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Abstract. A Wireless Sensor Network (WSN) is a network consisting of wireless sen-
sor nodes. There are usually requirements that need to be met when deploying a WSN,
one being the placement of nodes. Due to placement requirements and limited node trans-
mission range, a network might be partitioned initially. Therefore, additional relay nodes
are added to the network to form an interconnected network. In this paper, the Minimum
Relay nodes Placement (MRP) problem in WSNs is addressed. This problem addresses
the placement of relay nodes: the minimum number needed and where the nodes should
be placed. The problem is formulated as a Steiner Tree Problem with Minimum Steiner
Points and Bounded Edge Length (STP-MSPBEL) problem which is NP-hard. In this
paper, we present a variable dimension meta-heuristic based on Particle Swarm Opti-
mization (PSO) called Multi-Space PSO (MSPSO) to address the problem. We tested
MSPSO using randomly generated instances of the STP-MSPBEL problem of varying
sizes and found that MSPSO is effective in addressing the STP-MSPBEL problem.
Keywords: Relay nodes placement, Swarm-based meta-heuristic, Particle swarm opti-
mization, Variable dimension, Steiner tree problem

1. Introduction. Wireless sensor nodes are programmable sensors that are usually batt-
ery-powered and capable of simple data processing and communicating with each other
through wireless links to form a Wireless Sensor Network (WSN). A WSN eliminates
the need for expensive and troublesome network cabling and makes placement cheap and
flexible. There are usually requirements that need to be met when deploying a WSN. One
such requirement is the placement of nodes. For example, sensing nodes must be placed
at certain locations to allow them to gather data from the data sources, and a base station
node might need to be placed in a special control room. Due to the placement requirements
and limited node transmission range, a network might be partitioned initially. To form an
interconnected network, additional nodes called relay nodes are necessary. While wireless
sensor nodes are generally regarded as inexpensive devices, deploying a network with a
huge number of nodes or a network to cover a large geographic area still incurs considerable
cost; therefore, proper planning needs to be done prior to network deployment to minimize
cost while satisfying the other requirements.

WSNs can be categorized based on their structure. Some networks are single-tiered,
while others are multi-tiered/hierarchical. Single-tiered networks consist entirely of a sin-
gle type of nodes. In multi-tiered/hierarchical networks, there are different types of nodes.
Some nodes have basic capabilities while others have enhanced capabilities such as in-
creased transmission range and faster data processing speed. The Minimum Relay nodes
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Placement (MRP) problem can be categorized according to the dimension of the space
nodes to be placed. In the two-dimensional problem, nodes are to be placed in the two-
dimensional Euclidean space R2 (plane) while in the three-dimensional problem, nodes
are to be placed in the three-dimensional Euclidean space R3 (space). The MRP problem
can be further categorized to unconstrained and constrained placement. In unconstrained
placement, relay nodes can be placed anywhere in space. In contrast, in constrained
placement, relay nodes are to be placed only at certain locations. Both versions of the
problem find their uses in different applications.

In this paper, we consider the unconstrained MRP problem in two-dimensional WSNs
and attempt to solve the problem with a novel meta-heuristic based on Particle Swarm
Optimization (PSO) [1]. There are two contributions from our paper as follows.

1) A variable-dimension meta-heuristic based on PSO called the Multi Space PSO (MS-
PSO) is proposed for use in problems where candidate solutions could be of different
lengths (having different numbers of dimensions).

2) The MRP problem in two-dimensional WSNs is modeled as a Steiner Tree Problem
with Minimum Steiner Points and Bounded Edge Length (STP-MSPBEL) problem
and addressed by first transforming it into a different problem that we refer to as the
dual problem.

This paper is organized as follows. First, related works are discussed in Section 2. In
Section 3, we describe the problem that we attempt to solve and our proposed optimiza-
tion method. In Section 4, our proposed optimization method is used to solve several
randomly generated instances of the STP-MSPBEL problem to demonstrate its effective-
ness. Finally, we offer conclusion in Section 5.

2. Related Works. In this paper, the Minimum Relay nodes Placement (MRP) problem
in two-dimensional WSNs is approached. We formulate the problem as a Steiner Tree
Problem with Minimum Steiner Points and a Bounded Edge Length (STP-MSPBEL)
problem. The STP-MSPBEL problem is less well studied compared to the regular/vanilla
Steiner Tree Problem (STP). Research studies in the literature that have approached
the STP-MSPBEL problem and other similar problems can be categorized into two main
categories. In the first category, works are very similar to one another as they are all based
on the Minimum Spanning Tree (MST) heuristic. In the second category, meta-heuristics
are used to address the problem.

