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Abstract. In this paper, we consider the point estimators and the exact confidence in-
tervals for the two-parameter Rayleigh distribution based on pivotal quantities with pro-
gressively first-failure censored data. The maximum likelihood estimation is introduced
firstly. Then we derive the pivotal quantities to obtain the precise estimators of the loca-
tion and scale parameters respectively under the progressive first-failure censoring. Also,
we obtain the exact confidence intervals of the two parameters. We apply simulated data
as well as a real data set to illustrate the proposed inference methods. The numerical
results show that using pivotal quantities presented in this study, the inference of param-
eters for the two-parameter Rayleigh distribution with progressively first-failure censored
data is effective.
Keywords: Two-parameter Rayleigh distribution, Progressive first-failure censoring,
Pivotal quantity, Point estimation, Exact interval inference

1. Introduction. In lifetime experiments, Rayleigh distribution is one of the most pop-
ular distributions since its failure function is monotonous which is regarded as a good
feature. Lord Rayleigh (1880) introduced Rayleigh distribution, a special case of the well-
known Weibull distribution taking 2 as the shape parameter (see [17]). Also, it has rela-
tions with chi-squared distribution and extreme value distribution. Many authors studied
various aspects of the Rayleigh distribution. [10] considered the Bayesian estimation and
prediction for the Rayleigh distribution based on Type-II censored data. By the natural
conjugate family of priors, [6] concentrated on the prediction interval for the Rayleigh
distribution. [5] compared the Bayes estimators for Rayleigh distribution under different
loss function, squared error loss function and LINEX loss function. [14] obtained the
maximum likelihood estimation and Bayesian estimation of the scale parameter for the
Rayleigh distribution. Also, they addressed the highest posterior density (HPD) predic-
tion interval. Rayleigh distribution is used widely in the industry and medical treatment,
such as reliability experiments and survival analysis. In this case, more extensive distri-
butions from the Rayleigh distribution are investigated. [12] mentioned some information
of the two-parameter Rayleigh distribution.

The probability density function (PDF) of the two-parameter Rayleigh distribution is
defined as follows, see Figure 1,

f(x; µ, σ) =
x − µ

σ2
exp

{
−(x − µ)2

2σ2

}
; x > µ, σ > 0 (1)
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and the cumulative distribution function (CDF) is given by

F (x; µ, σ) = 1 − exp

{
−(x − µ)2

2σ2

}
(2)

Figure 1. Probability density function of two-parameter Rayleigh distribution

Two-parameter Rayleigh distribution is the extended version of Rayleigh distribution.
For it has two parameters, two-parameter Rayleigh distribution has more various forms
and contains more information. In the manufacturing and service industry, many indica-
tors obey two-parameter Rayleigh distribution, so the inference of the parameters is re-
garded as an important work for mass production. Furthermore, two-parameter Rayleigh
distribution relates to the investigation of the wavelet, which is applied widely in the
medical field based on threshold de-noising methods, such as [16] proposed. [7] did a lot
of work on the inference for the two-parameter Rayleigh distribution. They proposed sev-
eral different methods to derive the estimators of two parameters with complete samples,
including maximum likelihood estimators, moments estimators, L-moment estimators,
percentile based estimators and least squares estimators. Also, they considered Bayesian
estimation as well, and concluded that the maximum likelihood estimators and Bayes
estimators are more valid for all practical cases.

In practice, the life testing experiments often terminate before all the units fail. [11]
introduced a censoring plan called the first-failure censoring. Then, [22] described the
progressive first-failure censoring, an improved censoring plan. Instead of the complete
sampling, the progressive first-failure censored sampling is often used in experiments to
reduce time and cost. This censoring method has been studied by many authors. For



PIVOTAL INFERENCE BASED ON CENSORING SCHEME 505

example, [1] derived the maximum estimators and Bayes estimators for Rayleigh distri-
bution under progressive first-failure censoring and [8] considered the estimators of the
parameters for the generalized inverted exponential distribution based on the progressive
first-failure censored data.

We can describe the progressive first-failure censoring scheme as follows. Suppose we
have N units in total in the life-testing experiment and divide them into n independent
groups with k items in each group. When the first failure is observed, discard this corre-
sponding group and R1 groups from the remaining (n − 1) groups randomly. When the
second failure occurs, discard the group in which the second failure is observed and R2

groups from the remaining (n−R1 − 2) groups randomly, and so on. This procedure con-
tinues until we observe the m-th failure and discard all the remaining groups finally. The
number of the groups to be discarded each time R = (R1, R2, . . . , Rm) is fixed, called the
censoring scheme. When k = 1 in each group, this censoring becomes the progressive type-
II censoring and it becomes the first-failure censoring when R1 = R2 = · · · = Rm−1 = 0
and Rm = n − m.

Based on the pivotal quantity, we can derive the inference of the parameters. This
method is proved to be a valid approach to simplifying the inference process when it is
difficult to obtain the explicit solutions using maximum likelihood estimation method.
[19] considered the pivotal inference for the scaled half logistic distribution with progres-
sively Type-II censored data. They constructed pivot quantities which obey the chi-square
distribution. Based on the progressively type-II censoring samples, [20] investigated the
pivotal inference for the two-parameter half-logistic distribution. Using pivot quantities,
they obtained an unbiased estimator of the location parameter and confidence intervals
of the location and scale parameters. [9] presented the inverse moment estimation and
joint confidence regions of parameters for exponentiated half logistic distribution based
on pivot quantities which have chi-square distribution and F distribution. [18] derived
some pivot quantities to obtain the estimation and prediction of exact intervals for the
two-parameter Rayleigh distribution based on the Upper record values and prove that
the performance of the pivotal inference is quite good. [15] derived the estimators for
the Pareto distribution using a pivotal quantity. In addition, the study of the interval
estimations based on the pivotal quantities was also discussed by [13, 21].

In this study, we investigate the inference of the location and scale parameters for the
two-parameter Rayleigh distribution based on pivotal quantities with progressive first-
failure censored data. The remainder of the paper is structured as follows. In Section
2, we introduce the maximum likelihood estimation briefly. Then we derive the pivotal
quantities of parameters µ and σ. And we obtain the point and confidence interval
estimations of two parameters based on pivotal quantities. In Section 3, we do the tests
by Monte Carlo simulations as well as a real data set to assess the performance of the
pivotal inference proposed. In Section 4, we draw the conclusions.

