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Abstract. The neural networks application in control of dynamic systems always im-
plies the need of training, to obtain an internal model of the system. One of the ways
to represent the internal model of system dynamics is to design the neural network as
a discretized model with delayed inputs through the NARMAX (Nonlinear Autoregres-
sive Moving Average with eXogenous inputs) methodology. The network trained in this
way has the disadvantage of requiring multiple neurons in the inner and input layers.
Here, an alternative methodology for representing the dynamics of the system in a Mul-
tilayer Perceptron network is preliminarily tested. In this alternative methodology, using
an Adams-Bashforth numerical integrator structure, allows a Multilayer Perceptron net-
work architecture to be coupled to this integrator and to be designed to learn the functions
of instantaneous derivatives in the ordinary differential equations of the dynamic system.
The training structure can be called Adams-Bashforth neural network and is a particular
case of a universal numerical integrator. This type of approach avoids unnecessary com-
plexity in the network architecture and transforms its training in a problem of learning
a static algebraic function. The application of this special neural network in a nonlinear
predictive control structure is also developed. A practical example of orbit transfer control
is considered to numerically test the proposed neural control methodology.
Keywords: Nonlinear predictive control, Artificial neural networks, Dynamic systems
modeling, Adams-Bashforth neural networks

1. Introduction. The nonlinear function mapping property is the central point for the
use of neural networks in control. Training a neural network using input/output data from
an invariant in time nonlinear plant can be considered as a problem of approximating
a nonlinear function. It has already been shown that Multilayer Perceptron networks
can arbitrarily approximate any continuous function (see [1-3]). A Multilayer Perceptron
network with only a single inner layer is enough to represent any continuous function.

In the control literature, many well-established studies already exist (e.g., [4-7]) with
emphasis on neural predictive control, for its efficiency and performance (e.g., [5-10]).

In this work the application of neural numerical integrators on a predictive control
structure (see [11,12]) will be developed. Neural numerical integrators are a particular
case of universal numerical integrators (e.g., [19,20]). The possibilities of using numerical
integrators and artificial neural networks will be analyzed directly in strategies of nonlinear
predictive control. This type of approach has the advantage of reducing the size of the
neural network, and therefore facilitating its training, since the neural network only needs
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to learn the function of instantaneous derivatives of the original dynamic system (e.g,
[11,12,19-21]).

It is important to note that the original work describing the Adams-Bashforth neural
networks comes from [20,21]. However, in a complementary new way it is proposed
here to apply the Adams-Bashforth neural networks in a predictive control structure.
The predictive control structure proposed here will require the resolution of a nonlinear
estimation problem to find the optimal control policy. This problem will be solved using
Kalman filtering not only to train the feedforward network to represent the dynamics of
physical systems (see [12]) but also to determine the smooth control policy in a mesh
predictive control structure (see [10,22]).

To achieve the goals proposed here, this article is divided into the following sections.
Section 2 briefly describes the methodology of the instantaneous derivatives. Section 3
mathematically develops the Adams-Bashforth neural network. Section 4 describes how
to insert Adams-Bashforth neural networks into a predictive control structure, which
will be solved with Kalman filtering. Section 5 presents a case study, the problem of
two-dimensional orbit transfer between the planets Earth and Mars. Section 6 briefly
describes the main conclusions of this paper.

2. Instantaneous Derivatives Methodology. In the methodology of the instanta-
neous derivatives (e.g., [19-21]), the universal approximator of functions will only play

the role of a static function, that is, ẏ = f(y, u) ∼= f̂ (y, u, ŵ), in the system of differen-
tial equations, and the final dynamics approximated through the use of some high-order
numerical integration structure of single steps or multiple steps. Wang and Lin in [19] orig-
inally developed this methodology using a Runge-Kutta 4-5 single-step integrator coupled
to a neural network with Radial Basis Functions (RBF) architecture. In this methodology,
it is important to note that the training and simulation phases will basically depend on
two approximation errors: one, due to the mean square error of the supervised training
of the universal approximator; and the other, due to the order and integration step of
the numerical integrator used. It is known that, in general, the greater the order of the
integrator used and the smaller the integration step used, then the greater the precision
obtained in each step of the simulation is. Figure 1 schematically illustrates the method-
ology of the instantaneous derivatives as proposed in [20,21] using a low order and high
order Adams-Bashforth type multi-step integrator.

As can be seen in Figure 1, the great advantage of coupling a universal approximator of
functions with a high-order numerical integrator structure is that the instantaneous de-
rivative function, which governs the dynamics of the system considered, can be adapted
to the input/output data from real-world problems. Without the use of a universal ap-
proximator, with only the use of a high-order numerical integrator it is impossible to
adapt the dynamics of the system in question to real-world data. This impossibility can
be visualized in Figure 1 through the variable y⃗ m′

(t + ∆t).
The instantaneous derivative methodology has at least two advantages over the NAR-

MAX methodology: the fact that the neural training is static and not dynamic (it is only
necessary to learn the static function of the instantaneous derivatives) and that it allows
the variation of the integration step in the simulation phase. The NARMAX methodology
requires a new training if the integration step ∆t is to be varied.