Several works belonging to the first category: in [2], the MST heuristic was proposed
for the STP-MSPBEL problem, and it was shown that it has a lower bound or worst-
case performance of 5. However, the authors of [3] showed that the algorithm in [2] is
actually a 4-approximation algorithm. In [4], the Terminal Steiner Tree with Bounded
Edge Length (TSTBEL) problem, which is similar to the STP-MSPBEL problem, was
introduced. In [5], the authors proposed two heuristics for the STP-MSPBEL problem.
One has a performance ratio of 3, while the other has a performance ratio of 2.5. The
3-approximate algorithm is similar to the MST heuristic with the exception that degree-3
Steiner points are added to the tree for every subset of three terminals a, b, and c if there
exists a point s within the three terminals prior to applying the MST heuristic. In [6],
the 1-connected and 2-connected MRP problems were formulated. The 1-connected MRP
problem (MRP-1) is similar to the TSTBEL problem. The authors employed the mini-
mum disc cover approximation scheme [7] to initially find an approximate minimum disc
cover set and then interconnect the centers of the disks using the 2.5-approximate STP-
MSPBEL heuristic. In [8], the single-tiered and two-tiered relay node placement problems
were discussed. The single-tiered version of the problem is essentially a more generalized
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version of the STP-MSPBEL problem in that relay nodes and terminal points have dif-
ferent transmission ranges. The MST heuristic was proposed for use in the single-tiered
relay node placement problem. The authors proved that the MST heuristic is actually
a polynomial-time 7-approximation algorithm for the problem. Two-tiered sensor relay
placement was considered in [9,10], in which constant-factor approximation algorithms
for several versions of the problem are proposed. In [11], the authors provide an exten-
sive survey on optimization algorithms for cloud environments based on three popular
meta-heuristic techniques: Ant Colony Optimization (ACO), Particle Swarm Optimiza-
tion (PSO), and Genetic Algorithms (GAs).

Works belonging to the second category: in [12], a stochastic algorithm based on the
simulated annealing [13] meta-heuristic was proposed to solve the STP problem. As
with any other meta-heuristic, there is no guarantee that the optimal solution is ever
found. However, the authors found an interesting aspect, which is that the time needed
to compute a good solution is much less than that required by the exact algorithm by
Cockayne and Hewgill. In [14], a swarm-based meta-heuristic emulating the concept of
a fish swarm searching for food is proposed to solve the STP problem. The authors
encode particles as trees. However, we found that the problem solved is not really the
STP problem but the Multiple-Destination Routing (MDR) problem. Similar to [14], in
[15], the authors proposed solving the MDR problem with PSO. The authors introduced
mutation to introduce new tree structures to the particle population. The MDR problem
was approached instead of the STP problem. In [16], a method adopted in cognitive radio
wireless sensor networks was proposed.

In an instance of the STP-MSPBEL problem, candidate solutions may have different
lengths. In the classical PSO, all candidate solutions for an instance of the problem to be
solved have the same length. There are few works in the literature on solving problems
where candidate solutions can be of different lengths with PSO. However, the idea of
applying PSO to solving these problems has been proposed before in other problems. In
[17], a variable-dimension optimization approach based on PSO was proposed to tackle
the Unit Commitment Problem (UCP). In [18], Dimension-Adaptive PSO (DA-PSO)
was proposed and demonstrated to solve the Weibull mixture model density estimation
problem.

3. MSPSO to Address the STP-MSPBEL Problem.

3.1. Problem formulation. In the MRP problem in two-dimensional wireless sensor
networks, a set of nodes (their locations in two-dimensional Euclidean space) consisting
of both base station and sensing nodes is given. This constitutes the requirement of the
placement of nodes during a WSN deployment. Sensing nodes are to collect data from
sites and send them to base station nodes. However, due to placement requirements, a
sensing node could be placed far from its base station node. As a result, relay nodes might
be needed to help relay packets. The following assumptions are made for our study.

1) There is only one base station node in the entire network.
2) Base station and sensing nodes can relay data packets.
3) All nodes have the same maximum transmission range.
4) Two nodes can communicate if they are within transmission range of each other.
These assumptions are reasonable as we only consider the case of one single base station

in the sensing area. Meanwhile, for convenience initial deploying node randomly, all the
nodes are equipped with the same transceiver, therefore they have the same maximum
transmission range and only when they are within the transmission range of each other,
the communication can occur. We refer to both base station and sensing nodes simply
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as demand points for the remainder of this paper. Based on these assumptions, the
MRP problem can then be formulated as a Steiner Tree Problem with Minimum Steiner
Points and Bounded Edge Length (STP-MSPBEL) [2] problem. In the STP-MSPBEL
problem, given a set V of points and a constant R, one interconnects nodes in V with
a graph such that 1) the number of points added (called Steiner points) to interconnect
all points in the graph (demand and Steiner points) is minimal, and 2) the length of
the edge between any two points is bounded by the constant R. In the STP-MSPBEL
problem, there is an edge between two points a and b in the graph (i.e., a and b are
interconnected) if and only if the Euclidean distance between point a and point b is less

than R, i.e., d(a, b) =
√

(xa − xb)2 + (ya − yb)2 ≤ R, where (xa − ya) and (xb − yb) are
the coordinates of points a and b respectively. In the MRP problem, the value of R in the
STP-MSPBEL problem corresponds to the maximum transmission range of the nodes.
The STP-MSPBEL problem is NP-hard, and the decision version of the problem was
proven to be NP-complete in [2].

