proposed method
and framework is demonstrated and compared with global SRC and blocked SRC. The
proposed framework is proven as low-computation, alignment-free and robustness to ro-
tation, illumination and disquise, and more appropriate for practical scenarios.
Keywords: Sparse Representation based Classification (SRC) method, Block Weighted
Sparse Representation based Classification (BW-SRC), Local feature points, Alignment
free, Robust face recognition

1. Introduction. Face Recognition (FR) is one of the hot topics in pattern recognition
and computer vision due to its special theoretical research and wide application. Many
methods have been proposed for facial recognition, some of which have shown good per-
formance under controlled conditions.

In general, current methods can be divided into two categories according to the features
utilized for recognition: holistic approaches and local feature-based approaches [1]. With
the help of feature extraction approaches, such as Principle Component Analysis (PCA)
[2], Independent Component Analysis (ICA) [3], Locality Preserving Projections (LPP) [4]
and Neighborhood Preserving Embedding (NPE) [5], holistic approaches have been widely
studied and variant classification methods have been successfully applied to FR, such as
Nearest Neighbor (NN) [6], Nearest Subspace (NS) [7], and Support Vector Machine
(SVM) [8]. Recently, Sparse Representation based Classification (SRC) [9] method has
attracted an increasing amount of attention due to its impressive recognition accuracy
and robustness against corruption or occlusion. The principle of SRC is to consider the
query face image as a linear combination of training samples with the sparse constraint
and then to obtain the recognition result through solving a convex optimization problem
for its sparse representation. All of these holistic approaches utilize the information of
whole images (often extracted by some dimensionality reduction methods) and have a
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relatively low computational complexity. Local feature-based approaches address the
problem in a different way. They utilize local features for classification. Usually, the
extracted local features have some advantages on robustness to different scenarios. For
instance, Scale Invariant Feature Transform (SIFT) [10,11] has already been applied in FR
tasks [12-14] and has attracted much attention. SIFT descriptors have scale and rotation
invariance and show significant robustness in practical FR scenarios. Other local feature
extraction approaches, such as PCA-SIFT [15], Speeded up Robust Features (SURF)
[16] and Gradient Location-Orientation Histogram (GLOH) [17] have also shown their
robust performance against scale, rotation or even affine transformation. Unsurprisingly,
SRC has also been introduced to classify face images with these local features, and new
methods, such as Multi-Keypoint Descriptor (MKD)-SRC [18], have been proposed.

Unfortunately, no method can perform consistently well in real complex scenarios and
each has its own limitations. Holistic approaches, for example, require good alignment to
ensure classification accuracy and are weakly robust to contiguous occlusions in real-world
scenarios, such as disguise and expression. Furthermore, these approaches do not perform
well in the situation of drastic illumination changes. As to some existing local feature-
based approaches, such as MKD-SIFT, their huge computational complexity is one of
the principal problems. Abundant local features make recognition more accurate, but
also increase the computational time. In addition, because some local feature extraction
methods (such as SIFT) themselves are sensitive to illumination change, MKD-SRC is
usually not an illumination-robust method.

Therefore, it is still essential to find an approach with more robustness against different
scenarios in the real world and the relatively lower temporal complexity. We notice that
in some conditions with occluded images, using divided blocks of images for classification
is better than using whole images. For instance, in the research of [9], for the scenario
where face images are occluded by sunglasses or a scarf, the authors partition them into
blocks, classify each block independently and combine the classification results in some
way (such as majority voting). This method performs better than the approach that
uses holistic images for classification. However, they treat occluded and clean blocks
equally in the classification process. The research of [19] proposes an idea of weighting
the image-blocks with sparsities and residuals of their sparse representations, which helps
to discard occluded blocks and preserves clean blocks. However, the blocks still need to
be put together to reconstruct a whole image for classification, which reduces flexibility
and introduces computational complexity.

Inspired by the above approaches, we propose a method called Block Weighted Sparse
Representation based Classification (BW-SRC), which classifies each block independently
and uses the sparsity and the residual of the sparse representation of each to weight each
classification result. The basic idea is: clean blocks should impact the result more than
occluded ones. For each block in one image, the probability of the block belonging to
each class, rather than the classification result, is computed. In addition, a maximum
likelihood approach is used to combine these probabilities to obtain the classification
result for the whole image and the weights calculated above are added to the exponents
of probabilities. Unlike majority voting, the probability of each block belonging to each
class is preserved in the maximum likelihood, making the classification results of whole
images more accurate and more robust.

