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ABSTRACT. In this paper, we proposed a two-dimensional chaotic system with random
parameter. Stochastic Hopf bifurcation in the two-dimensional chaotic system is studied
by the orthogonal polynomial approrimation method, which reduces the stochastic non-
linear dynamical system into its equal deterministic nonlinear dynamical system. The
parameter condition to ensure the appearance of Hopf bifurcation in this two-dimensional
chaotic system is obtained by the Hopf bifurcation theorem with the aid of the Maple pro-
gram. The direction and stability of the Hopf bifurcation are studied by the calculation of
the first Lyapunov coefficient. The critical value of stochastic Hopf bifurcation is deter-
mined by deterministic parameters and the intensity of random parameter in stochastic
system. As the intensity of random parameter is increased, the critical value of stochas-
tic Hopf bifurcation is also increased. At last, numerical simulations results show the
effectiveness of the method and the correctness of the theoretical results in the paper.
Keywords: Stability, Stochastic chaos, Stochastic Hopf bifurcation, Chebyshev polyno-
mial approximation

1. Introduction. Stochastic bifurcation and chaos are a hot topic in the area of non-
linear dynamics in the past few decades. In recent years, many scholars have carried on
the thorough research in many different systems. It has been applied to chemical plants
[1], mechanical systems [2], ecosystems [3], economics [4], and biology [5,6], and computer
network [7]. Compared with large numbers of investigations on deterministic bifurcation
phenomena, stochastic bifurcations are still in its infancy in the sense of theory, methods
and applications [8]. Unlike deterministic bifurcations concerning the sudden change of
topological properties of the portrait of phase trajectories, stochastic bifurcations pay
attention to the qualitative changes of the stationary probability density. However, be-
cause of the complexity of the system, these studies are just limited to qualitative stage,
and the quantitative research of system is not too much. The stochastic systems are
widespread in nature, and the demand to the veracity and accuracy of the actual model
become higher and higher. Therefore, more and more random systems are used to depict
the dynamic relationship among things, especially stochastic system with random param-
eter. To solve the problems of the system with random parameters, there are several
basic mathematical methods available: one is Monte-Carlo method [9]. The second is
stochastic perturbation method. And the third is orthogonal polynomial approximation
method, which was introduced in [10] and improved by Li [11], and is an effective analyt-
ical method [12]. However, Monte-Carlo method can give the results of higher accuracy
only in the case of completing a great amount of calculation. Stochastic perturbation
method requires that it must be a small amount of the random parameter’s variation of
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stochastic system; otherwise, calculation accuracy will be collapsed. Orthogonal poly-
nomial approximation method does not need to assume small random disturbance, and
amount of calculation relative random simulation method smaller, so it is a more practical
method.

Recently, stochastic bifurcation and chaos in some typical dynamical models were suc-
cessfully analyzed by the Chebyshev polynomial approximation [12-15]. Fang et al. [16]
studied the stochastic parameter system with bounded random variables by the Cheby-
shev polynomial approximation method, and then further applied this method to study
bifurcation and chaos of stochastic Duffing system. Li and Li [17] also applied this method
to discuss the bifurcation and chaos phenomena, control and synchronization problems
[18-21] of random dynamical system. Ma [12] explored the stochastic Hopf bifurcation in
Brusselator system with random parameter. The results show that orthogonal polynomial
approximation method is not only effective for random dynamic problems with stochas-
tic parameters, but also found some characteristics of the random dynamic system. We
will use the same strategy to explore the stochastic chaos and Hopf bifurcation in a two-
dimensional chaotic system. The contribution of this paper is giving a common method
for the biological systems, the ecosystems, and the financial system and so on to study the
bifurcation and chaos phenomena. This method can be better to predict what may occur
in different periods, so that we can take preventive measures to avoid the bad develop-
ment direction for us. The paper discussed Hopf bifurcation of a two-dimensional chaotic
system in detail, and the condition for the existence of Hopf bifurcation is obtained.

The rest of this paper is organized as follows. To be specific, we first transform the
original stochastic two-dimensional chaotic system into its equivalent deterministic one
by orthogonal polynomial approximation in Section 2. Section 3 is devoted to studying
existence, direction and stability of Hopf bifurcation of stochastic two-dimensional chaotic
system. The numerical simulations about the stochastic two-dimensional chaotic system
are given in Section 4. Section 5 concludes the paper.