2. Inference Based on Pivotal Quantities.

2.1. The likelihood function. Suppose we have N units in total. Divide them into
n (n ≥ m) independent groups and each group has k items. Let X1:m:n:k, X2:m:n:k, . . .,
Xm:m:n:k be a progressive first-failure censored sample from the two-parameter Rayleigh
distribution and the censoring scheme is denoted by (R1, R2, . . . , Rm). According to [2, 22],
the likelihood function based on the progressive first-failure censored data is given by

L(µ, σ; x1:m:n:k, . . . , xm:m:n:k) = Ckm

m∏
i=1

f(xi:m:n:k; µ, σ) {1 − F (xi:m:n:k; µ, σ)}k(Ri+1)−1 (3)
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where C = n(n − 1 − R1)(n − 2 − R1 − R2) · · · (n − m + 1 − R1 − · · · − Rm−1).
According to the functions in (1), (2) and (3), the likelihood function for the two-

parameter Rayleigh distribution based on progressive first-failure censoring is shown as
follows (using xi instead of xi:m:n:k)

L(µ, σ) = Ckm

m∏
i=1

xi − µ

σ2
exp

{
−k(Ri + 1)(xi − µ)2

2σ2

}
(4)

The log-likelihood function is

l = log L(µ, σ) ∝
m∑

i=1

log(xi − µ) − 2m log σ − k

2σ2

m∑
i=1

(Ri + 1)(xi − µ)2 (5)

Normally, to obtain the estimators of µ and σ, we usually derive the MLEs µ̂ and σ̂.
In this method, we should solve the likelihood equations as follows

∂l

∂µ
= −

m∑
i=1

1

xi − µ
+

k

σ2

m∑
i=1

(Ri + 1)(xi − µ) = 0 (6)

∂l

∂σ
= −2m

σ
+

k

σ3

m∑
i=1

(Ri + 1)(xi − µ)2 = 0 (7)

However, it is not easy to get explicit solution in this case. Alternatively, we could
derive the estimators by pivotal quantities, a much more efficient and easier method.

2.2. Point estimations based on pivotal quantities. Suppose X1:m:n:k, . . . , Xm:m:n:k

(using X1, X2, . . . , Xm instead) is the progressive first-failure censored sample with the
censoring scheme (R1, R2, . . . , Rm) for the two-parameter Rayleigh distribution.

Let Yi = − log(1−F (Xi)) = (Xi−µ)2

2σ2 , so Y1 < Y2 < · · · < Ym is a progressive first-failure
censored sample from a standard exponential distribution and according to Equation (3),
the joint probability density function is

f(y1, y2, . . . , ym) = Ckm

m∏
i=1

exp {−yi} exp {−yi[k(Ri + 1) − 1]}

= Ckm exp

{
−

m∑
i=1

[k(Ri + 1)]yi

}
(8)

where C = n(n − 1 − R1) · · · (n − m + 1 − R1 − · · · − Rm−1).
Then, we do the transformation as follows

T1 = 2knY1 (9)

and

Ti = 2k

[
n −

i−1∑
j=1

(Rj + 1)

]
(Yi − Yi−1)

= 2k

[
m − i + 1 +

m∑
j=i

Rj

]
(Yi − Yi−1) (i = 2, . . . , m) (10)
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So, the progressive first-failure censored sample Y1, Y2, . . . , Ym can be expressed as linear
combinations of T1, T2, . . . , Tm, shown as

Y1 =
T1

2kn

Y2 =
T1

2kn
+

T2

2k(n − 1 − R1)
...

Ym =
T1

2kn
+ · · · + Tm

2k(n − m + 1 − R1 − · · · − Rm−1)

Note that the determinant of the Jacobian obtained from the transformation is

J =
1

2mkmC
(11)

We can derive the joint probability density function for T1, T2, . . . , Tm as

f(t1, . . . , tm) = f(y1, . . . , ym) · |J | =
m∏

i=1

{
1

2
e−

ti
2

}
(12)

T1, T2, . . . , Tm are independent and identically from a χ2(2) distribution, so we have

T1 =
kn(X1 − µ)2

σ2
∼ χ2(2) (13)

Let

U(µ, σ) =
m∑

i=1

Ti =
k
∑m

i=1(1 + Ri)(Xi − µ)2

σ2
(14)

and

S(µ, σ) =
m∑

i=2

Ti = U − T1 =
k
∑m

i=1(1 + Ri)(Xi − µ)2 − kn(X1 − µ)2

σ2
(15)

So, on the basis of the property of the chi-square distribution, we know that U ∼ χ2(2m)
and S ∼ χ2(2(m − 1)). Moreover, the pivotal quantities S and T1 are independent.

Then, we obtain the pivotal quantity Q as follows

Q(µ) =
T1/2

S/ [2(m − 1)]
=

(m − 1)n(X1 − µ)2∑m
i=1(1 + Ri)(Xi − µ)2 − n(X1 − µ)2

∼ F (2, 2(m − 1)) (16)

As we know, the expectations and variances of pivotal quantities U and Q from chi-
square distribution are shown as follows

E(U(µ, σ)) = 2m, Var(U(µ, σ)) = 4m (17)

and

E(Q(µ)) =
2(m − 1)

2(m − 1) − 2
=

m − 1

m − 2
, Var(Q(µ)) =

(m − 1)3

(m − 2)2(m − 3)
(18)

Lemma 2.1. The pivotal quantity U(µ, σ)/2m converges to 1 in probability as m → ∞.

Proof: Since U(µ, σ) has a chi-square distribution with 2m degrees of freedom, we
have

E

(
U

2m

)
=

E(U)

2m
= 1 (19)
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and

Var

(
U

2m

)
=

Var(U)

(2m)2
=

1

m
→ 0 as m → ∞ (20)

Given ε > 0, if m is large enough, using Chebyshev’s inequality, we have

P

(∣∣∣∣ U

2m
− 1

∣∣∣∣ > ε

)
= P

(∣∣∣∣ U

2m
− E

(
U

2m

)∣∣∣∣ > ε

)
≤

Var
(

U
2m

)
ε2

→ 0

as m → ∞.