Because the training and query samples in BW-SRC need to be aligned, an appropriate
alignment method is needed to be conducted before the subsequent steps. To solve this
problem, we utilize the locations of SIF'T keypoints on a mean face to align query face
images to the same canonical pose [20]. Unlike the approaches relying on the eyeball
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[21-25] or other semantic features, this method does not need the appearances of given
facial features and can address the images with expressions and occlusions.

The main contributions of this paper are as follows. (1) We propose a novel Block
Weighted Sparse Representation based Classification (BW-SRC) method, which uses the
sparsity and the residual of the sparse representation of each image blocks to determine
their importance in classification. In addition, we preserve the probability of each block
belonging to each class and use the maximum likelihood model to combine these probabil-
ities to obtain the classification result of the whole image. All of the above helps to make
the classification results more accurate and more robust against disguise and illumination
variation. (2) We propose a new framework for robust face recognition, which first uti-
lizes the locations of local feature points (such as SIFT keypoints) to align face images in
different poses and then recognizes the identity using BW-SRC. Some experiments in our
research have indicated that our framework is more effective and more robust than the
state-of-the-art methods in practical scenarios, especially the scenarios with non-uniform
illumination and disguise.

The rest of this paper is organized as follows. The fundamentals of Sparse Represen-
tation (SR) and the common approach of holistic SRC are explained in Section 2. In
Section 3, we propose our novel approach, called Block Weighted Sparse Representation
based Classification. In Section 4, a preprocessing step to align face images is introduced.
Then, we show our whole framework in Section 5. In Section 6, experiments are con-
ducted on AR [26] database and Yale database [27] to demonstrate the performances of
our methods. Conclusions and future work are proposed in Section 7.

2. Sparse Representation based Classification. In this section, we first briefly in-
troduce the principle of the Sparse Representation based Classification [9] method. In
the theory of Sparse Representation (SR), a query sample can be expressed by a linear
combination of training samples as
y = Az, (1)

where y is the vectored test sample; A is the dictionary from all training samples of all
classes, in which each column is a vectored training sample; @ is a sparse coefficient vector
in which only a few entries are nonzero. The sparsest solution to y = Aax can be obtained
by solving

2o = argmin ||z ||y subject to Az =y, (2)
where || - ||o denotes the {y-norm, which is defined as the number of nonzero entries in
the vector. Equation (2) is an NP-hard problem, and it has been proven that if the
solution xg is sparse enough, the solution of (2) is equal to the solution to the following
¢;-minimization problem [28-30]:

&4 = argmin ||z||; subject to Az = y. (3)

This problem can be solved by greedy pursuit algorithms, such as Orthogonal Matching
Pursuit (OMP) [31], or the convex relaxation methods, such as Least Absolute Shrinkage

and Selection Operator (LASSO) [32] and Least Angle Regression (LARS) [33]. Once the
sparse vector @ is recovered, the identity of y can be obtained by the minimal residual:

identity(y) = arg min, ||y — A&;(21)|)2, (4)

where 0;(x) is the characteristic function, which selects only the elements associated with
the ¢th class in .
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3. Block Weighted Face Recognition based on Sparse Representation.

3.1. Sparse representation based classification on blocks of images. The holistic
images dictionary is denoted as A € R”*" where D is the dimension of the vectors of
holistic images and n is the number of training images from C' subjects. We partitioned
each training image into L blocks. The value of L can be 8, as shown in Figure 4 and
Figure 6. Thus, the dictionary A is now partitioned as L sub-dictionaries {Ax|k =
1,2,...,L}, where Ay € R¥", with d < n containing the kth block of each training
image. Correspondingly, the query image y is also partitioned into yy,¥ys, ..., yrL.
Similar to (1), each block yg can also be represented as a linear combination of corre-
sponding dictionary Ag:
yk:AkiL'k, k:1,2,...,L. (5)

SR theory is used to obtain the sparse representation xj of yg, and then, decision rule
(4) is used to obtain the classification result of the kth block. Here, we do not simply make
a simple decision that the kth block belongs to the mth class but use the representation
residual

e = lye — Ardj(@r) |2 (6)

to measure the probability of y belonging to the jth class:

Ul
7 () g

3.2. Determination of block weights. As mentioned above, we use the sparsity and
the residual [19] of the representation of each block to determine its weight in classification.
The function to measure the sparsity of the kth block is as follows:

SO (ol 1Y 5

Sk = -
Ve -1\l Ve

pj. = P(identity(yy) = j) =

where
bk = [bkla bkg, ceey bkC’] (9)
bi; is calculated by summing the absolute values of the coefficients belonging to the jth
class:
brj = [10; ()1 (10)
where §;(x)) denotes the characteristic function, which selects the elements associated
with the jth class in x.