2. Chebyshev Polynomial Approximation of a Novel Two-Dimensional Chaotic
System. The deterministic two-dimensional chaotic system is as follows:

{5z )

y=x—ay—z’y

where A and @ are deterministic parameters. It is easy to know that Equation (1) has a
unique equilibrium (0, 0).

If A is a deterministic parameter, and @ is a random parameter, then Equation (1) is a
stochastic two-dimensional Hopf bifurcation model. Suppose that u can be expressed as

u=a+0oU (2)

where a and ¢ are the deterministic parameters of u, and 0 is regarded as intensity of the
random parameter 4; U is the random variable defined on (—oo, +00) with some proba-
bility density function py(u). It follows from the orthogonal polynomial approximation
that the responses of system (1) can be expressed approximately by the following series
under condition of the convergence in mean square

x(t,u) = %xl(t)PZ(u)
)

y(t,u) = % yi(t) P ()
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where

zi(t) = [137 pur(u)z(t, u) Py(u)du
yi(t) = f_Jr;o pu(w)y(t, u) Pi(u)du

We choose the random variable defined on [—1, 1] with arch-like probability density func-
tion py(u) which is usually characterizing the uncertainty in real word,

IV 1=p?, as |u| <1
— 2 ) = 4
pu () { 0, as |p| > 1.

Corresponding to this random variable, the orthogonal polynomial of Equation (3) is
chosen as the second kind of Chebyshev polynomial [15], where py(u) represents the ith
orthogonal polynomial, and M represents the largest order of the polynomials we have
taken.

The orthogonality of the second kind of Chebyshev polynomial can be expressed as

[ wtsteorm={ &0 )

And the recurrent formula for the second kind of Chebyshev polynomial is

uP;(u) = !

(Pia(w) + Py (w)

By the recurrent formulas, the triple product polynomial of Equation (1) can be further
reduced into a linear combination of related single polynomials. By denoting the coefficient
of py(u) in the linear combination as X;(¢), the nonlinear term

(Z T (t)H(u)) Z v (t) Pi(u

1=0

on the right side of Equation (1) can be expanded into

(sz )2% =Xo(t)P(u) + -+ + Xsar (1) Poas (u ZX

)

Substituting Equation (2) and Equation (3) into Equation (1), we have Equation (5)
as follows,

Multiplying both sides of Equation (5) by P;(u), i =0,1,2,...,3M; M in sequence and
taking expectation with respect to U, owing to the orthogonality of the second kind
of Chebyshev polynomials, we can finally obtain the equivalent deterministic equation.
Remember that if M — oo, Equation (3) is strictly established. Otherwise, if M is finite,
Equation (3) is just approximate value. According to request of computational precision
in the following numerical analysis, we take M = 2 and obtain the equivalent deterministic
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equation approximately as follows:

( %:Ayo
%:iﬂo—@yo—gyl—Xo
e ©)
%le—ayl—g(yoerz)—Xl
%:A?h
\ W — gy —ayy — Sy — X

3. The Stochastic Hopf Bifurcation Analysis.

3.1. Existence of Hopf bifurcation. The supercritical Hopf bifurcation will appear at
(z,y) = (0,0) in Equation (1) when the parameter ay = ?5. The parameters A and §
are assumed to satisfy —36% < A < 0, and there is only one equilibrium (0,0, 0,0, 0, 0) of
system (1). We let a as the bifurcation parameter.

The Jacobian matrix J of the system (6) at the equilibrium (0, 0,0, 0,0, 0) is

[0 A 0 0 0 O
1 —a 0 -2 0 0
0 0 0 A 0 O
J|(0,0,0,0,0,0) = 0 _% 1 —a 0 _%
0 0 0 0 0 A
|0 0 0 -2 1 —a

With the aid of Maple, we obtain the characteristic equation:

1 1
FO) =X +3aX° + (—552 —3A+ 3a2> M+ <—§62a — 6aA + a3> 2P
(7)
1
+ <§62A +34% — 3Aa2> A2 4 3aA’N — A3 =0

According to the Hopf bifurcation theorem, the system (6) has a pair of pure imaginary

root Ao = +iwp, and deA a—ay # 0, the Hopf bifurcation will appear at equilibrium
when the parameter a = ay = ?5. When ay = ?5, using Maple we can obtain the all

eigenvalues:
=V—Ai, Ay = —V—Ai, \3 = —£6 + f\/(S? +2A, Ay = —£5 — \f\/é? + 24
2
A5 = —£6 + f\/52 +8A, \g = —£6 — £\/62 + 8A

By the calculation, we get

Wozma

dx BA% 4 6art — 202X3 — 6AN% + 3a2X% — 6A4aA? + 342\
da 65 4+ 15aM* +4 (=202 — 3A +3a2) A3 + 3 (—16%a — 6aA + a3) A2 + 2 (2624 + 342 — 34a2) X + 3aA?
dRe) 264 A3 40

da  |,—g, 26442 4 25642 — D255 42 45443

Therefore, ay = gé is the Hopf bifurcation critical value of the stochastic system (6).

