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ABSTRACT. This paper proposes an improved neural network adaptive sliding mode con-
trol method based on the neural network sliding mode control to improve the performance
of the robot trajectory tracking control. This new scheme regards neural network as a con-
troller and adopts robust control law to eliminate the approximation error which uses its
nonlinear mapping ability to approrimate various unknown nonlinear systems. Hidden
layer units and network structure parameter have an effect on neural network mapping.
So we will decrease chattering. We conduct experiments with three joints robot and give
an example to verify this paper’s scheme under the MATLAB platform. The results of
experiments show that the new neural network adaptive sliding mode control has a good
control accuracy and robustness than other control methods. The new scheme reduces
the chattering effectively and also decreases the effect of hidden layer units and network
structure parameter on neural network mapping. It will be a good choice for the robot
trajectory tracking control.

Keywords: Robot tracking, Neural network, Neural network adaptive sliding mode
control, Particle swarm optimization algorithm, Chattering

1. Introduction. As we all know, robot system [1] is a programmable controller. It can
do some specific function with drive circuit. As we all know, appropriate control strategies
[2-4] have been used for getting rapid and precise tracking control.

Sliding mode can be designed as required. The sliding mode of system and parame-
ter variation of controlled member have nothing to do with the outside interference of
system. Therefore, the robustness of sliding mode variable structure control system is
stronger than the conventional continuous system. Discontinuous switching character-
istics of sliding mode variable structure control will cause system chattering in essence.
Especially for the discrete sliding mode variable structure control system, it will add a
zigzag path on the smooth sliding mode. In fact, there must exist chattering. And it elim-
inates the chattering and also eliminates the perturbation resistance of variable structure
control and the ability of resisting disturbance. It can lose effectiveness [5,6] of system.
So we can only weaken chattering. To solve chattering problem in sliding mode control,
Shi et al. [7] proposed a more realistic and accurate measurement mode to compensate
for the negative influence of both missing data and different time delays in a random way.
Nazari et al. [8] proposed a parallel fuzzy logic theory used to compensate the system
dynamic uncertainty. At the same time, it combined fuzzy logic methodology and sliding
mode. Fuzzy logic methodology could compensate the control error and sliding mode
could reduce and remain the fuzzy inference system’s error. Finally, it made the tracking
error of robot asymptotically stable. Nguyen et al. [9] developed an adaptive sliding
mode controller for tracking control. An adaptive sliding mode controller adopted a fuzzy
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neural network to estimate the unknown nonlinear models for constructing the sliding
mode controller and a compensational controller adaptively compensated estimation er-
rors. At the end, it used Lyapunov synthesis approach to ensure the stability of controlled
systems. Lian [10] represented an adaptive self-organizing fuzzy sliding-mode radial basis
function neural-network controller which used a radial basis function neural-network to
regulate the parameters of the self-organizing fuzzy controller. This method solved the
problem in determining the stability of the robot system control. Wu et al. [11] presented
a robust adaptive sliding-mode control scheme for a class of condenser-cleaning mobile
manipulator in the presence of parametric uncertainties and external disturbances.

This paper proposes an improved neural network adaptive sliding mode control method
based on neural network sliding mode control which in robot systems considers radial ba-
sis function neural network as a controller and utilizes its nonlinear mapping ability to
approximate various uncertain items. Robust control law is used to remove the approx-
imation error. Moreover, it compares and analyzes the performance of several neural
network structure for the effect of hidden layer units number and network structure pa-
rameter on the effectiveness of neural network mapping. Once determining the neural
network’s structure model, it uses particle swarm optimization to solve center position
and base width parameter of neural network which is difficult to be calculated. We apply
the new method into three-joint robot trajectory tracking control in this paper. Finally,
under the MATLAB simulation environment, we compare wide range disturbance with
general disturbance and achieve the different control effects with different sliding mode
control methods. This paper’s structure is as follows. Section 2 introduces some neces-
sary models. Improved RBF neural network adaptive sliding model control is described in
detail in Section 3. Numerical examples and some comparison results are given in Section
4. The conclusions are drawn in Section 5.

2. Problem Statement. We must take friction, non-modeling state and external dis-
turbance into consideration for n-joint robot. Using Lagrange method can obtain robot
[12] kinetic equation.