According to (8), when by has only one nonzero coefficient, s; reaches the maximum
value 1; as the coefficients of by become more uniform, s, becomes smaller; and when all
of the coefficients of by are the same nonzero value, s, reaches the minimum value 0.

The residual of a block can be measured by the />-norm:

Ty = || Ak — Y2 (11)

The sparsities and the residuals of blocks are effective measurements to discriminate
the clean blocks from the occluded ones. Specifically, in previous research, it was found
that clean blocks tend to have a large value of sparsity and small value of residual. This
is because they can be relatively accurately represented by only a few training samples
from the same class. On the contrary, blocks that are completely or partly occluded have
small sparsities or large residuals. Therefore, we define the weight function in reference
to [19]:

WE = WRwy, (12)
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where
0, sk < S
wip =< (s —s0)/(s1— S0), S0 < sk < 51 (13)
L, Sp = 81
]-7 T S ™
w,’; = (7"0 - Tk)/(TO - 7“1), M <rEp<To (14)
07 T Z To

So, S1 and rg, r1 are soft thresholds, which not only can discriminate occluded and clean
blocks effectively but also can have robustness for face images from different databases or
applications.

3.3. Combining the classification results according to block weights. We have
obtained the classification probabilities of blocks and their weights by Equation (7) and
Equation (12). Finally, we use the maximum likelihood approach to combine these clas-
sification probabilities and add the weights to their exponents. Thus, the identity of a
query image y is given by

L L
identity(y) = argmax;—;,. ¢ log (H(pﬁe)w’“> = argmax;—i,__ ¢ Z wilog(ph).  (15)

k=1 k=1

With the block weights, the maximum likelihood model can make clean blocks have
more effect on the final result while occluded blocks have less effect, which effectively
improves the robustness against occlusion. Furthermore, this model can preserve the
probability of each block belonging to each class, making the combined classification
results more accurate and more robust. The framework of the proposed approach is
shown in Algorithm 1.

Algorithm 1: Block Weighted Sparse Representation based Classification

Input: A set of training images partitioned into L blocks Ay, As, ..., Ap with unit /5-

norm column, a query image partitioned into 8 blocks y1, y2, ..., yr with unit fo-norm

column.

1) Solve the block ¢;-minimization problem with LARS.

2) Compute the probability of the kth block belonging to the jth class with Equation
(7).

3) Compute the sparsity s, and the residual rj of each block with Equations (8) and
(11).

4) Compute the weight wy of each block with Equations (12), (13) and (14). If all of
the block weights are 0, set wy = 1 for k = arg miny, sy, /7.

Output: identity(y) = argmax;—;, ¢ log (Hizl(pfc)wk)

4. Alignment with Feature Points Positions. The proposed Block Weighted Sparse
Representation based Classification (BW-SRC) method performs well on the condition
that face images are well aligned. However, in most real-world scenarios, face images are
usually unaligned. Therefore, we conduct a pre-alignment process. We conduct three
steps to align the training and the query samples: building a SIFT keypoint set with the
common face template, determining the correspondences of keypoints and face alignment
by 2-D spatial transformation.
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4.1. Building a SIFT keypoint set with the common face template. Given a
dictionary of pre-aligned training samples, our task is to align the query samples by
pose and scale to the training ones. First, we build a common face template based on
the dictionary. The mean face m is computed, which captures the common information
among different subjects. SIF'T keypoints are detected in m to reveal the locations of
the common and stable features in the training samples, as shown in Figure 1. P = {p;},
1 =1,...,t, denotes the set of these keypoints. However, as m is the mean face and is
smoothed among subjects, the descriptors extracted in m provide little information and
cannot be used in the next alignment steps. Therefore, we detect SIFT keypoints and
compute SIFT descriptors directly from the individual training images. The keypoint
coordinates detected in m are used to select these keypoints. In each training image,
we detect keypoints in the small areas near each location of p;. If there is more than
one keypoint in the neighborhood of p;, the nearest one is selected. In this way, around
each keypoint in p;, we obtain a series of keypoints ;. Note that the locations and
descriptors of V; are used in the alignment process rather than the location or descriptor
of p;. Moreover, to make the number of keypoints in N; less dependent to the number
of training images, hierarchical clustering is used to group the descriptors of NN; into n
clusters. The cluster centers are selected as the keypoints whose descriptors have the
minimum cosine distance to all of the other descriptors in the same cluster. We save the
coordinates and descriptors of all of these ¢ x n keypoints. Hence, the SIF'T keypoint set
T is built from the training images, which will be used in the next step.