Lemma 2.2. The pivotal quantity Q(µ)/(m − 1) converges to 1
m−2

in probability as m
→ ∞.

Proof: Since Q(µ) has an F distribution with 2 and 2(m − 1) degrees of freedom,

E

(
Q

m − 1

)
=

E(Q)

m − 1
=

1

m − 2
(21)

and

Var

(
Q

m − 1

)
=

Var(Q)

(m − 1)2
=

m − 1

(m − 2)2(m − 3)
→ 0 (22)

as m → ∞.
Given ε > 0, if m is large enough, using Chebyshev’s inequality, we have

P

(∣∣∣∣ Q

m − 1
− 1

m − 2

∣∣∣∣ > ε

)
= P

(∣∣∣∣ Q

m − 1
− E

(
Q

m − 1

)∣∣∣∣ > ε

)
≤

Var
(

Q
m−1

)
ε2

→ 0

as m → ∞.
By Lemma 2.1 and Lemma 2.2, we propose that

U(µ, σ) = 2m (23)

and

Q(µ) =
T1/2

S/ [2(m − 1)]
=

m − 1

m − 2
(24)

Using Equations (24) and (23), we can derive the estimators of µ and σ by solving two
equations

(m − 1)n(X1 − µ)2∑m
i=1(1 + Ri)(Xi − µ)2 − n(X1 − µ)2

=
m − 1

m − 2
(25)

and

k
∑m

i=1(1 + Ri)(Xi − µ)2

σ2
= 2m (26)

We obtain the estimators µ̂ and σ̂ as

µ̂ =
−B ±

√
B2 − 4AC

2A
(27)

where

A = (m−2)n, B = 2

(
m∑

i=1

(1 + Ri)Xi − nX1(m − 1)

)
, C = (m−1)nX2

1 −
m∑

i=1

(1+Ri)X
2
i

and

σ̂ =

√
k
∑m

i=1(1 + Ri)(Xi − µ)2

2m
(28)



PIVOTAL INFERENCE BASED ON CENSORING SCHEME 509

Note that µ < X1, so we derive the estimator of µ as

µ̂ =
−B −

√
B2 − 4AC

2A
(29)

2.3. Exact interval inference based on pivotal quantities. In this subsection, we
consider the exact confidence intervals of the location parameter µ and the scale parameter
σ based on the pivotal quantities. According to Equations (14) and (16), we know that
U(µ, σ) ∼ χ2(2m) and Q(µ) ∼ F (2, 2(m − 1)). We construct the exact 100(1 − α)%
two-sided confidence intervals for the parameters µ and σ based on the pivotal quantities
as follows respectively[

Q−1
(
Fα

2
(2, 2(m − 1))

)
, Q−1

(
F1−α

2
(2, 2(m − 1))

)]
(30)

and [
U−1

(
χ2

α
2
(2m)

)
, U−1

(
χ2

1−α
2
(2m)

)]
(31)

More clearly, the 100(1 − α)% confidence interval for µ can be expressed as

1 − α = P
{
Fα

2
(2, 2(m − 1)) < Q < F1−α

2
(2, 2(m − 1))

}
= P

{
Fα

2
<

(m − 1)n(X1 − µ)2∑m
i=1(1 + Ri)(Xi − µ)2 − n(X1 − µ)2

< F1−α
2

}
= P {Lower < µ < Upper} (32)

where Fα
2

and F1−α
2

are the short versions of Fα
2
(2, 2(m − 1)) and F1−α

2
(2, 2(m − 1))

respectively and

Lower = max

{
−b1 −

√
b2
1 − 4a1c1

2a1

,
−b2 +

√
b2
2 − 4a2c2

2a2

}

Upper = min

{
−b1 +

√
b2
1 − 4a1c1

2a1

,
−b2 −

√
b2
2 − 4a2c2

2a2

, X1

}
a1 = a2 = (m − 1)n

b1 = 2F1−α
2

m∑
i=1

(1 + Ri)Xi − 2
(
m − 1 + F1−α

2

)
nX1

c1 =
(
m − 1 + F1−α

2

)
nX2

1 − F1−α
2

m∑
i=1

(1 + Ri)X
2
i

b2 = 2Fα
2

m∑
i=1

(1 + Ri)Xi − 2
(
m − 1 + Fα

2

)
nX1

c2 =
(
m − 1 + Fα

2

)
nX2

1 − Fα
2

m∑
i=1

(1 + Ri)X
2
i

The 100(1 − α)% confidence interval for σ according to Equation (31) is shown as

1 − α = P
{

χ2
α
2
(2m) < U < χ2

1−α
2
(2m)

}
= P

{
χ2

α
2
(2m) <

k
∑m

i=1(1 + Ri)(Xi − µ)2

σ2
< χ2

1−α
2
(2m)

}
= P

{√
k
∑m

i=1(1 + Ri)(Xi − µ)2

χ2
1−α

2
(2m)

< σ <

√
k
∑m

i=1(1 + Ri)(Xi − µ)2

χ2
α
2
(2m)

}
(33)
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So for any 0 < α < 1, an exact 100(1 − α)% confidence interval for µ based on the
pivotal quantity is[

max

{
−b1 −

√
b2
1 − 4a1c1

2a1

,
−b2 +

√
b2
2 − 4a2c2

2a2

}
,

min

{
−b1 +

√
b2
1 − 4a1c1

2a1

,
−b2 −

√
b2
2 − 4a2c2

2a2

, X1

}]
(34)

and the exact 100(1 − α)% confidence interval for σ can be constructed as[√
k
∑m

i=1(1 + Ri)(Xi − µ)2

χ2
1−α

2
(2m)

,

√
k
∑m

i=1(1 + Ri)(Xi − µ)2

χ2
α
2
(2m)

]
(35)

Note that the exact confidence interval of the scale parameter σ depends on the location
parameter µ, a nuisance parameter. So we use a method based on the generalized pivotal
quantity to solve this issue. See the example in [18].