When a passes through the critical value ag = gé, the Hopf bifurcation will appear at

equilibrium 0(0, 0,0, 0,0, 0) of system (6).
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3.2. Direction and stability of the Hopf bifurcation. In this section, we further
investigate the Hopf bifurcation of the system (6) by the calculation of the first Lyapunov
coefficient.

When L; < 0, the equilibrium point is asymptotically stable, there is a supercritical
stochastic Hopf bifurcation, and there exists stable limit cycle near the equilibrium point.
When L; > 0, the equilibrium point is unstable, there is a subcritical stochastic Hopf
bifurcation and there exists unstable limit cycle near the equilibrium point.

Let C" be a linear space defined on the complex number field C. Let ¢ € C" be a
complex eigenvector corresponding to A; and p € C" be an adjoint eigenvector which
satisfy the following properties

Jqg=1Iwg, Jq=-Iwg, J'p=-Iwp, J'p=1Iwp, (p.q szqz =1

When a = ay, 0(0,0,0,0,0,0) is the equilibrium of Equation (6), and Equatlon (6) can
be written as:
F(z) = Jz+ N(x),
1 1
N(l‘) = 53(1‘7 IL’) + EC(III, x, ‘T) + 0(||‘T||)27
where = = (x, Yo, T1, Y1, T2, y2), B(x,y) and C (z,y, z) are bilinear and trilinear functions
respectively which can be written as

:17~yk, 1=1,2,...,n

:Ejykzl, 1=1,2,...,n

N PF(¢
(z,y,2
;1 af]afkafl
The first Lyapunov coefficient [22] at the origin is defined by

L, (0) = 2%)236 (iGao Gy + wCan) -
We also define the following coefficients
Go = (p,B(¢,0)), Gu=(p,B(¢,q), Go2=(p,B(q.q)),
Gor = (p,C(¢,4,9)) — 2(p, B(q, J"'B(q,q))) + {p, B(q, (2iwE — J) "' B(q,q)))

+— (0. B@.0) (0. Bla.0) — —| [ Baa)f — 5 9. B (@ 0) "

3w
When \; = v/—Ai, using Maple, we can obtain ¢, p € C™:

- (m_m V54 V2 mran, Vs - Y2/,

V25 2 e - im)

_ _ — — _ —_  _\T
P = (P1, D2, D3, Pa, D5, D)

B (i V—A 4/—-A—-2A4 24/—-A+4A 4Aa — 164+ 6° — 8AV—A —8a/—A

K K 0K ’ 0K ’ 2K ’

—8Aq — 842 — daAV/—A + 16A/—A — 52\/—14) T
2K
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where K is shown in appendix.
We also have

B(q,Q) = 07 B(qaq) = 07 3(67 Cj) = 07 C (q7q7Cj) = [H17H27H37H47H57H6]7

where

1
Hy = —6AV—Ai - 252\/—Az’ — 20V =02 A = 247 — S0V 0" A - 847 + 3V25 A

1+ 6V2A4V62 + 8A — \f&” 3\f 62\/62 + 24 + 222 3\[ 62v/52 + 8A
M V2 s

+ 10624 + 16 A2,
Hy = — 0°v/—Ai — ﬂ&A OV —0%2A — 2A% + vV —0%2A — 8A% — 31\/_A\/52

+3vV—0%A — 100242 — 16A3A — 3‘[ 3\f 02V062 + 24 + =22 ‘[ 62v/62 + 8A
_ 3%55\/54

+ 10624 + 16 A2,
. b . 9f .
Hy = — 104V —Ai — 10 V—Ai + 2264 — 6024 — 2A% — 5\/—5%4 — 842

17\/_A\/52 3\/_53 3\/_ 62v/02 + —|—3\/_ 6%\/02 + 8A
3f V2 e

+1002A + 16A42,
H, = — 62V/—Ai — 21—\[514 + 6V —02A — 2A2i + 5/ —62A — 8A2%;
43V —0%A — 106242 — 16A43; — 33—\[14\/52 124 3\f

+ %ﬂwm + %5%5%7&4 3\f5\/54 +106%A + 1642,
Hs = —5AV—Ai — 352\/12' +3V26A — iémi + SIA\/W

- 3—\/553 - 3—\/552\/M+ Lﬁwm + 3%55\/54 + 10624 + 1642,
Hg = — ﬁ(m - 15—‘[14\/527 ‘[ 37;/552@

3 2
+ %52\/52 +8A4 — %5\/54 + 10524 + 16 A2.