There are two forms of supervised training that the methodology of the universal nu-
merical integrators allows to realize, depending on when it is known or when it is not
known a priori the function of instantaneous derivatives of the dynamic system model.
These two methodologies are (see Figure 2): the direct methodology and the empirical or
indirect methodology.
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Figure 1. Illustrative diagram of the use of a universal approximator cou-
pled to a high-order numerical integrator structure (source: see [12])

Figure 2. Two distinct ways of training a universal approximator in the
structure of a numerical integrator

Direct Methodology. The first methodology is to simply randomly generate a sufficient
set of values of the instantaneous derivative function within a domain of interest and
directly train the universal approximator of functions to learn this derivative function (see
[11]). After the training, the numerical simulation of the results can be done by applying



448 P. M. TASINAFFO AND A. R. NETO

the approximated instantaneous derivative function on the structure of the integrator.
For the evaluation of errors, the numerical solution of the integrator must be obtained
by applying the two derivative functions, the trained and the original, so that the results
of the solution propagation are compared. In this methodology, the numerical integrator
will only be used in the simulation of the results. This methodology can only be applied
if the mathematical model of the plant is known.

Empirical or Indirect Methodology. In the second methodology, the temporal solutions
of the dynamic system y(t), y(t + ∆t), . . . , y(t + n · ∆t) are generated from a sufficient
number of initial conditions and control values through the structure of an integrator,
preferably of high order to guarantee the high precision of the training patterns. The
learning of the instantaneous derivatives function by the universal approximator of func-
tions is only possible if the universal approximator is trained coupled to the structure of
the numerical integrator (see [19-21]). The analysis of the error obtained by the integrator
set and neural network is also performed by comparing the numerical solutions propagated
by the original and trained instantaneous derivative functions. In this methodology, the
numerical integrator is used in the generation of training patterns and is required dur-
ing training and network simulation. This methodology can be used both for dynamic
systems where the theoretical model is known as well as for real-world plants where the
mathematical theoretical model of the system is not known but inputs and outputs can
be empirically generated.

In this article, the methodology used to model the dynamic system will be the di-
rect one. However, for a complete description of the indirect methodology (or empirical
methodology) to train an Adams-Bashforth neural network see [20,21]. Unfortunately,
these two references were originally written in Portuguese. For this reason, the next sec-
tion will briefly detail how to train a fourth-order Adams-Bashforth neural network with
empirical or indirect methodology, using the extended backpropagation algorithm.

3. Adams-Bashforth Neural Networks. Artificial neural networks are considered
universal approximators of functions as described in [1-3]. In this context, the tech-
nology of neural integrators that are neural networks coupled to numerical integration
structures has been successfully developed. This section presents and develops an al-
ternative empirical methodology to model and to obtain the instantaneous derivatives
functions for nonlinear dynamic systems through a supervised training using numerical
integrators of the multi-step Adams-Bashforth type, coupled to a universal approximator
of functions. The particular case of the universal approximator being represented by a
Multilayer Perceptron neural network will be considered. The structure to be developed
here will be called the Adams-Bashforth neural network.

In this approach the neural network, coupled to the structure of the considered numer-
ical integrator, plays the role of the instantaneous derivatives functions. The resulting
neural integrator structure will be composed of a linear combination of feedforward neu-
ral networks with delayed responses. It is an important fact that it is only with the use
of highest-order numerical integrators that the neural network can actually learn the in-
stantaneous derivative functions with adequate accuracy, while in the case of first-order
integrators it can only learn the mean derivatives (see [19-21,23-25]).

This approach is an alternative to the methodology that addresses the problem of neu-
ral modeling in high-order Runge-Kutta type simple-step integration structures, initially
proposed by Wang and Lin in [19]. This latter approach has the drawback of being more
complex when used in the backpropagation algorithm, which requires, in this case, the use
of the chain rule for composite functions. This fact makes it very difficult to determine
the partial derivatives required by the backpropagation algorithm.
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Given the complexity of dealing with Runge-Kutta networks, other methodologies, in
principle simpler than these, were developed. Among them are the application of simple
and multiple step integrators developed in [12,20,21,23-25]. The instantaneous derivatives
methodology is characterized by the use of variable integration step sizes, with integration
structures of any order. However, in this methodology, precise results, allowing variation
of the integration step, are only achieved with higher order integrators.

In this section it is proposed to empirically model the instantaneous derivatives func-
tions by means of neural integrators that do not work with composite functions. This can
be achieved with the Adams-Bashforth multi-step integrators, since they only use a lin-
ear combination of the instantaneous derivatives functions, facilitating the determination
of the partial derivatives, required by the backpropagation algorithm, in the supervised
training phase. Thus, this type of procedure avoids the excessive and costly use of the
chain rule on the numerical integration structure.

Given the autonomous system of ordinary differential equations (ODE):

ẏ = f(y) (1a)

where

y = [y1, y2, . . . , yne ]
T (1b)

f(y) = [f1(y), f2(y), . . . , fne(y)]T (1c)

the numerical resolution of the first order equation consists of calculating the value of the
state variable in a discrete sequence of instants using the derivative function f(y), which
is the instantaneous derivative.

In the training of a feedforward network, learning by error correction is the most used
technique to teach the network to approximate a specific task. In this learning, the vectors
of the desired value (y) and the output (ŷ), of a given network in the time t, are considered
and the output error of the network can be represented by:

ri(t) = y(t)− ŷi(t) (2a)

where

y(t) =
[
y1(t), y2(t), . . . , yne

(t)
]T

(2b)

ŷi(t) =
[
ŷi

1(t), ŷ
i
2(t), . . . , ŷ

i
ne

(t)
]T

(2c)

The variables i, t and ne denote, respectively, the i-th iteration of supervised learning,
the t-th training pattern (t = 1, 2, . . . , p), and the total number of states. In learning by
error correction, vector ri(t) triggers a control mechanism that produces a sequence of
adjustments in the network parameters. The adjustments have the property of correcting,
step by step, the output signal ŷi with respect to the desired response yi to i = 1, 2, . . . , I
until the network achieves a desirable error.