(a)

FIGURE 1. (a) Mean face and (b) SIFT keypoints in it

4.2. Determining the correspondences of keypoints. We now have the keypoint set
T extracted from the training face images. Our probe images, which are supposed to be
the output of a face detector, are usually non-aligned and should be aligned to the same
canonical pose as the training samples. We denote one probe image as I and the SIFT
keypoint set S is extracted from I. The best match of a probe keypoint in S is found by
searching its nearest neighbor in the keypoint set T. The nearest neighbor is defined as the
keypoint whose descriptor has the maximum similarity to the probe keypoint. After the
keypoint match pairs are found between S and T, Hough Transform is used to check their
geometric consistencies and reject the false match pairs. There are three parameters for
each SIFT keypoint: location, scale and orientation. In our experiments, the orientation
bin size used in the Hough transform is 30°, the scale bin size is 2 and the location bin size
is 0.25 times the size of the images. The bin, which is passed by the most match pairs,
is determined to be the key bin and the match pairs passing this bin have geometric
consistencies and are considered to be true keypoint match pairs. Using the methods
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FIGURE 2. The examples of (a) original match pairs and (b) the examples
of corrected match pairs

above, we obtain the keypoint pairs in S and T. The examples of original match pairs and
corrected match pairs are shown in Figure 2.

4.3. Face alignment by 2-D spatial transformation. Suppose (x;,,yz’)) is the coor-
dinate of a keypoint in the probe image and (z,,y,) is its match point in the training
keypoint set T. The 2D transformation from (z,,y,) to (},,y,) can be described as

, e
xg, _ SCQSH ssin @ Tp | 4 te | (16)
Yy ssinfl  scosf Yp Ty

Thus, when we obtain more than two match pairs, the transformation parameters

s, 0, tg, t,] can be computed as follows:
y
~1

scos 6 Ty —Yy 10 Tpy
in 6 ! o001

© Tpo —Ypp 1 0 Tp2

ty y;Q x;ﬂ 01 Yp2

Once the transformation parameters are obtained, we can transform the probe image I
according to the 2-D transformation.

5. Robust Face Recognition Framework. Utilizing the alignment method and BW-
SRC approach, we can build a robust face recognition framework. First, we conduct the
alignment process to align the query images to the training samples. Then, BW-SRC
is used to obtain the robust classification results with the block dictionaries and image
blocks obtained by partitioning the aligned query images. The flowchart of our proposed
framework is shown in Figure 3.

6. Experiments. In this section, we apply the proposed BW-SRC method and the align-
ment method on the publicly available AR and Yale databases to evaluate their perfor-
mances. Further, the performance of the whole framework is demonstrated and compared
with the state-of-the-art methods.

6.1. Face images with disguise and illumination variation. First, we construct the
training and probe sets with images of the two databases, respectively. In the AR data-
base, images of 100 subjects are utilized, among which there are 50 males and 50 females.
For each subject, 8 images with varying facial expressions and uniform illumination are
applied as training samples. The face images are resized as 120 x 160px and then par-
titioned into 8 blocks as shown in Figure 4(a). Each block has 40 x 60 = 2400 pixels.
Random Projection is used to reduce the dimension of each block to 120. To test our
approach robustness against disguise and illumination variation, 200 images (2 images per
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FiGURE 3. The flowchart of the robust face recognition framework

(b)

FIGURE 4. Partiton scheme of training samples in (a) AR database and
(b) Yale database

subject) with sunglasses, 200 images (2 images per subject) with a scarf and 400 images
(4 images per subject) with non-uniform illumination compose the probe set, which are
partitioned and dimensionality reduced in the same way as that of the training images,
as shown in Figure 6(a). Some examples of the probe images are shown in Figure 5(a).
Similarly, in the Yale database, images of 14 subjects are utilized, which were cropped,
aligned and resized as 100 x 100px. 112 face images (8 images per subject) under varying
facial expressions with uniform illumination compose the training set, each of which is
partitioned into 8 blocks, as shown in Figure 4(b). Each block has 25 x 50 = 1250 pixels.
Random Projection is used to reduce the dimension of each block to 100. The probe set
is composed of 14 images (1 image per subject) with glasses and 28 images (2 images per
subject) with non-uniform illumination. Some examples of probe images are shown in
Figure 5(b), and their partition scheme is shown in Figure 6(b).