G =0, G11 =0, Gpa =0

_ _ _ _ _ _ 1%
Gor =p1Hy + poHy + psHs + paHy + ps Hs + psHg = K’

1 L
L1(0) = ﬂRe (\/ —AG21> = m

where V', L, R are shown in appendix.
As we choose the parameters 0 < 6 < 0.376, A — —o0, the first Lyapunov coefficient
L,(0) < 0 corresponding to different random intensities. By the calculation, we have
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L,(0) < 0 if the random intensity J is changed from 0 to 0.376. It is to say that as

ay = ?5 and 0 < 0 < 0.376 there is a supercritical stochastic Hopf bifurcation at the
equilibrium (z,y) = (0, 0) for stochastic two-dimensional chaotic system with random pa-
rameter, Equation (1). In next section we will verify the theoretical analysis by numerical
simulation.

4. The Numerical Simulation Example. We fixed A = —1, and chose the initial
value y = [0.32,0.08,0.23,0.32,1.55,0.43]T. As the random intensity 6 = 0, i = a,
Equation (1) is a deterministic chaotic system. When the parameter A = —1, we can get
the critical value a = 0, and the deterministic chaotic system undergoes the supercritical
Hopf bifurcation at the equilibrium. When a = 0.27, § is chosen as 0.0, 0.126, 0.252,
0.376 respectively, the phase trajectories of two-dimensional chaotic system with random
parameter converge at zero, as shown in Figure 1(a). Figure 1(b) is time history diagram
corresponding to Figure 1(a). As the parameter a = 1.7, the phase trajectories of two-
dimensional chaotic system with random parameter converged at their limit cycle which
is shown in Figure 1(c¢). Figure 1(d) is local portrait of Figure 1(c). Figure 1(e) is time
history diagram corresponding to Figure 1(c).

From Figure 1(a) we can know that as the bifurcation parameter @ is far from the
critical value, the phase trajectories of the deterministic system accord with the phase
trajectories of stochastic chaotic system. The supercritical Hopf bifurcation occurs in
both two systems.

From Figure 1(a) to Figure 1(e), the results of numerical simulation and theoretical
calculation results can be found to be consistent. Time history diagram shows periodic
oscillation, and the phase diagrams of convergence for the limit cycle when the super-
critical Hopf bifurcation occurs. Those results suggest when the system satisfies some
conditions, from single state into a stable state of cycle. We can change the parameters of
the system operation appropriately according to the need to avoid the drastic fluctuations.
The length of the duration, throughout all phases of the turning point of the specific time
and the strength of the expansion and contraction can be grasped through prediction
and monitoring to periodic fluctuation effectively so that we can accord to different cycle
characteristics, formation mechanism to make corresponding countermeasures, as far as
possible to slow the progress of the cycle, and reduce the damage of the cycle fluctuation
extent. This paper not only can make us know and solve the problem of stochastic sys-
tem, but also can explain and predict some practical problems. Then we can make them
develop to our hope’s direction.

5. Conclusions. Orthogonal polynomial approximation is applied to study the stochas-
tic Hopf bifurcation phenomena in stochastic two-dimensional chaotic system with ran-
dom parameter. Analysis shows that orthogonal polynomial approximation is effective
to reduce the stochastic two-dimensional chaotic system into its equivalent deterministic
system. Then the first Lyapunov coefficient method is applied to study the Hopf bifur-
cation in equivalent deterministic system. We found that the stochastic Hopf bifurcation
in stochastic two-dimensional chaotic system not only is similar to the conventional Hopf
bifurcation, but has its unique feature. For instance, the stochastic Hopf bifurcation can
result from the variation of intensity of the random parameter alone. Theoretical results
are verified by numerical simulations. Apparently, there are more interesting problems
about this two-dimensional chaotic system with random parameter in terms of complexity,
control, and synchronization, which deserve further investigation.
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FIGURE 1. Phase trajectories and time history diagrams of Hopf bifurcation

Acknowledgment. The authors also gratefully acknowledge the support from the Na-
tional Natural Science Foundation (Nos. 11161027 and 61364001), and Science and Tech-

nology Program of Gansu Province (No. 144GKCAO018), China.