This objective can be achieved, in general, by minimizing a cost function or performance
index J i(t), given by the scalar product of Equation (3) expressed as follows:

J i(t) =
1

2
ri(t) ◦ ri(t) (3)

For this quadratic functional the following relation is valid:

∂J l(t, i)

∂wl
jk

= −ri(t) ◦ ∂ŷi(t)

∂wl
jk

(4)

In Equation (4), the index l represents the l-th network layer, the index k the k-th
neuron of the previous layer (l− 1) and j the j-th neuron of the current layer l. It is also
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possible to represent the partial derivatives of functional J i(t) as follows:

∂J l(t, i)

∂wl
jk

= −
ne∑

m=1

[
ym(t)− ŷi

m(t)
]
· ∂ŷi

m(t)

∂wl
jk

(5a)

or
∂J l(t, i)

∂wl
jk

= −
[
y(t)− ŷi(t)

]
◦ ∂ŷi(t)

∂wl
jk

(5b)

If ŷ(t) is approximated by a multi-step neural integration structure, a linear combination
of the conventional backpropagation can be applied to the same network or in different
networks over the quadratic functional.

The analytical equation of the instantaneous derivatives for multiple-step integrators
was deduced based on the backward chaining for ease of mathematical elaboration, ac-
cording to Equation (6), and it is important to note that the order o of the integrator is
also the total number of linear combinations to feedforward networks to be employed. By
definition, tn = t + n ·∆t. In this way, one has:

ŷi(tn) = yi(tn−1) +
h

α
·

0∑
i=1−o

βi · f̂ [y(tn−1−i)] (6)

where α and βi’s are the integration coefficients as a function of order o of the numerical
integrator; h is the integration step; f̂ [. . .] is the output of the neural network; ŷ(·) is the
model of the dynamic system. Substituting Equation (6) into (5b):

∂J l(tn, i)

∂wl
jk

= −
[
y(tn)− ŷi(tn)

]
◦

∂

{
yi(tn−1) + h

α
·

0∑
i=1−o

βi · f̂ [y(tn−1−i)]

}
∂wl

jk

(7a)

or

∂J l(tn, i)

∂wl
jk

= −
[
y(tn)− ŷi(tn)

]
◦

{
h

α
·

0∑
i=1−o

βi ·
∂

∂wl
jk

f̂ [y(tn−1−i)]

}
(7b)

It is known that the scalar product has the following properties:
1. Commutative law: A ◦B = B ◦ A
2. Distributive law: A ◦ (B + C) = A ◦B + A ◦ C
3. For m a scalar variable: m(A ◦B) = (mA) ◦B = A ◦ (mB) = (A ◦B)m
Combining properties (2) and (3):

A ◦ (αB + βC) = α(A ◦B) + β(A ◦ C) (8)

At the level of comparison, for the aspect of algorithmic complexity, the following
expression (9a) defines the conventional backpropagation, while Equation (9b) is the
application of property (8) in (7b), thus resulting in extended backpropagation. It will be
seen that the use of Adams-Bashforth neural integration structure of order o will result
in the linear combination of o delayed backpropagations during the neural training phase.

∂J l(tn, i)

∂wl
jk

= −
[
y(tn)− ŷi(tn)

]
◦ ∂

∂wl
jk

f̂ [y(tn)] (9a)

∂J l(tn, i)

∂wl
jk

= −h

α
·

0∑
i=1−o

βi ·
[
y(tn)− ŷi(tn)

]
◦ ∂

∂wl
jk

f̂ [y(tn−1−i)] (9b)

Equation (9b) can be used to determine the Jacobian matrix ∂J l(tn,i)

∂wl
jk

, where nl is the

total number of neurons in layer l, and nl−1 is the total number of neurons in the layer
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l − 1, as described in Equation (10).

[
∂J l(t, i)

∂wl
jk

]
nl×nl−1

=


∂J l(t, i)

∂wl
11

· · · ∂J l(t, i)

∂wl
1nl−1

... · · · ...
∂J l(t, i)

∂wl
nl1

· · · ∂J l(t, i)

∂wl
nlnl−1

 (10)

The backpropagation or gradient algorithm only requires the feedforward network
weights to be updated recursively through expression (11), where l = 1, 2, . . . , s, for i
equal to the i-th iteration of the gradient algorithm and s the total number of layers in
the network.

W
l

i+1 = W
l

i − α · ∂J l(t, i)

∂wl
(11)

Thus, if the linear combination of four delayed inputs on the neural network Fn−4, Fn−3,
Fn−2 and Fn−1 is used in the calculation of the fourth-order integrator, there come results
(see [15]):

y(tn) = y(tn−1) +
h

24
· [55 · Fn−1 − 59 · Fn−2 + 37 · Fn−3 − 9 · Fn−4] (12)

Figure 3 presents a graphical scheme to represent fourth-order Adams-Bashforth neural
networks. This figure shows the graphical scheme for making the linear combination of the
integrator structure with four delayed inputs, which in this case are the four simultaneous
inputs on the same feedforward network.

Figure 3. Graphic scheme of a fourth-order Adams-Bashforth neural in-
tegrator (source: see [20,21])

4. Classification of Main Neural Control Structures. Basically, there are three
control structures, which can be used in conjunction with a universal numeric integrator.
These structures are: IMC (Internal Model Control) structure, predictive control structure
and adaptive control structure. In this section, only the predictive control structure is
presented, which is the methodology effectively used in this article.
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4.1. Predictive control. In what follows, adopting a heuristic and theoretical approach,
the design and convergence analysis of a neural predictive control methodology will be
presented. This methodology consists in solving an optimization problem with a quadratic
index of performance, linking the already trained network with the desired dynamic system
(see [5-10]). Because it is a nonlinear optimization problem, the solution is obtained
iteratively for the discrete control actions through successive linearization. For the method
to become feasible in practice the estimation of the controls must be obtained in real time.
With the evolution of the current processors this is not a problem to prevent its use.