M(c)ea + C(er,e2) + G(c) + Fley) +vg=v (1)

where ¢; and ¢y are velocity vector and acceleration vector respectively, and ¢ € R" is
joint angle displacement. M (c) is the inertial matrix of robot. C(cy, ¢2) is centrifugal force
and Coriolis matrix. G(c) is the gravity vector acting on the joints. F'(c¢;) is the vector
consisting of frictional force. vy is the vector which composes of model error, parameter
variation and external disturbance uncertain factors. v is composed of control moment.
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FIGURE 1. Three-joint robot structure
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This paper selects a three-joint robot to make research. Its joint structure is as Figure
In Figure 1,

h11 = (m1 + m2)l% + mglg + 2m21112 COS CIQ + Jl. hlg = h21 = mglg + m211l2 COS CIQ.

h22 = (mg + mg)lg + m3l§ + 2m31213 COS Cg + JQ. h23 = h32 = m3l?2) + m3lgl3 COS Cg.

€11 C12 C13 G 100
has =mals+J5. Cle)= | ca ¢o e |. Gle)=| Go |. M(c)=]000
€31 C32 C33 G 000
F 10c} + 3sgn(c))
Fle))= | Fy | = | 10y 4+ 3sgn(cy) | . ¢ = —malyilssin cacy.
F3 10cs + 3sgn(cy)
C12 = —malilysincy(ch + ¢1). €21 = malylasincac). 2 = —mislals sin e3ch.
Co3 — —m3l213 sin C3(Cg + 0,2) C39 = m3lglg sin C3C,2. C33 = 0.

G1 = (my + may)gly cos ¢y + magls cos(cq + ¢z).
Gy = (mg + mg3)gly cos ca + magls cos(cy + ¢3). Gz = magls cos(cy + c3).

where ¢; is angular displacement of rod1. ¢, is angular displacement of rod2. c¢3 is angular
displacement of rod3. mq, mo and ms are the mass of rod1l, rod2 and rod3 respectively.
They are expressed by the point mass of connecting rod end. [y, I3 and [3 are the length
of rodl, rod2 and rod3 respectively. g is gravity acceleration. Jy, J, and J3 are the
rotational inertia of my, my and mg respectively. hy; represents the total moment of
inertia with taking original as center. hq, denotes the rotational inertia of m; with taking
mso as center. hsg; denotes the rotational inertia of my with taking m; as center. hos
denotes the rotational inertia of my with taking ms as center. hyy and hss represent the
total moment of inertia with taking original as center. ¢, ¢, and ¢} is the velocity vector
of rod1, rod2 and rod3 respectively. G, G5, G3 is the gravity vector of rod1, rod2 and
rod3 acting on the joints respectively.

3. The Proposed Improved RBF Neural Network.

3.1. Sliding mode variable structure control for the new method. In the prac-
tical engineering, designing of sliding mode variable structure control is to let the true
trajectory c trace the desired trajectory c, preferably. So we define tracing error as:

eE=cg—c, E=c);—c. (2)
The sliding mode function 7 is defined as:
r=¢+ Qe (3)
where cg = (cq1 car c3)T, S =ST >0, 3 = diag(\1, Mo, \3) is positive diagonal matrix.
A1, Ao, A3 > 0, thus we obtain:
My = M(cj — " +¢) = M(d) +3¢) — Mc”
Mr=M(dj+€)+Cd +G+ F+vg—v (@)
Mi =M +3€) —Cr+C(d,+3e) +G+F+vg—v
Mr=—-Cr—v+ f+uvy
where ¢ =c, —é=d, —r+ e, f=M(d,+3e) + C(cg + ) + G+ F.
Lyapunov stability requirements are very important for control system stability condi-

tions. According to (3), we can develop variable structure controller with standard sliding
mode.
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3.2. The new RBF neural network adaptive sliding mode controller. RBF neu-
ral network adaptive sliding mode is a three-layer forward network. The mapping of
input or output is nonlinear. However, it is linear from hidden layer space to output
space which accelerates learning speed and avoids local minimum. RBF neural network
structure is simple. It has a simple training and fast convergence. It can approximate
any nonlinear function [13]. Function approximation can approximate any continuous
function by any arbitrary precision function. General functions can be expressed as a
set of linear combinations of base functions. RBF network is equivalent to using the
output of the hidden layer units to constitute a group of base functions. Then it uses
the output layer to conduct linear combination and completes the approximation work.

The uncertainty item f can be approximated by RBF neural network. Network input is:
_ ( T T T /T nT
x=\e" € ¢ g
Gaussian function is the basic function in this paper. Network method based on RBF
neural network can be set as:

i = e(*HIrCinQ/b?j) (5)

fi:wiThi—i-Ti (6)

where i = 1,2, ...,n, n is the number of joint. z; = (QT SN c”g;) is the neural
network input of i-th joint. 7 = 1,2,...,m, m is the number of hidden layer neurons.

a; = (a;1 ao ... a;y) is radial basis vector. ¢; is central position of Gaussian function. b;
is base width parameter. 7; is neural network approximation error of ¢-th joint. w; is the
inertia weight of i-th joint. f; is the network output error of i-th joint.