Let µ∗ be the unique solution of Q(µ) = Q, where the random variable Q has an F
distribution with 2 and 2(m−1) degrees of freedom. So we address the nuisance parameter
µ based on the generalized pivotal quantity as

µ∗ =
−B∗ −

√
B∗2 − 4A∗C∗

2A∗ (36)

where

A∗ = (m − 1)n, B∗ = 2Q
m∑

i=1

(1 + Ri)Xi − 2(m − 1 + Q)nX1,

C∗ = (m − 1 + Q)nX2
1 − Q

m∑
i=1

(1 + Ri)X
2
i

Then, let U be the random variable from the chi-square distribution with 2m degrees
of freedom. The generalized pivotal quantity from the pivotal quantity U(σ) is shown as

V (µ∗) =

√
k
∑m

i=1(1 + Ri)(Xi − µ∗)2

U
(37)

So we generate N (≥ 1000) random samples Q1, Q2, . . . , QN and U1, U2, . . . , UN from
distributions F (2, 2(m − 1)) and χ2(2m) respectively. Then we compute V (µ∗)1, V (µ∗)2,
. . . , V (µ∗)N and sort them from small to large. Thus, the exact 100(1 − α)% confidence
interval for the scale parameter σ based on the generalized pivotal quantity V (µ∗) can be
constructed as: [

V (µ∗)[(N/100)×α/2], V (µ∗)[(N/100)×(1−α/2)]

]
(38)

where [t] denotes the largest integer less than or equal to t.

3. Application. In this section, we give numerical examples to illustrate the proposed
inference methods. First, we do the Monte Carlo simulation study. We compute the
estimates and exact confidence intervals (CIs) of the parameters µ and σ. To verify the
validity of the inference based on the pivotal quantities derived in this paper, we report
the biases and mean square errors (MSEs) of the point estimates while the coverage
percentages (CPs) and average lengths (ALs) of the exact confidence intervals. Then we
use a real data set from another article for more discussions on the application of the
pivotal inference. Also, we compute the maximum likelihood estimates (MLEs) to prove
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the accuracy of the pivotal inference results with real data. All calculations are performed
using the statistical software R.

3.1. Simulation study. Here, we assess the proposed methods by a Monte Carlo sim-
ulation study for different combinations of (k, n, m, R) and different true values of loca-
tion and scale parameters (µ, σ). According to Figure 1, the plots of the two-parameter
Rayleigh distribution with different parameters have a large variation. The simulation
study should take different combinations of two parameters. So we generate progressive
first-failure censored samples from the Rayleigh distribution with µ = 1, σ = 1 and
µ = 0.5, σ = 1.5 respectively according to the algorithm given by [3]. Obviously, the
plots with two parameter combinations show the different forms in Figure 1. To explore
the validity of the proposed pivotal inference under different cases, we set different sample
sizes n (n = 60, 100, 200), different m (m = 20, 30, 40, 50, 100), different k (k = 1, 2, 5)
and different censoring schemes. Note that the censoring schemes in this article have been
shown by short notations such as (1 ∗ 3) denoted (1, 1, 1).

We estimate the parameters µ and σ using Equations (29) and (28) and obtain the
biases and mean square errors (MSEs) respectively over 1000 replications. Also, the
exact 95% confidence intervals (CIs) of µ and σ are computed based on pivotal quantities
using Equations (34) and (38), and we report the coverage percentages (CPs) and average
lengths (ALs) over 1000 replications. All the results are shown in Table 1 and Table 2.
Meanwhile, we select six combinations of n, m and k under µ = 1, σ = 1 to check the
performance of the progressive first-failure censoring. According to Table 1, we plot the
corresponding MSEs (×10−2) of parameters and ALs of the confidence intervals with four
different censoring schemes for each combination form, shown from Figure 2 to Figure 13.

From Figure 2 to Figure 13, we find that the MSEs of two parameters become lower
when the sample sizes n, m and k become larger, and the ALs of confidence intervals are
shorter with larger sample sizes. In practice, we prefer lower errors and shorter average
lengths of confidence intervals, so we are supposed to use sample observations as many as
possible to obtain better results. However, it is impossible to use the complete samples
sometimes because the number of data is quite large. Instead, we can use progressive
first-failure censoring method by dividing the large samples into groups randomly and
delete the groups and data based on the algorithm proposed. On the other side, the
values of MSEs and ALs based on the scheme 1 and scheme 4 are smaller than the values
based on scheme 2 and scheme 3, showing that it is better to discard groups at earlier
stages. Depending on the biases listed in Table 1 and Table 2, we know that compared
with the true values of µ and σ, the estimates of µ are slightly lower while the estimates
of σ are slightly larger. In terms of the MSEs, we find that MSEs of µ̂ are lower than σ̂.
However, generally, even for small sample sizes, the performance of point estimates for
both µ and σ based on the proposed pivotal quantities is quite good, because the biases
and MSEs of two parameters are very small, indicating that the inference method by using
pivotal quantities (16) and (14) is applicable. The CPs of exact confidence intervals are
approximately equal to 95% and ALs are narrow, which shows that the exact confidence
interval inference based on the pivotal quantities proposed is satisfactory.

In general, the proposed pivotal inference based on the progressive first-failure censored
data is effective and precise.

3.2. Real example. Now, we consider a real example for illustration purpose.
[4] provided a real data set showing the survival times (in years) of 46 patients who

received chemotherapy treatment, and indicated that the Rayleigh distribution is a good
fitted model for this data set. This data set is shown ascendingly in Table 3.
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Table 1. Simulation results of the location parameter µ and scale param-
eter σ based on the pivotal quantities when µ = 1 and σ = 1

k n m
censoring
scheme R

Bias(µ) MSE(µ̂) CP(µ) AL(µ) Bias(σ) MSE(σ̂) CP(σ) AL(σ)

1

60

20

(40, 0 ∗ 19) −0.02555480 0.01025402 0.948 0.3865644 0.01750024 0.01899363 0.961 0.5613497
(0 ∗ 19, 40) −0.02922196 0.01246532 0.951 0.440093 0.02357843 0.02873595 0.956 0.7172582