It can be demonstrated (see [10,12]) that Kalman filtering algorithms provide solutions
that converge to soft solutions to control variables and at the same time track the ref-
erence trajectory. Unlike an IMC control structure, in a predictive control scheme it is
not necessary to employ the inverse dynamics of the plant, and thus a neural training
is avoided. On the other hand, in neural predictive control it is necessary to solve an
optimization problem involving the neural model of the plant.

Figure 4 (see [10,11]) presents a simplified schema of the predictive control structure.
As can be seen, a neural network is placed in parallel with the plant, in order to learn it.
When the achieved learning is within an acceptable error or tolerance, the determination
of the smooth controls that will trace the reference trajectory r(t) can be obtained by the
Kalman filtering algorithm, as the solution of a network-linked optimization problem.

Figure 4. Neural optimization scheme for the determination of control
which will track the reference trajectory (source: see [10,11])

In the scheme of Figure 4, the problems associated with feedforward neural network
training and the determination of the soft control policy are both seen and treated in an
integrated manner as stochastic nonlinear parameter estimation problem. The type of
approach elaborated here allows to see the optimal control problem in a more general sto-
chastic structure and to derive versions of control algorithms that are formally equivalent
to the versions of the Kalman filtering derived and used for the training problem of the
feedforward neural network.

The problem to be solved is to control the dynamic system given by,

ẏ = f(y, u) (13)

where a time-discrete nonlinear input/output model is used to predict approximate re-
sponses, given by:

ŷ(tj) = f
[
y (tj−1) , . . . , y

(
tj−ny

)
; u (tj−1) , . . . , u

(
tj−nu

)
, w
]

(14a)
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for

tj = t + j ·∆t (14b)

The predictive neural control scheme uses a feedforward network with the capability to
accurately learn a mapping like that represented by (14a) to model the dynamic system of
Equation (13). The internal model represented by the network will then be the response
model that can be used to determine the soft control actions that will trace the reference
trajectory by minimizing a predictive quadratic performance index. The performance or
functional index of this control structure is given by (e.g., [10,12]):

J(t) =

[
n∑

j=1

[yr(tj)− ŷ(tj)]
T · r−1

y (t) · [yr(tj)− ŷ(tj)]

+
n−1∑
j=0

[u(tj)− u(tj−1)]
T · r−1

u (t) · [u(tj)− u (tj−1)]

]/
2

(15)

where yr(tj) is the reference trajectory at time tj; n is the horizon on which control actions
and reference trajectories are considered; r−1

y (tj) and r−1
u (tj) are the matrices of positive

definite weights and ŷ(tj) is the output of the feedforward network trained to approximate
the model of the dynamic system.

For more details on the construction of the functional of Equation (15) see [5,6]. The
output of the feedforward network ŷ(tj) is represented by the expression (14a). The
parameters or weights w of this network must have already undergone a training that
produces an output in the network with an error within an acceptable tolerance. The first
term of the functional of Equation (15) is associated with tracing the reference trajectory
and the second term in determining a smooth control policy. When this functional is
minimized these two conditions are expected to be satisfied simultaneously. Note that in
the predictive control scheme, in a typical cycle, when this functional J(t) is optimized,
only the control determined at instant t is implemented; and so on, repeating the cycle
for each subsequent discrete instant of time. The problem of determining the predictive
control actions can also be treated as an optimal nonlinear estimation of parameters thus
allowing the derivation and use of a Kalman filtering algorithm.

This stochastic method initially assumes that the problem of determining the control
in the functional of Equation (15) can be seen as the following stochastic parameter
estimation problem (see [10]):

yr(tj) = ŷ(tj) + vy(tj) (16a)

0 = u(tj−1)− u(tj−2) + vu(tj−1) (16b)

E[vy(tj)] = 0, E
[
vy(tj) · vT

y (tj)
]

= ry(tj) (16c)

E[vu(tj)] = 0, E
[
vu(tj) · vT

u (tj)
]

= ru(tj) for j = 1, 2, . . . , n (16d)

where ŷ(tj) = f
[
y(tj−1), . . . , y(tj−ny); u(tj−1), . . . , u(tj−nu), w

]
is the output of the neural

network; ŷ(tj−1), . . . , ŷ(tj−ny) and u(tj−1), . . . , u(tj−nu) are, respectively, the responses of
the system and the control actions already taken and known; vy(tj) and vu(tj) are the
uncorrelated components of noise for different values of tj.

Equation (16a) states that the reference trajectory of the system state yr(tj) at the
future instant is equal to the estimation done by the network in relation to the delayed
instants plus an uncertainty vy(tj). Equation (16b) translates the smooth characteristic
of control actions, i.e., two successive actions must be estimated in such a way that the
difference between them is as close as possible to the zero mean of error vu(tj−1).
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Equation (16b) is a recursive relation that can be expressed in the form of a priori
information as follows:

û(t−1) = u(tj−1) +

j−1∑
k=0

vu(tk) (17)

where the a priori value û(t−1) is the estimated value of a control at time t−1 = t−∆t. In
this way, the minimization of the functional given by Equation (15) is modeled as satisfying
the observations of Equation (16a) subject to a priori information of Equation (17). The
first consequence of treating this problem in a more general stochastic structure is that
the weight matrices present in the objective function of Equation (15), i.e., r−1

y (tj) and

r−1
u (tj), now have the meaning of covariance matrices associated with random variables

whose standard deviations respectively model the precision in the tracking of the reference
trajectory and the dispersion of the increment of the smooth control. These observations
make the understanding of these definitions much easier.