NEW DEVELOPMENT OF STOCHASTIC HOPF BIFURCATION ANALYSIS 1711

REFERENCES

[1] G. Continillo, A. Grabski, E. Mancusi and L. Russo, Parallel tools for the bifurcation analysis of
large-scale chemically reactive dynamical systems, Computers and Chemical Engineering, vol.38,
pp.94-105, 2012.

[2] W. V. Wedig, Stability and bifurcation in multi-scaled stochastic mechanics, Procedia IUTAM, vol.6,
pp-169-179, 2013.

[3] W. Ebeling, R. Feistel and S. Feistel, On bifurcations in complex ecological systems with diffusion
and noise, Ecological Complezity, vol.14, pp.2-7, 2013.

[4] Q. Zhang, Z. Xu, T. Feng and J. Jiao, A dynamic stochastic frontier model to evaluate regional
financial efficiency: Evidence from Chinese county-level panel data, Furopean Journal of Operational
Research, vol.241, pp.907-916, 2015.

[5] N. Li, H. Sun and Q. Zhang, The dynamics and bifurcation control of a singular biological economic
model, International Journal of Automation and Computing, vol.9, no.1, pp.1-7, 2012.

[6] J. Wang and S. Chen, The stability and Hopf bifurcation for a kind of predator system with time
delay, Journal of Northwest Normal University (Natural Science), vol.48, no.1, pp.1-7, 2012.

[7] M. Liu, X. Xu and C. Zhang, Stability and global Hopf bifurcation for neutral BAM neural network,
Neurocomputing, vol.145, pp.122-130, 2014.

[8] M. Zumsande and T. Gross, Bifurcations and chaos in the MAPK signaling cascade, J. Theoret.
Biol., vol.265, no.3, pp.481-491, 2010.

[9] H. Zhao, X. Huang and X. Zhang, Hopf bifurcation and harvesting control of a bioeconomic plankton
model with delay and diffusion terms, Physica A, vol.421, pp.300-315, 2015.

[10] Y. Zhang, W. Xu and T. Fang, Stochastic Hopf bifurcation and chaos of stochastic Bonhoeffer-
Vander Pol system via Chebyshev polynomial approximation, Applied Mathematics and Computa-
tion, vol.190, pp.1225-1236, 2007.

[11] J. Li, The expanded order system method of combined random vibration analysis, Acta Mech. Sin.,
vol.28, pp.63-68, 1996.

[12] S. Ma, The stochastic Hopf bifurcation analysis in Brusselator system with random parameter,
Applied Mathematics and Computation, vol.219, pp.306-319, 2012.

[13] R. K. Pandey, S. Suman, K. K. Singh and O. P. Singh, An approximate method for Abel inversion
using Chebyshev polynomials, Applied Mathematics and Computation, vol.237, pp.120-132, 2014.

[14] M. R. Eslahchi, M. Dehghan and S. Amani, The third and fourth kinds of Chebyshev polynomials
and best uniform approximation, Mathematical and Computer Modelling, vol.55, pp.1746-1762, 2012.

[15] F. Martel, D. Rancourt, C. Chochol, Y. St-Amant, S. Chesne and D. Remond, Time-varying torsional
stiffness identification on a vertical beam using Chebyshev polynomials, Mechanical Systems and
Signal Processing, vols.54-55, pp.481-490, 2015.

[16] T. Fang, X. L. Leng and C. Q. Song, Chebyshev polynomials approximation for dynamical response
problem of random system, Journal of Sound and Vibration, vol.226, pp.198-206, 2003.

[17] Y. Li and C. Li, Stability and Hopf bifurcation analysis on a delayed Leslie-Gower predator — Prey
system incorporating a prey refuge, Applied Mathematics and Computation, vol.219, pp.4576-4589,
2013.

[18] Z. Hu, Z. Teng and L. Zhang, Stability and bifurcation analysis in a discrete SIR epidemic model,
Mathematics and Computers in Simulation, vol.97, pp.80-93, 2014.

[19] C. Anton, J. Deng and Y. S. Wong, Hopf bifurcation analysis of an aeroelastic model using stochastic
normal form, Journal of Sound and Vibration, vol.331, pp.3866-3886, 2012.