Next, BW-SRC is performed on the image sets. The probability of each query image
block belonging to each class is calculated with the SRC method and (7). The convex
relaxation method Least Angle Regression (LARS) [33] is used to find the sparse represen-
tation for the image blocks. Then, the block weights and the maximum likelihood model
are used to determine the classification results of whole images based on the block classi-
fication results. The recognition rates of the query images in the AR database and Yale
database are shown in Table 1 and Table 2, respectively, compared with the conventional
approaches, global SRC and block SRC [9]. For global SRC, which utilizes holistic images
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FIGURE 5. The examples of probe images in (a) AR database and (b) Yale database
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FIGURE 6. Partiton scheme of probe images in (a) AR database and (b)
Yale database

@

TABLE 1. Recognition rates on AR database

Scenarios | Sunglasses | Scarf | Non-Uniform Illumination
global SRC 66.50% 16.00% 69.50%

block SRC 92.50% 92.50% 98.00%

BW-SRC 98.50% | 97.50% 99.25%

TABLE 2. Recognition rates on Yale database

Scenarios | Disguise | Non-Uniform Illumination
global SRC | 100% 60.71%

block SRC | 92.86% 75.00%

BW-SRC 100% 92.86%

for recognition, we reduce the dimensions of the images to 240 for the AR database and
100 for the Yale database.

As is shown in Table 1 and Table 2, the recognition rates of BW-SRC are significantly
higher than global SRC and block SRC in the scenarios with disguise (mainly sunglasses
or a scarf) and non-uniform illumination.
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6.2. Performance of the alignment approach and the effectiveness of our pro-
posed framework. To test the performance of the alignment approach and the effec-
tiveness of our proposed framework, we artificially produce non-alignment with the query
images in the AR database. 200 images with a clean face and 200 images with a scarf
are transformed randomly with one of the two groups of transformation, [s = 0.9,6 =
n/12,t, = —27,t, = 4] and [s = 0.9,0 = —n/12,t, = 11,t, = —25]. Then, the alignment,
approach is conducted to align them to the training samples. The examples of query
images with artificial transformation and their alignment results are shown in Figure 7.
Then, BW-SRC is used to recognize the identities of these aligned images, and the final
recognition rates are shown in Table 3 compared with the state-of-the-art method, MKD-
SRC. The computation time is calculated by a computer with an Intel Core2 CPU E7200,
2.00 GB RAM and Windows 7 (64-bit).

FI1GURE 7. The examples of query images with artificial transformation and
their alignment results. (a) Images of clean face. (b) Images with sunglasse

and scarf.
TABLE 3. Recognition rates of proposed framework
Computation
Scenarios Clean Face | Scarf | Time (average
per sample)
proposed framework 98.5% 84.25% 0.77s
MKD-SRC 100% 96.5% 9.37s

As is shown in Table 3, the clean faces’ recognition rate of our framework is comparable
to the MKD-SRC method in [18], while the recognition rate of the images with a scarf is
relatively lower. It is especially notable that our framework requires much less computa-
tion time than MKD-SRC (the time consumption of MKD-SRC is a dozen of times that
of our proposed approach).

7. Conclusions and Future Work. In this paper, we optimized the block-SRC method
and proposed an optimized approach and a practical framework for face recognition. Using
the sparsity and the residual of the sparse representation, we have obtained the impor-
tance of image blocks for recognition. This factor is elaborately combined into a new
decision rule, a maximum likelihood model, to classify a query sample. Thus, we propose
a novel Block Weighted Sparse Representation based Classification (BW-SRC) method.
Considering practical scenarios, we address the problem of alignment by utilizing the lo-
cations of local feature points (such as SIFT keypoints). Combining this preprocessing
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step and the proposed BW-SRC, we have obtained a practical framework for robust face
recognition. To verify the effectiveness of the proposed method and framework, we per-
formed experiments on publicly available face-databases, including the AR and Yale data
sets. The experimental results show that the BW-SRC based framework achieves demon-
strable improvement in classification performance compared with the global or block SRC
method. The experimental results and performance comparisons confirm that the pro-
posed BW-SRC based framework can robustly address the image classification problem
in disguise and non-uniform illumination scenarios. Additionally, in practical scenarios,
the recognition rates of our framework are comparable to the MKD-SRC method, while
our framework requires much less computation time.

In our future research, we intend to improve the performance of alignment in the pre-
processing step by utilizing Harris corner points to find local feature points, and the
invariance to scale can be achieved by utilizing other local feature descriptors, such as
PCA-SIFT, SURF or GLOH, instead of SIFT descriptor. Additionally, some statistic mo-
ments, such as the Hu Moment invariants, may also be used as local feature descriptors
in the framework. These researches on feature points and feature descriptors may help to
improve the robustness of our framework in the situation of non-uniform illumination.
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