To treat the problem represented by Equations (16a) and (16b) as a linear parameter
estimation it is necessary to take a linearized approximation of Equation (16a) as follows:

α(i) · [yr(tj)− y(tj, i)] =

j−1∑
k=0

[∂ŷ(tj)/∂u(tk)]{u(tk;i)} · [u(tk, i)− u(tk, i)] + vy(tj) (18)

where k starts from zero, since ŷ(tj) is also a function of u(tj−2), . . . , u(t) through succes-
sive recursions, starting with ŷ(tj−1), . . . , ŷ(tj−ny); 0 < α(i) ≤ 1 is a constant that must
be adjusted to guarantee the hypothesis of approximation of the linear perturbation.

The partial derivatives that appear in Equation (18) are calculated using the rule of
backpropagation in relation to the outputs of the neurons of the feedforward network. In
addition:

α(i) · [û(t−1)− u(tl, i)] = [u(tl, i)− u(tl, i)] +
l∑

k=0

vu(tk)

for l = 0, 1, . . . , n− 1 and i = 1, 2, . . . , I

(19)

where û(t−1) is the estimated solution of the last control step; α(i)← α(i+1); u(t, i+1) =
û(tl, i) is the estimated approximate value of u(tl) in the ith iteration and for i = 1 the
estimated or extrapolated values of the last control step are used.

For j = 1, 2, . . . , n and l = 0, 1, . . . , n − 1 the problem of Equations (18) and (19) is a
linear stochastic estimation of parameters. This problem can be represented in a more
compact and easier to understand notation:

Ul(t, i) ≡ u(tl, i) (20a)

Ûl(t−1) ≡ û(t−1) (20b)

Thus, the problem can be equivalently expressed as:

α(i) ·
[
Û(t−1)− U(t, i)

]
= U(t, i)− U(t, i) + Vu(t) (21a)

α(i) · Zu
(t, i) = Hu(t, i) ·

[
U(t, i)− U(t, i)

]
+ Vy(t) (21b)

The meaning of the compact variables in the immediately preceding equations is ob-
tained by direct comparison of Equations (21a) and (21b) with Equations (18) and (19),
respectively. The Kalman filtering expressions in an ith iteration result:

Û(t, i) = U(t, i) + α(i) ·
[
Û(t−1)− U(t, i)

]
+ k(t, i) · α(i) ·

[
Z

u
(t, i)−Hu(t, i) ·

[
Û(t−1)− U(t, i)

]]
(22a)
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k(t, i) = Ru(t) ·HuT

(t, i) ·
[
Hu(t, i) ·Ru(t) ·HuT

(t, i) + Ry(t)
]−1

≡
[
R−1

u (t) + HuT

(t, i) ·R−1
y (t) ·Hu(t, i)

]−1

·HuT

(t, i) ·R−1
y (t) (22b)

U(t, i + 1) = Û(t, i); α(i)← α(i + 1); Û(t) = Û(t, I) (22c)

R̂u(t, I) = [Iu −K(t, I) ·Hu(t, I)] ·Ru(t) for i = 1, 2, . . . , I (22d)

where Ru(t), Ry(t) and R̂(t, I) are, respectively, the covariance matrices of Vu(t), Vy(t)

and
(
Û(t, I)− U(t)

)
, and Iu is the identity matrix. The control calculated with this

algorithm is the minimum of the functional:

J(α, i) =
[
α(i) · Zu

(t, i)−Hu(t, i) ·
[
U(t, i)− U(t, i)

]]T ·R−1
y (t)

·
[
α(i) · Zu

(t, i)−Hu(t, i) ·
[
U(t, i)− U(t, i)

]]
+
[
U(t, i)− U(t, i)− α(i) ·

[
Û(t−1)− U(t, i)

]]T
·R−1

u (t)

·
[
U(t, i)− U(t, i)− α(i) ·

[
Û(t−1)− U(t, i)

]] (23)

Thus, the convergence to a smooth control Û(t) that will track the reference trajectory
yr(t) is guaranteed since the feedforward neural network ŷ(t) has the capacity to represent
the system dynamics of Equation (13) and to allow a linearized approximation in an ith
typical iteration, when a sufficiently small value is used for α(i).

Since it is possible to represent dynamic systems using neural networks in a numerical
integrator structure, it remains to know how to design this scheme on a predictive control
structure. In the present case, the chain rule on the integrator structure combined with
the backpropagation of the neural network should be used. Thus, the greater the order
of the integrator is, the more complex the calculation of these derivatives will become.

In [12,22] a mathematical model is developed that combines the method of the mean
derivatives, in a predictive control structure, for the general case, considering n horizons
in the functional of Equation (15).

4.2. The computational algorithm combining the Adams-Bashforth neural net-
works and the predictive control structure. In a predictive control structure, the
parameters to be estimated are the controls themselves that will keep the dynamical
system around a reference trajectory within a desired control horizon. In this section a
Kalman filtering algorithm is presented, with the aim of facilitating the computational
implementation of this problem, which is one of a dynamic nonlinear programming type.
Since it is difficult to construct a generic algorithm, particular values will be assumed
for n, ny and nu. In this case, it will be adopted n = 1 (estimation horizon of control
variable) and ny = nu = 4 (number of delayed inputs of the state and control variables of
the neural integration structure).

As the proposed estimation problem is non-linear, then the algorithm will have an iter-
ative characteristic, that is, it starts from an a priori information of the control variables,
and then new values of these variables are recursively estimated until the output of the
states of the system obtained by the neural network converges to the known reference
trajectory, within an acceptable error for that horizon.