[20] G. Zhang, Y. Shen and B. Chen, Bifurcation analysis in a discrete differential algebraic predator
prey system, Applied Mathematical Modelling, vol.38, pp.4835-4848, 2014.

[21] B. Wang, Existence, stability and bifurcation of random complete and periodic solutions of stochastic
parabolic equations, Nonlinear Analysis, vol.103, pp.9-25, 2014.

[22] B. Hassard, N. Kazarinoff and Y. Wan, Theory and Application of Hopf Bifurcation, Cambridge
University Press, Cambridge, 1981.



1712 R. LUO, J. ZHANG, W. DU AND Y. CHANG
Appendix A. In this paper, X;(¢), (i =0,1,2,3,4,5,6) are as follows:

Xo(t) = x%yg + x%yg + x%yg + 22011Y1 + 221T0Y1 + 2X0ToYyo + xny + x%yz,

Xo(t) =23ys + 2y + 230 + 27072y + 4172Y1 + 2T0T1Y1 + 2T0ToYe + 227Ys + 373y,

K V=i — A+ 23V A+ vaa - 22 avmraa+ 22 pa o
+\fA\/—A—£A\/m+MA—£5—£\/— ‘[ —A
+2\5[a 4‘[14\/527 f\/7+6fA\/m
Mm 32 Am_imm
+£5r 202 fM— fm V2 A
V= —TAV—Ai - Z&Wﬂz’ —2(1+3V2)6V =024 — 2A2

(6\/_ — —) 5V —02A — 8A2 + 18V26 A — 3\/_A\/52 +8A 9\[

— 9—‘/552\/52 + 24 + M52\/52 +8A4 4+ M(Sx/é‘* + 10024 + 16 A2 — 5% A3

27\[5A\/ A+ §AVS2 +2Ai + §AVS2 + 8Ai + 119\[ AV —52A — 2A2?
- M52\/—5%4 —8A2— \f 02/ =024 — 242+ (3 ﬁf) AV +1062A + 16A2

f(s?’\/ A+ \/_5\/ 0*A — 105242 — 1643 — ; A%’ + 55 Ai
+ 18V2AV—A + 4AV82 + 24i + AV2 + 8Ai + 34 \/_A\/—(S?A 8A?
—6V20%V/— A+ 6V2V—0%A — 105242 — 1643 + FA%/-Ai + §A\/—52A — 8AZ;

2 3 : . 17V2 2 2

—51V2A4% — 5514\/—,4@ 1+ 6AV—02ZA — 2A2; — TA V62 +8A — /2524
+6V20AV52 + 24 + %\/ STA — 100242 — 1643

3\/_A\/ 04 A — 106242 — 1643 — %‘@4&/52 1 2A + 2428 + 32428
- 21f A2 —A — 24252 + 241 — 3V2A4%V52 + 24 — 24252 + 8Ai
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\/_

— 3V2A4%V52 + 8A — %4%/54 10074 7 1642 + Y2 42/5T 1 10574 + 1642
B2 pypa—ae - 22pav—a ﬂawm

+ ﬂmm 3‘[14\/ 04 A — 100242 — 16 A3 — —a A%/ —Aj

- adv =i+ 22 0p - Loav A w4 5\2/_aA2\/m

60\/_ A?V52 +2A + 30\/§aA2\/ —02A — 2A% — 67/20AV5? + 24

52 52
3{ AVOT 1 106%A + 16A2 — 366\fa14\/527 A+ 80A2\/_Az — 48—\[

A avra—smi - 2 g RS+ 12V2AVP 2 - 12V24VP T 54

- 125\2[A¢54 +100%A + 1642 — wm - —A% - ZA?

SO ey Laaveesai- 2 ev—pa—se

252
21\/ 5.
+ VT AV 524 — 842 — —aA i— —aA\/52 + 8A4i + 6V2adv/—A

6‘5[ V=34 — 100747 — 164° — 125072\[142\/—5%4 Y

2
6‘5[14\/ 04 A — 100242 — 1643 — ﬂ&”\/—A

2
3f5\/ 0*A—100%A% — 164> — 365\2[ 02 + 24 36(;/_aA2
+ MaA?\/—A \/_5an/ — 3vV2aAV—52A — 8 A2
+ %afl\/ §4A — 100242 — 16A3,
— V—Ai + A,

4
L=V +7AV—-Ai+ 174152\/—141' + 6% — 6AV2 + 241 — §AV 62 + 8Ai + ?OA%
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