Approximated network output f can be expressed as follows which adopts RBF neural
network to approximate f based on the expression of f;:

. . AT
f@y=(h £ - fn)
f@)=[wlai+m wias+m ... wla,+ Tn]T (7)
f(x) [wl a wgag . wgan]T +7
f(x) = WTh(z) +
where 7= (1 7 ... 7,)". Set W =W —W.
Then the control law o is:
o =WTh(z) + K,r — v. (8)

The adaptive law of neural network is:
W = Fhr. (9)

The aim of setting adaptive law is to adjust system and make the state of RBF network
match the output of network model which can enhance the stability of system. Here W
is adaptive law, and v is robust item for overcoming neural network approximation error.
The aim of setting v is to enhance the robustness of the control. Putting (8) into (4) can
get, the following equation:

Mi = —(K, +C) +W"a(z) + (1 + 04) + v. (10)

Theorem 3.1. Modeling error o4 and function approximation error must be taken into
consideration for the neural network when proving the stability of RBF neural network
adaptive sliding mode control. And ||7|| < 7, ||o4|| < bg. Let v be v = —(7n + bg)sgn(r).
We define the new Lyapunov function L < 0.
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Proof: Redefining the Lyapunov function:

1 1 ~ -
L=3r"Mr+Str (WTF*1W> . (11)
Lyapunov stability theory has an important effect on random perturbation nonlinear
systems. Using control law expression (8) and adaptive law expression (9) can get:

L=r"Mr+ %TTMT +tr (WTF’IVT/) . (12)
Formula (10) is plugged into Formula (12).
L=—"Ky+r7 (e +714+0). (13)
Since

T (1 4+ 044+ v) =rT (7 +04) + 170

=rT(1 4+ 04) — ||r||(Tn + bg) <0 (14)

it can get L<0.

Remark 3.1. Based on the Lyapunov stability discriminant theorem, if r # 0, then
L(r) < 0. If r =0, then L(r) = 0. L(r) is negative definite. It can conclude that r and
e are uniform boundedness based on Lyapunov stability theorem and L<0.¢is uniform
boundedness from r = & + Ae. According to Babalat theorem, if t — oo, then L = 0
(i.e., t — 0). So it gets e — 0 and ¢ — 0. Also the stability of the system has been
demonstrated.

By the above theorem, we are ready to present the numerical results on neural network
adaptive sliding mode control of robot trajectory tracking control.

4. Numerical Example with Robot Tracking Systems.

4.1. Practical systems analysis. This paper proposes improved neural network adap-
tive sliding mode control which can be used in real systems applications, such as automatic
operating systems, robot operating systems, communication systems, neural network con-
trol systems and production systems. Also they can be built as hybrid systems. In this
paper, we take robot tracking system as an example. The numerical example reflects the
proposed new neural network adaptive sliding mode control with the real systems. Our
aim is to demonstrate and illustrate the significance and novelty of the work.

Considering space three-joint robot’s physical parameters are set as: m; = 2kg, my =
3kg, my = 4kg, [} = 1.22m, [, = 0.78m, I3 = 0.64m, ¢ = 9.8m/s?, J, = J, = J3 =
4kg-m. The desired tracking trajectory is cg = cgo = cg3 = 0.2sint. ¢(0) = (0 0 0)7,
d(0) = (0 0 0)7 are initial conditions. The parameters of sliding mode control are set
K, = diag(50,50,50), & = diag(5,5,5). We select ex = 0.3 and by = 0.1. The function
of uncertain factors can be denoted by o4 = (041,04,043), o1 = aqsin(pi7t), og =
g sin(fBamt), 043 = azsin(f3mt). «; and f; can confirm disturbance. The disturbance can
increase with the increasing of «; and ;. The different three-joint disturbances have an
effect on the control effectiveness. So we set general disturbance and big disturbance in
experiment. The general disturbance parameters can be set a; = 0.8, as = a3 = 4.5,
B; = 1. The big disturbance parameters are a;; = 37, ay = a3 = 118, 3; = 1.

We make three-joint robot trajectory tracking experiments by the MATLAB platform.
Table 1 shows that the number of hidden layer neurons has an effect on the performance
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of RBF neural network. It takes the average of correlation values R after system program
running 9 times as the evaluation index. The correlation value R can be described as:

(o—0) (06— 6’)T

Vo= o—o\/(6— ) (6— )"

where o' and ¢ represent the average value of actual output and RBF neural network
output respectively. The correlation value R ranges from [0,1]. The more correlation
value R is close to 1, the more network model has a better performance. Otherwise, the
performance is worse.