Note that the values of the state variables y(t−3), y(t−2), y(t−1) and y(t0), and the
values of the control variables u(t−3), u(t−2), u(t−1) and u(t0) must be known as well
as the reference trajectory and a priori information of the actuation controls within the
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desired forecasting horizon. Thus, the algorithm for solving the proposed problem can be
summarized in the following essential steps.

1) Generate the a priori information of the controls u(t) within the desired horizon. As
the desired control policy should be smooth as imposed by the functional J of Equation
(15) nothing more natural than starting it with the null vector, that is,

U(t, i) = [u(t0, i)]
T ≡ 0 for I = 1 (24)

where u(t0, i) is the vector of the control variables at time t0 in the i-th iteration.

2) Calculate the partial derivatives
∂ŷ(tj)

∂u(tk)
present in Equation (18) through the expres-

sions from (37a) to (37f) of the backpropagation algorithm (see Appendix A). Table 1
illustrates the particular case for n = 1 and ny = nu = 4.

α(i) · [yr(tj)− y(tj, i)] =

j−1∑
k=0

[∂ŷ(tj)/∂u(tk)]{u(tk;i)} · [u(tk, i)− u(tk, i)] + vy(tj) (25)

Table 1. The partial derivatives necessary to estimate the control u(t)

J k j − 1 Partial Derivatives

1 0 0
∂ŷ(t1)

∂u(t0)

∣∣∣∣
u(t0,i)

In order for the partial vector derivative presented in Table 1 to be computed correctly
it is necessary to establish a priori the type of numerical integrator in which the neural
derivative function of the dynamic system to be studied will be introduced. In the present
case the Adams-Bashforth multi-step integrator of order four will be adopted, given by:

y(t1) = y(t0) +
h

24
·
{

55 · f̂ [y(t0), u(t0)]− 59 · f̂ [y(t−1), u(t−1)]

+ 37 · f̂ [y(t−2), u(t−2)]− 9 · f̂ [y(t−3), u(t−3)]
} (26)

Thus, the calculation of the derivative ∂ŷ(t1)
∂u(t0)

∣∣∣
u(t0,i)

, for the particular case of the adopted

integrator, takes the following form:

∂ŷ(t1)

∂u(t0)

∣∣∣∣
u(t0,i)

=
55

24
· h · ∂f̂ [y(t0), u(t0)]

∂u(t0)

∣∣∣∣
u(t0,i)

(27)

The above equation can be computed directly through backpropagation algorithm. For
further details on the calculation of these derivatives see Appendix A.

3) Mount the matrix Hu(t, i) and the vector Z
u
(t, i) present in the equation α(i) ·

Z
u
(t, i) = Hu(t, i) · [U(t, i) − U(t, i)] + Vy(t). The matrix Hu(t, i) must be constructed

from Table 1. To simplify the notation being used, it is convenient to adopt the following
definition:

Ak,j =
∂ŷ(tk)

∂u(tj)

∣∣∣∣
u(tj ,i)

=



∂ŷ1(tk)

∂u1(tj)

∂ŷ1(tk)

∂u2(tj)
· · · ∂ŷ1(tk)

∂unu(tj)
∂ŷ2(tk)

∂u1(tj)

∂ŷ2(tk)

∂u2(tj)
· · · ∂ŷ2(tk)

∂unu(tj)
...

...
. . .

...
∂ŷny(tk)

∂u1(tj)

∂ŷny(tk)

∂u2(tj)
· · ·

∂ŷny(tk)

∂unu(tj)


(28)



ADAMS-BASHFORTH NEURAL NETWORKS 457

Assembling matrix Hu(t, i) would be a rather difficult task if the values of n, ny and nu

were large, for example, if n = 5 and ny = nu = 3. In this case, for illustrative purposes
only, the following would have occurred:

Hu(t, i) =


A1,0 0 0 0 0
A2,0 A2,1 0 0 0
A3,0 A3,1 A3,2 0 0
A4,0 A4,1 A4,2 A4,3 0
A5,0 A5,1 A5,2 A5,3 A5,4

 (29)

where each generic element Ak,j present in the previous matrix would be another matrix
of dimension ny×nu as indicated by Equation (28). However, since n = 1 then the matrix
Hu(t, i) reduces to:

Hu(t, i) = A1,0 =
∂ŷ(t1)

∂u(t0)

∣∣∣∣
u(t0,i)

=

[
∂ŷj(t1)

∂uk(t0)

∣∣∣∣
u(t0,i)

]
ny×nu

(30)

Thus, by expanding the expression α(i) · Zu
(t, i) = Hu(t, i) · [U(t, i) − U(t, i)] + Vy(t)

one has:


yr1(t1)− y1(t1, i)

yr2(t1)− y2(t1, i)
...

yrny
(t1)− yny

(t1, i)


︸ ︷︷ ︸

Z
u
(t,i)

·α(i) =



∂ŷ1(t1)

∂u1(t0)

∂ŷ1(t1)

∂u2(t0)
· · · ∂ŷ1(t1)

∂unu(t0)
∂ŷ2(t1)

∂u1(t0)

∂ŷ2(t1)

∂u2(t0)
· · · ∂ŷ2(t1)

∂unu(t0)
...

...
. . .