(2 ∗ 20) −0.02625193 0.01190963 0.957 0.4273459 0.02116390 0.02683759 0.952 0.6744886
(4 ∗ 10, 0 ∗ 10) −0.03029477 0.01061416 0.946 0.4130065 0.02388862 0.02306815 0.948 0.6328319

30

(30, 0 ∗ 29) −0.02443983 0.01084598 0.957 0.3827941 0.01197175 0.01461458 0.958 0.4691948
(0 ∗ 29, 30) −0.02953131 0.01108057 0.949 0.4109853 0.02922284 0.01870743 0.954 0.5507573

(1 ∗ 30) −0.03031938 0.01029958 0.955 0.4038235 0.02377045 0.01759375 0.95 0.5276325
(3 ∗ 10, 0 ∗ 20) −0.02756324 0.01012196 0.958 0.3899381 0.01811192 0.01678784 0.955 0.4934792

40

(20, 0 ∗ 39) −0.02563377 0.009982662 0.947 0.3748754 0.01649679 0.010521486 0.946 0.4092559
(0 ∗ 39, 20) −0.02552188 0.01000724 0.944 0.394475 0.01617708 0.01311114 0.946 0.4587271

(1 ∗ 20, 0 ∗ 20) −0.02403958 0.01005314 0.942 0.3856729 0.01698599 0.01233604 0.954 0.4343874
(2 ∗ 10, 0 ∗ 30) −0.02633723 0.009410344 0.945 0.3801059 0.01506021 0.011116294 0.943 0.4235429

100 50

(50, 0 ∗ 49) −0.022086128 0.005381191 0.949 0.2824965 0.009047019 0.008074270 0.941 0.3479576
(0 ∗ 49, 50) −0.02222657 0.006043078 0.956 0.2990896 0.01902362 0.011193558 0.949 0.4089273

(1 ∗ 50) −0.01976102 0.005734079 0.951 0.2941569 0.01579815 0.009652374 0.948 0.3923275
(5 ∗ 10, 0 ∗ 40) −0.01615296 0.005751541 0.952 0.2863385 0.01102122 0.008317381 0.942 0.3623209

200 100

(100, 0 ∗ 99) −0.01114894 0.002529202 0.953 0.1916482 0.00455239 0.003657750 0.939 0.2381855
(0 ∗ 99, 100) −0.01155564 0.002879738 0.95 0.1983348 0.01219668 0.005309655 0.952 0.2770386

(1 ∗ 100) −0.01530873 0.002783208 0.951 0.196825 0.01106487 0.004903893 0.952 0.2667271
(5 ∗ 20, 0 ∗ 80) −0.014908511 0.002789614 0.946 0.1941354 0.009129241 0.004093604 0.951 0.2499818

2

60

20

(40, 0 ∗ 19) −0.02245897 0.005020547 0.952 0.2757267 0.01270227 0.018128197 0.952 0.5664879
(0 ∗ 19, 40) −0.02672340 0.006069961 0.948 0.3142829 0.03661732 0.029047489 0.947 0.7233965

(2 ∗ 20) −0.02033551 0.005816931 0.964 0.3035513 0.02665824 0.028276799 0.949 0.6769999
(4 ∗ 10, 0 ∗ 10) −0.02051114 0.00569644 0.952 0.2903611 0.02427450 0.02402728 0.951 0.6290903

30

(30, 0 ∗ 29) −0.02034427 0.005106992 0.947 0.2685868 0.01182119 0.012037739 0.954 0.4641238
(0 ∗ 29, 30) −0.01801006 0.005586321 0.944 0.2879806 0.01750749 0.017722836 0.951 0.5469236

(1 ∗ 30) −0.01744011 0.005250072 0.946 0.2840598 0.01650828 0.017095409 0.955 0.5264423
(3 ∗ 10, 0 ∗ 20) −0.02411149 0.005120091 0.952 0.2773508 0.01909077 0.016288148 0.945 0.4960408

40

(20, 0 ∗ 39) −0.015287205 0.004915872 0.945 0.2674775 0.007169467 0.010468549 0.953 0.4131591
(0 ∗ 39, 20) −0.01579758 0.005176539 0.952 0.2775718 0.01681744 0.013474503 0.951 0.4569737

(1 ∗ 20, 0 ∗ 20) −0.01874726 0.005020642 0.949 0.2749155 0.01551905 0.011218572 0.957 0.4376138
(2 ∗ 10, 0 ∗ 30) −0.02122035 0.005011276 0.951 0.2703967 0.01861771 0.010851480 0.961 0.4257562

100 50

(50, 0 ∗ 49) −0.01353161 0.00291457 0.951 0.199386 0.01299448 0.00802312 0.941 0.3474466
(0 ∗ 49, 50) −0.01386188 0.003014488 0.958 0.2116789 0.01677425 0.011184027 0.961 0.4086002

(1 ∗ 50) −0.01366499 0.002789547 0.951 0.2083094 0.01316133 0.010193964 0.952 0.3925486
(5 ∗ 10, 0 ∗ 40) −0.01562199 0.003121823 0.951 0.2028516 0.01432780 0.008793090 0.944 0.3636832

200 100

(100, 0 ∗ 99) −0.01112689 0.001260453 0.962 0.1356127 0.01014019 0.003672714 0.954 0.2385124
(0 ∗ 99, 100) −0.01115767 0.001336971 0.948 0.1410147 0.01327680 0.005057728 0.949 0.2780136

(1 ∗ 100) −0.009132374 0.001434808 0.959 0.1403462 0.011566374 0.004715952 0.95 0.2693214
(5 ∗ 20, 0 ∗ 80) −0.010697643 0.001292663 0.948 0.1369405 0.008086919 0.003959498 0.943 0.2494089

5

60

20

(40, 0 ∗ 19) −0.01308379 0.001959534 0.95 0.1729934 0.01562159 0.018889497 0.946 0.5626438
(0 ∗ 19, 40) −0.01516849 0.002646048 0.951 0.1977435 0.03795912 0.030563225 0.944 0.7179346

(2 ∗ 20) −0.01348718 0.002355904 0.951 0.1906584 0.02891513 0.026882569 0.949 0.6736661
(4 ∗ 10, 0 ∗ 10) −0.01509883 0.00227469 0.95 0.1854678 0.03548745 0.02410912 0.946 0.634636