Table 1 shows that when the number of hidden layer neurons is 9, the average of
correlation values R is maximum. And it uses particle swarm optimization algorithm
to optimize the central position ¢ and base width parameter b. The optimized central
position ¢ and base width parameter b are close to the optimal value.

And we conduct experiments between the displacement of new scheme and the real
value for robot tracking system. Figure 2 is the result. The left figure shows that the
robot tracking value with the proposed RBF neural network adaptive sliding mode control
is close to the real value within 20s. The right figure represents that with the time
increasing, the rate of convergence with experiment value achieves the optimal effect.
When 10s < ¢ <14s and 25s < t < 37s, the robot re-sets moving direction.

R= (15)

4.2. Robot systems comparison with Joint-1, Joint-2 and Joint-3. We use fuzzy
sliding mode control method, RBF neural network sliding mode control method and the

TABLE 1. The average of correlation values R with running 9 times

The number of hidden Correlation values R
layer neurons The minimum value The mazimum value The average value
4 0.3123 0.4112 0.38453
5 0.5672 0.4252 0.4062
6 0.5872 0.5261 0.4614
7 0.7147 0.7752 0.7498
8 0.5723 0.8292 0.6837
9 0.8262 0.8883 0.8523
10 0.7605 0.8461 0.8233
11 0.7317 0.7773 0.7545
12 0.7115 0.7423 0.7134
9 14.5
I e 13
ER 3 1s
I 2 10
g s T 85
S g7
5 3 = Real value R = Real value
=) ) = 4 .
I = Experiment value )5 = Experiment value
0 2 4 6 8 10 12 14 16 18 20 0 20 25 30 35 40 45 50 55 60
s ts

F1GURE 2. Robot tracking value with different time
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improved RBF neural network adaptive sliding mode control to compare in this paper.
It analyzes the three methods’ effect on the performance of robot trajectory tracking.
Figures 3-8 are the position tracking and control input of fuzzy sliding mode control
method. It shows that though it can track the robot position with fuzzy sliding mode
control, the error of system is larger. Chattering interference is very obvious. Figures
9-14 are the simulation results of RBF neural network sliding mode control method. The
control input of RBF neural network sliding mode control is superior to fuzzy sliding
mode. Each Joint position tracking can reach the desired position. Figures 15-20 are
the simulation results of improved RBF neural network adaptive sliding mode control
method with the optimized network structure and network parameters. The tracking
effect of improved RBF is the best. It also reduces the chattering effectively which can
reach the ideal tracking effect. Figures 21-26 are the simulation results contrast figures
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with different methods under large disturbance. Figures 27-29 are the control input
simulation results contrast figures with different methods under large disturbance. They
all represent that the improved method has the smallest error and strong robustness.

4.3. A comparison with reference [14]. Reference [14] designs a state estimator to
estimate network states by available output measurements and stochastic Lyapunov-
Krasovskii functional approach. Under uncertain discrete-time neural networks condi-
tions, it provides robust stochastic finite-time state estimation sufficient conditions with
time-varying delays and Markovian jumps. We use the example-1 to make comparison
between reference [14] and this paper under the same MATLAB environment. The phys-
ical parameters are set to the same. [Ay, A5]", [By, Bo]", [C1, Co]”, [Uy, Us)", [Hy, Ho]"
and [V}, V5]" are as example-1. Correlation values R = 0.7. The optimal bound € of
robot trajectory tracking is as the following Figure 30 through experiments.
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F1GURE 30. Local optimal bound of € in robot tracking system

In Figure 30, we set parameter ;1 = 3.9 and parameter pu = 4.2 respectively. In the left
figure, €1 = 218 > €5 = 217 when p = 3.9. In the right figure, €, = 280 > €, = 279
when p = 4.2 (€ is the optimal bound of this paper. € is the optimal bound of reference
[14]). And with the increase of u, their convergence curves are close to equal. So we can
conclude that € of the improved scheme is superior to reference [14].

5. Conclusions. In order to reduce the effect of system model error and some interfer-
ence on robot trajectory tracking control, we propose an improved neural network sliding
mode control method. The number of hidden layer units and network structure param-
eters play an important role in the tracking effectiveness. Particle swarm optimization
algorithm is adopted to improve network structure’s parameters. Thus, we can get op-
timal results of chattering. It can also increase the error convergence speed. Finally, we
conduct experiments with Joint-3 robot. It demonstrates that the new scheme has a good
robustness and accuracy control and it also weakens the chattering effectively in sliding
mode control. In the future, we will do more works to improve neural network adaptive
sliding mode control.
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