...
∂ŷny(t1)

∂u1(t0)

∂ŷny(t1)

∂u2(t0)
· · ·

∂ŷny(t1)

∂unu(t0)


︸ ︷︷ ︸

Hu(t,i)

u(t0, i)

·


u1(t0, i)− u1(t0, i)
u2(t0, i)− u2(t0, i)

...
unu(t0, i)− unu(t0, i)


︸ ︷︷ ︸

U(t,i)−U(t,i)

+


v1(t1)
v2(t1)

...
vny(t1)


︸ ︷︷ ︸

Vy(t)

(31)

where U(t, i) is the a priori information vector of the control variables adopted in step
1; U(t, i) is the vector that should be estimated; Hu(t, i) is the partial derivative matrix
obtained in step 2 through backpropagation and assembled in step 3; 0 < α(i) ≤ 1 is
the value that must be adopted empirically to guarantee the linearization hypothesis; and
Vy(t) is the mean zero noise vector and covariance matrix ry(t).

4) Estimate Û(t, i) through the following iterative expressions of the Kalman filtering
(see [10]):

k(t, i) = Ru(t) ·HuT

(t, i) ·
[
Hu(t, i) ·Ru(t) ·HuT

(t, i) + Ry(t)
]−1

≡
[
R−1

u (t) + HuT

(t, i) ·R−1
y (t) ·Hu(t, i)

]−1

·HuT

(t, i) ·R−1
y (t)

(32a)

Û(t, i) = U(t, i) + α(i) ·
[
Û(t−1)− U(t, i)

]
+ k(t, i) · α(i)

·
[
Z

u
(t, i)−Hu(t, i) ·

[
Û(t−1)− U(t, i)

]] (32b)
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where Ru(t) and Ry(t) are the covariance matrices, respectively, of Vu(t) and Ry(t); Û(t−1)
is the previous estimate of the control variables within an acceptable precision. Note that
the processing of Equations (32a) and (32b) can be done both in batches and recursively.

5) Implement the variable i of i = i + 1, and do U(t, i + 1) = Û(t, i) and repeat the
steps (2), (3) and (4) until that y(t) is sufficiently close to yr(t) within a desired error, in
general, 3 · σ of vy. One can use the criterion of the mean square error to determine the
last iteration for the present estimation. When this occurs, then do:

R̂u(t, I) = [Iu − k(t, I) ·Hu(t, I)] ·Ru(t) (33)

where R̂u(t, I) is the estimation of the covariance matrix of
[
Û(t, I)− U(t)

]
.

6) When the current estimation converges to the desired value yr(t), advance only one
instant of time forward, even if the forecast horizon adopted n is greater than one, and
repeat all previous steps for the new estimation. Do not forget that now Û(t−1) = Û(t, I)

and U(t, 1) = Û(t, I).

5. Numerical Results. The practical results of the methodology developed in this paper
will be presented for the problem of orbit transfer between the planets Earth and Mars,
as shown in Figure 5. Figures 6 and 7 show the numerical results of this orbiting transfer
problem of a rocket when the integration step is varied. The state variables of this problem
are: the mass of the rocket m, the orbit radius r, the radial velocity w and the transverse
velocity v. The only control variable is the guided thrust angle θ. The state equations
(see [26]) of the dynamics of Earth-Mars orbit transfer of mass-rocket m are:

ṁ = −0.0749 (34a)

ṙ = w (34b)

ẇ =
v2

r
− µ

r2
+

T · sin θ

m
(34c)

v̇ =
−w · v

r
+

T · cos θ

m
(34d)

The normalized constants of this problem are: µ = 1.0 (gravitational constant), T =
0.1405 (rocket thrust), t0 = 0 (initial moment) and tf = 3.3 (final moment), where each
unit of time is equivalent to 58.2 days. The input/output training patterns generated

Figure 5. Illustrative diagram of Earth-Mars orbit transfer
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Figure 6. Neural predictive control structure with integration step of
∆t = 0.2

to train the fourth-order Adams-Bashforth neural network were generated numerically
from the classical Runge-Kutta 4-5 numerical integrator on the non-linear equations of
the dynamics from (34a) to (34d).

In Figure 6 we have the result of neural predictive control, where the system starts with
negligible error in relation to the beginning of the reference trajectory. However, since
it has an integration and estimation step that are equal to each other and with a value
that is relatively high and equal to 0.2, the final results of the simulation are not very
accurate.

The numerical results of Figure 7 show that, for a smaller integration step than that
used in Figure 6, it is possible to better track the rocket reference trajectory. The lower
part of Figures 6 and 7 also shows the estimated control. Note that in both cases the
same fourth-order Adams-Bashforth neural network was used. The only thing that varied
was the integration step. Note that if the NARMAX methodology had been used one
would have to train two neural networks in order to vary the integration step from 0.2 to
0.01.

6. Conclusions. In this work a new approach to obtaining the discrete models of dy-
namic systems, where an internal model is needed, was presented and tested, in a predic-
tive control scheme. The possibility of using universal numerical integrators of differential
equation systems as internal models was considered. It was shown that the structure of
these numerical integrators can be exploited to obtain discrete neural models, where the
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Figure 7. Neural predictive control structure with integration step of
∆t = 0.01

neural network has only to learn and approximate instantaneous derivatives functions
that are simply of static algebraic nature.