30

(30, 0 ∗ 29) −0.01224510 0.002106594 0.949 0.1712656 0.01495641 0.013888650 0.942 0.4682802
(0 ∗ 29, 30) −0.01236113 0.002171158 0.953 0.1824322 0.02597863 0.018525526 0.951 0.5471531

(1 ∗ 30) −0.01579440 0.002114156 0.947 0.1787314 0.02675868 0.016923373 0.954 0.5220961
(3 ∗ 10, 0 ∗ 20) −0.01294744 0.002027678 0.952 0.1746953 0.02076489 0.014747580 0.95 0.492998

40

(20, 0 ∗ 39) −0.01181546 0.002007477 0.941 0.1682397 0.01408755 0.011743743 0.944 0.4102144
(0 ∗ 39, 20) −0.01388052 0.002118843 0.949 0.1759298 0.02563276 0.013446681 0.951 0.4579793

(1 ∗ 20, 0 ∗ 20) −0.007968204 0.002010036 0.956 0.1717421 0.011207648 0.011488030 0.948 0.4313804
(2 ∗ 10, 0 ∗ 30) −0.008825889 0.002044704 0.95 0.1707401 0.015218632 0.011920983 0.957 0.4248425

100 50

(50, 0 ∗ 49) −0.009991559 0.001060785 0.946 0.1261594 0.012236802 0.007354959 0.948 0.3479323
(0 ∗ 49, 50) −0.009185852 0.001214258 0.948 0.132495 0.020905413 0.011728961 0.962 0.4046604

(1 ∗ 50) −0.009325096 0.001139876 0.956 0.1312662 0.019262682 0.010108615 0.953 0.3894054
(5 ∗ 10, 0 ∗ 40) −0.00944169 0.001111386 0.946 0.1280554 0.01363894 0.009168792 0.951 0.3636775

200 100

(100, 0 ∗ 99) −0.005272802 0.0005422386 0.952 0.08593828 0.005246201 0.0039890148 0.958 0.2389974
(0 ∗ 99, 100) −0.006201037 0.0005567293 0.953 0.08910946 0.009561686 0.0049555002 0.968 0.2775163

(1 ∗ 100) −0.005920168 0.0005590636 0.958 0.08795682 0.010934677 0.0047461390 0.951 0.2670563
(5 ∗ 20, 0 ∗ 80) −0.005556307 0.0005554492 0.948 0.08681844 0.012706641 0.0043132964 0.957 0.2497196
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Table 2. Simulation results of the location parameter µ and scale param-
eter σ based on the pivotal quantities when µ = 0.5 and σ = 1.5

k n m
censoring
scheme R

Bias(µ) MSE(µ̂) CP(µ) AL(µ) Bias(σ) MSE(σ̂) CP(σ) AL(σ)

1

60

20

(40, 0 ∗ 19) −0.04257607 0.02215878 0.944 0.5844858 0.01631180 0.04216108 0.959 0.8516896
(0 ∗ 19, 40) −0.0496086 0.02842874 0.953 0.6649048 0.0486235 0.06691637 0.946 1.079914

(2 ∗ 20) −0.04927846 0.02654397 0.951 0.6418047 0.04231967 0.06165199 0.939 1.015625
(4 ∗ 10, 0 ∗ 10) −0.04395464 0.02551892 0.948 0.623464 0.03188296 0.05299528 0.94 0.9542778

30

(30, 0 ∗ 29) −0.03837561 0.02133491 0.954 0.5692202 0.01767630 0.02793913 0.948 0.6959507
(0 ∗ 29, 30) −0.04165420 0.02478876 0.959 0.6127081 0.03282918 0.04032535 0.949 0.8219353

(1 ∗ 30) −0.04739232 0.02300823 0.947 0.6047833 0.03742650 0.03687568 0.944 0.7902139
(3 ∗ 10, 0 ∗ 20) −0.04545496 0.02137672 0.952 0.584126 0.03549118 0.03377651 0.948 0.736571

40

(20, 0 ∗ 39) −0.04034188 0.02150454 0.947 0.5650577 0.02453350 0.02286195 0.954 0.6169181
(0 ∗ 39, 20) −0.03462147 0.02277376 0.95 0.5889992 0.02390159 0.03048654 0.945 0.6860619

(1 ∗ 20, 0 ∗ 20) −0.04372222 0.02335921 0.944 0.5757702 0.02580068 0.02799871 0.956 0.6482578
(2 ∗ 10, 0 ∗ 30) −0.03829424 0.02265494 0.939 0.5729044 0.01324432 0.02479207 0.953 0.6385658

100 50

(50, 0 ∗ 49) −0.030587643 0.01197420 0.954 0.4210589 0.009764954 0.01712393 0.947 0.5190569
(0 ∗ 49, 50) −0.02949943 0.01469154 0.952 0.4481184 0.02665890 0.02346939 0.944 0.6115507

(1 ∗ 50) −0.02949913 0.01359985 0.958 0.443833 0.02049695 0.02249178 0.949 0.5907913
(5 ∗ 10, 0 ∗ 40) −0.03370589 0.01285907 0.952 0.4307403 0.01967543 0.01777841 0.948 0.5462305

200 100

(100, 0 ∗ 99) −0.017418383 0.005746619 0.945 0.2873075 0.008114552 0.008242977 0.959 0.3574692
(0 ∗ 99, 100) −0.01676818 0.005973011 0.942 0.2991728 0.01635058 0.010784670 0.95 0.4165813

(1 ∗ 100) −0.01994611 0.006309988 0.95 0.2956018 0.01969909 0.010788533 0.948 0.4002543
(5 ∗ 20, 0 ∗ 80) −0.02004627 0.006184999 0.949 0.290464 0.01579616 0.010094916 0.944 0.3739375

2

60

20

(40, 0 ∗ 19) −0.03031515 0.01138817 0.947 0.4097451 0.02009257 0.04129448 0.953 0.8414394
(0 ∗ 19, 40) −0.03956169 0.01452143 0.951 0.4634682 0.05568164 0.07001995 0.958 1.065591

(2 ∗ 20) −0.03015643 0.01418671 0.95 0.4539654 0.03523138 0.06333165 0.952 1.015298
(4 ∗ 10, 0 ∗ 10) −0.02609173 0.01284423 0.952 0.4388296 0.02339752 0.05457143 0.956 0.9499343

30

(30, 0 ∗ 29) −0.03269347 0.01202904 0.949 0.4031859 0.01135921 0.02984815 0.952 0.6980876
(0 ∗ 29, 30) −0.03152345 0.01343595 0.941 0.4341795 0.04013396 0.04432021 0.949 0.8228421

(1 ∗ 30) −0.02866373 0.01187176 0.949 0.4304188 0.02591557 0.03841955 0.948 0.7953024
(3 ∗ 10, 0 ∗ 20) −0.02828296 0.01214472 0.952 0.4159078 0.02299327 0.03572808 0.949 0.7440399

40

(20, 0 ∗ 39) −0.02413764 0.01107759 0.955 0.3995503 0.02285578 0.02520806 0.945 0.6171057
(0 ∗ 39, 20) −0.02311399 0.01227145 0.953 0.4180024 0.02569393 0.02886145 0.944 0.6895156

(1 ∗ 20, 0 ∗ 20) −0.02478395 0.01084932 0.943 0.4086846 0.02151086 0.02805721 0.945 0.6525598
(2 ∗ 10, 0 ∗ 30) −0.02816801 0.01090248 0.951 0.4051043 0.02974152 0.02649455 0.957 0.6384565

100 50

(50, 0 ∗ 49) −0.01954276 0.006374518 0.951 0.3003376 0.01735680 0.018275028 0.944 0.5236309
(0 ∗ 49, 50) −0.02036315 0.006844358 0.954 0.3155422 0.02755562 0.023214318 0.949 0.6089396

(1 ∗ 50) −0.02113483 0.007121828 0.946 0.311577 0.02733789 0.024194837 0.957 0.5864829
(5 ∗ 10, 0 ∗ 40) −0.02144221 0.006580165 0.955 0.3038696 0.02024269 0.019477161 0.947 0.5449425

200 100

(100, 0 ∗ 99) −0.01290045 0.002988489 0.955 0.2030536 0.01286536 0.008306989 0.946 0.3573355
(0 ∗ 99, 100) −0.01025991 0.003054806 0.956 0.2108915 0.01352083 0.011311125 0.954 0.4154607

(1 ∗ 100) −0.01479320 0.003055052 0.955 0.2096771 0.01638298 0.010684340 0.954 0.401827
(5 ∗ 20, 0 ∗ 80) −0.01171053 0.003138003 0.951 0.2053361 0.01392055 0.010189218 0.953 0.3735766

5

60

20

(40, 0 ∗ 19) −0.01883406 0.004812109 0.952 0.2599334 0.02413902 0.043226342 0.947 0.8448925
(0 ∗ 19, 40) −0.01909121 0.005329908 0.952 0.2949481 0.03855028 0.065144997 0.956 1.068722

(2 ∗ 20) −0.01699683 0.00502995 0.952 0.2877295 0.02607413 0.05646718 0.948 1.016696
(4 ∗ 10, 0 ∗ 10) −0.02420252 0.004872146 0.951 0.2792151 0.04635826 0.054471881 0.955 0.9541897

30

(30, 0 ∗ 29) −0.01931787 0.004361577 0.946 0.25528 0.01505616 0.030643521 0.948 0.6985807
(0 ∗ 29, 30) −0.01909652 0.004860025 0.95 0.2756281 0.02826542 0.040688951 0.957 0.8264042

(1 ∗ 30) −0.01989897 0.004880958 0.951 0.2687869 0.03368363 0.039410037 0.947 0.7854291
(3 ∗ 10, 0 ∗ 20) −0.01831909 0.004692707 0.954 0.262254 0.02360349 0.036095983 0.941 0.7414038

40

(20, 0 ∗ 39) −0.01297138 0.004408639 0.956 0.2520388 0.01713806 0.021914064 0.947 0.6147063
(0 ∗ 39, 20) −0.01781543 0.004591847 0.959 0.2629177 0.02379714 0.028720711 0.954 0.6846461

(1 ∗ 20, 0 ∗ 20) −0.01431444 0.004491311 0.959 0.256305 0.02162295 0.026409067 0.951 0.6463899
(2 ∗ 10, 0 ∗ 30) −0.01613159 0.004341664 0.954 0.2551316 0.02324217 0.025662260 0.948 0.6347906

100 50

(50, 0 ∗ 49) −0.01488999 0.002293015 0.954 0.1892637 0.01990810 0.018410435 0.95 0.5220009
(0 ∗ 49, 50) −0.01446577 0.002684125 0.955 0.2000313 0.03462407 0.025412324 0.945 0.6100712

(1 ∗ 50) −0.01292869 0.00247797 0.954 0.1974987 0.01788351 0.02080074 0.944 0.5870104
(5 ∗ 10, 0 ∗ 40) −0.01220493 0.002499114 0.943 0.1932013 0.01580369 0.017328837 0.953 0.5491827

200 100

(100, 0 ∗ 99) −0.008281997 0.001182812 0.941 0.1283314 0.011074941 0.008220872 0.955 0.3570408
(0 ∗ 99, 100) −0.00870221 0.00126759 0.953 0.1341201 0.01481787 0.01105003 0.954 0.418198

(1 ∗ 100) −0.009662421 0.001275237 0.949 0.1323588 0.016183495 0.010835396 0.944 0.4011556
(5 ∗ 20, 0 ∗ 80) −0.007313681 0.001181450 0.946 0.1303568 0.008516027 0.009321047 0.948 0.3753731
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Figure 2. MSEs (×10−2)
when k = 1, n = 60, m = 20

Figure 3. ALs when k = 1,
n = 60, m = 20

Figure 4. MSEs (×10−2)
when k = 1, n = 60, m = 40

Figure 5. ALs when k = 1,
n = 60, m = 40

Figure 6. MSEs (×10−2)
when k = 2, n = 60, m = 20

Figure 7. ALs when k = 2,
n = 60, m = 20
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Figure 8. MSEs (×10−2)
when k = 2, n = 60, m = 30