Conclusions, previously perceived by the proponents of the approach, could be con-
firmed:

a) it is a simpler task to train a neural network with feedforward architecture to learn
an algebraic and static function (in this case, the instantaneous derivatives functions of
the ordinary differential equations model of the dynamic system) than to train it to learn
the discrete dynamic model through the NARMAX methodology;

b) the architecture of the resulting neural network is simpler as regard to the number
of layers and number of neurons, since it does not have to learn the law of dynamics, but
only the function of instantaneous derivatives;

c) the use of the universal numerical integrator for systems of ordinary differential
equations, as an approximate model of discrete time, does not destroy the parallel pro-
cessing characteristic of the neural network, since the numerical integration algorithm
only involves calculations and evaluations of linear combinations of the neural network
trained;

d) the flexibility of being able to vary the size of the step of discretization and the order
of the universal numerical integrator, can be used to control the desired precision for the
system response output, since the neural network is trained with a tolerance compatible
with that which is desired in the universal numerical integrator;
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e) when the response times are not too small, and the mathematical model of ordinary
differential equations evaluated is reasonably good, then the structure of the universal
numerical integrator can be directly used as a discrete internal model;

f) even in situations where a theoretical mathematical model cannot be evaluated and
there are only pairs of dynamic input/output information of the system, experimentally
obtained, the structure of the universal numerical integrator with a feedforward network
in place of the theoretical instantaneous derivative functions can be trained to obtain a
discrete internal model in control schemes;

g) finally, it is important to consider that the use of a neural network in a discrete
model of the dynamic system will naturally allow the implementation of adaptive control
schemes due to the learning capacity of neural networks.

As pointed out, there are three distinct ways of solving the problem of nonlinear pro-
gramming required by the predictive control structure:

a) to use only the neural network (or any other universal approximation of functions) to
approximate the dynamics of the system using the criterion of delayed inputs (NARMAX
methodology);

b) to use only the numerical integrator as discretized model of the system dynamics; or
c) to use together the numerical integrator and a neural network that will play the role

of representing the dynamic system functions of instantaneous derivatives.
Using only the neural network leads to a more “robust” (more inputs and more neurons)

network and therefore more difficult to be trained, besides not allowing the variation of
the integration step size.

Using only the numerical integrator structure, with the theoretical instantaneous de-
rivative function, makes it difficult to adapt the theoretical model of the dynamic system
to the real plant.

Using the numerical integrator structure with the neural network to approximate the
instantaneous derivative function allows the construction of a less robust network and,
therefore, an easier training, in addition to being able to design a dynamic model with
variable integration step and which can be adapted in real time to the original system of
the plant.

The major disadvantage of the former method is that the computation of the partial
derivatives becomes more complex and complicated, and for each type of integrator to
be used there will be a different expression for the partial derivatives and, in general,
these expressions will be so much more complex and difficult to obtain as the order of the
integrator becomes larger.

The use of the Adams-Bashforth multi-step neural integrator as an internal model, in
the predictive control scheme based on the Kalman filtering algorithm, applied to the
Earth/Mars transfer problem, resulted in the following results:

a) the stochastic interpretation of the errors gave more realism to the treatment of the
problem and facilitated the adjustment of the weight matrices in the functional of the
predictive control problem;

b) the Kalman algorithm for the calculation of the control actions performed similarly
to the corresponding Kalman algorithm for neural network training, as expected, since
they are completely similar algorithms, applied to solving numerically equivalent problems
of parameter estimation;

c) based on the previous item, the Kalman filtering, with or without parallel processing,
can be used both to train the neural network and to find the optimal control policy;

d) the use of only one step forward as a control horizon was enough; this feature,
coupled with the efficiency and performance of Kalman’s parallel processing algorithms
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combined with today’s on-board processing capability, ensures the feasibility of real-time
adaptive applications in aerospace control problems.
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Appendix A: The Calculation of Backpropagation Algorithm. Figure 8 shows a
simplified graphical scheme of a generic layer in a feedforward network (see [27]). The
formal mathematical representation for the output vector yk of the layer k will be given
by the following expression:

yk
i = fk

(
nk−1∑
j=1

wk
ij · yk−1

j − bk
i

)
for i = 1, 2, . . . , nk (35)

The analytical processing given by Equation (35) can be placed in the matrix form,
demonstrating the parallelism characteristic presented by MLP networks. Thus, W k being
the weight matrix of the layer k (k = 1, 2, . . . , L), the output vector of this layer will be:

yk = fk
(
W k · yk−1

)
= fk

(
yk
)

(36a)

where

yk =
[
fk
(
yk

1

)
· · · fk

(
yk

nk

)
− 1
]T

(36b)

W k =


wk

11 · · · wk
1nk−1

bk
1

wk
21 · · · wk

2nk−1
bk
2

...
. . .

...
...

wk
nk1 · · · wk

nknk−1
bk
nk


nk,nk−1+1

(36c)

Figure 8. Inputs and outputs of a generic layer k of an MLP network
(source: see [27])
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It should be noted that in Equation (36c) the line vector bk was added to the weight
matrix W k and because this it is necessary to add the negative unit value in the last line
of vector yk represented by Equation (36b).

Thus, the calculation of backpropagation can be determined (see [27]) as follows:

∂yj

∂yk
=

∂yj

∂yk+1
·W k+1 · If ′(yk) for k = L− 1, L− 2, . . . , 1 (37a)

where

∂yL

∂yL
= If ′(yL) for j = k = L (the output layer of MLP network) (37b)

If ′(yL) =


f ′ (yL

1

)
0 0 0

0 f ′ (yL
2

)
0 0

0 0
. . . 0

0 0 0 f ′ (yL
nk

)

 (37c)

∂f̂ [y(t0), u(t0)]

∂u(t0)

∣∣∣∣
u(t0,i)

= Au (37d)

∂yL

∂y1 =

[
∂f̂ [y(t0), y(t0)]

∂y(t0)
:
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1

∂y1
ny

∂ŷL
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︸ ︷︷ ︸

Au≡ ∂f̂ [y(t0),u(t0)]
∂u(t0)

(37f)

Equations (37a) to (37f) are used to calculate the partial derivative matrix present in
Equation (27) and refer to the computational algorithm of the predictive neural control
structure detailed in Section 4.2.