Figure 9. ALs when k = 2,
n = 60, m = 30

Figure 10. MSEs (×10−2)
when k = 5, n = 100, m = 50

Figure 11. ALs when k =
5, n = 100, m = 50

Figure 12. MSEs (×10−2)
when k = 5, n = 200, m =
100

Figure 13. ALs when k =
5, n = 200, m = 100
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Table 3. Survival times (in years) of 46 patients

0.047 0.115 0.121 0.132 0.164 0.197 0.203 0.260 0.282 0.296 0.334 0.395 0.458 0.466 0.501 0.507 0.529 0.534 0.540 0.570 0.641 0.644 0.696
0.841 0.863 1.099 1.219 1.271 1.326 1.447 1.485 1.553 1.581 1.589 2.178 2.343 2.416 2.444 2.825 2.830 3.578 3.658 3.743 3.978 4.003 4.033

Table 4. Random grouping to the real data set of survival times (in years)
of patients

Set 1 Set 2 Set 3 Set 4 Set 5 Set 6 Set 7 Set 8 Set 9 Set 10 Set 11 Set 12 Set 13 Set 14 Set 15 Set 16 Set 17 Set 18 Set 19 Set 20 Set 21 Set 22 Set 23
0.047 0.115 0.121 0.164 0.197 0.203 0.282 0.395 0.458 0.466 0.501 0.507 0.529 0.570 0.696 0.841 0.863 1.099 1.219 1.271 1.326 1.447 1.485
2.416 0.132 1.581 0.260 2.444 0.334 0.296 3.743 0.540 0.534 2.178 0.644 3.578 0.641 2.343 1.589 2.825 1.553 3.658 4.033 2.830 4.003 3.978

Table 5. Different progressive first-failure censoring schemes based on sur-
vival times (in years) of patients

(k, n, m) Censoring scheme Progressive first-failure censored data

(2, 23, 20)

R1 = (0 ∗ 17, 1 ∗ 3)
0.047, 0.115, 0.121, 0.164, 0.197, 0.203, 0.282, 0.395, 0.458, 0.466,
0.501, 0.507, 0.529, 0.570, 0.696, 0.841, 0.863, 1.099, 1.219, 1.326

R2 = (0 ∗ 19, 3)
0.047, 0.115, 0.121, 0.164, 0.197, 0.203, 0.282, 0.395, 0.458, 0.466,
0.501, 0.507, 0.529, 0.570, 0.696, 0.841, 0.863, 1.099, 1.219, 1.271

R3 = (1 ∗ 3, 0 ∗ 17)
0.047, 0.115, 0.121, 0.164, 0.197, 0.203, 0.282, 0.458, 0.466, 0.501,
0.529, 0.570, 0.696, 0.841, 0.863, 1.099, 1.219, 1.271, 1.447, 1.485

(2, 23, 16)
R4 = (0 ∗ 9, 1 ∗ 7)

0.047, 0.115, 0.121, 0.164, 0.197, 0.203, 0.282, 0.395, 0.458, 0.466,
0.507, 0.529, 0.570, 0.841, 1.099, 1.271

R5 = (7, 0 ∗ 15)
0.047, 0.115, 0.164, 0.197, 0.203, 0.458, 0.466, 0.501, 0.529, 0.570,
0.696, 0.863, 1.219, 1.271, 1.447, 1.485

Table 6. The MLEs and pivotal inference of the parameters for the real data

Censoring scheme µ̂MLE µ̂p CI(µ) AL(µ) σ̂MLE σ̂p CI(σ) AL(σ)

R1 = (0 ∗ 17, 1 ∗ 3) −0.1477629 −0.154213
(−0.4246923,
0.02044467)

0.4451369 0.9344619 0.9405499
(0.7016315,
1.312071)

0.6104395

R2 = (0 ∗ 19, 3) −0.1420627 −0.1519229
(−0.4196111,
0.02076255)

0.4403737 0.9205130 0.9298448
(0.6934355,
1.297564)

0.6041281

R3 = (1 ∗ 3, 0 ∗ 17) −0.1318696 −0.1462981
(−0.3999618,
0.02115139)

0.4211132 0.8906413 0.9035523
(0.6803289,
1.249087)

0.5687581

R4 = (0 ∗ 9, 1 ∗ 7) −0.1420675 −0.1565449
(−0.4447757,
0.02090545)

0.4656812 0.9297448 0.9451699
(0.6787672,
1.390016)

0.7112483

R5 = (7, 0 ∗ 15) −0.1202198 −0.1531807
(−0.4194892,
0.0204299)

0.4399191 0.8986649 0.929548
(0.6837198,
1.331804)

0.6480841

Now, we divide this data set into n = 23 groups randomly with k = 2 items in each
group, shown in Table 4. And we consider five cases of the progressive first-failure cen-
soring scheme in Table 5.

In Table 6, we find that the estimates based on pivotal quantities (16) and (14) are
similar to the MLEs. The average lengths (ALs) of the exact 95% confidence intervals
based on pivotal quantities are almost narrow. Figure 14 and Figure 15 show that the
pivotal estimate of µ is smaller than MLEs and the pivotal estimate of σ is larger, which
is consistent with the results of the simulation study. However, the difference between
MLEs and pivotal estimate is quite small. The MLEs of µ and σ are nearly −0.13 and
0.91 respectively while the pivotal estimates of µ and σ are around −0.15 and 0.92. This
numerical study indicates that the proposed pivotal inference in this paper can be applied
in practice.

4. Conclusions. The pivotal inference for the two-parameter Rayleigh distribution based
on progressively first-failure censored data is discussed in this article. We derive the piv-
otal quantities of the location parameter µ and the scale parameter σ. Also, we construct
the exact confidence intervals for µ and σ based on pivotal quantities. From the results
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Figure 14. MLEs and piv-
otal inference of the parame-
ter µ under five censoring
schemes

Figure 15. MLEs and piv-
otal inference of the parame-
ter σ under five censoring
schemes

of the Monte Carlo simulation study and the real data example, we find that even for
small sample sizes, the performance of the proposed pivotal inference in this paper is quite
good. Pivotal inference is more convenient than MLE and it can be used widely.
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