3.2. Multi-Space Particle Swarm Optimization (MSPSO). The Steiner Tree Prob-
lem with Minimum Steiner Points and Bounded Edge Length (STP-MSPBEL) is a varia-
ble-dimension problem. To solve such a problem, we propose the use of a variable-
dimension meta-heuristic based on Particle Swarm Optimization (PSO). We name the
proposed method Multi-Space PSO (MSPSO).

MSPSO is extended from PSO. The difference between MSPSO and the classical PSO
is that, in the classical PSO, the search space is of a fixed number of dimensions, while
in MSPSO, the search space is the “universe” and consists of different search spaces of
different numbers of dimensions. In this paper, MSPSO is applied to solving the STP-
MSPBEL problem; hence, the entire process is called MSPSO-STP-MSPBEL. To aid
in understanding, an overview of the entire MSPSO-STP-MSPBEL process is shown in
Figure 1.

Figure 1. Overview of the MSPSO-STP-MSPBEL process
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The MSPSO-STP-MSPBEL proceeds as follows. Given an instance of STP-MSPBEL
problem, we first try to locate the degree-3 or higher Steiner points. For the sake of
convenience, we refer to degree-3 or higher Steiner points simply as degree-3+ Steiner
points. To locate the degree-3+ Steiner points, the notion of anchor Steiner points is
used. Anchor Steiner points are Steiner points, and together with demand points, they
are used as input to the Minimum Spanning Tree (MST) construction process to construct
a candidate solution to the STP-MSPBEL input problem instance. In order words, an-
chor Steiner points are candidates for degree-3+ anchor Steiner points. When the anchor
Steiner points are located, the remaining non-anchor/regular Steiner points can easily be
determined by Steinerizing the edges in the MST formed by the demand points and an-
chor Steiner points. We name them anchor Steiner points because they serve as anchors
to allow other regular Steiner points of degree-2 to be determined.

The degree of a node is the number of edges incident with that node. In the classical
STP problem, Steiner points are of degree 3. According to [3], in the STP-MSPBEL
problem, Steiner points can be of degree 2 or 3. However, in Theorem 3.1 below, we state
that, for the STP-MSPBEL problem, Steiner points can have a degree of at most 5.

Theorem 3.1. In the STP-MSPBEL problem, Steiner points can have a degree of at most
5.

Proof: Before we prove that Steiner points can have a degree of at most 5 in the STP-
MSPBEL problem, we first analyze a similar problem in [19]. Figure 2 was used in [20] as
an example to prove that the Steinerized MST has a worst-case performance of 4. In the
figure, the black colored circles are the demand points. In Figure 2(a), the empty circle
is the Steiner point of the optimal solution, and ε is a small positive real number such
that the distance from the center to each vertex is within R. In Figure 2(b), the empty
circles are the Steiner points of the Steinerized MST. As mentioned in [19], the tree in
Figure 2(a) is the optimal solution; it must be a valid solution. We see that the Steiner
points in the optimal tree have a degree of 5. In this paper, Figure 3 is used to prove that
there are no Steiner points of degree 6 in the STP-MSPBEL problem. Figure 3 presents
a regular hexagon. In this figure, the white colored circles are the demand points while
the gray colored circle is the Steiner point. Initially, we suppose that there is a Steiner
point of degree 6 as shown in Figure 3(a). However, in a regular hexagon, the distance
between any two vertexes is the same. In that case, the Steiner point is redundant, and
thus we arrive at a contradiction. By removing the Steiner point, we could have Figure

(a) (b)

Figure 2. An input instance to the STP-MSPBEL to prove that the MST
heuristic has a worst-case performance of 4 in [20]
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(a) (b)

Figure 3. A Steiner point in STP-MSPBEL has a degree of at most 5.

3(b). Therefore, we can prove that, in STP-MSPBEL, Steiner points have a degree of at
most 5.

The minimum number of anchor Steiner points (nmin) needed to steinerize an edge
of length l is given in Equation (1). In MSPSO, degree-3+ anchor Steiner points are
searched for using anchor Steiner points. A particular solution (a set of anchor Steiner
points) is only a candidate for the optimal solution. The ideal candidate solution is such
that anchor Steiner points are coincident with the degree-3+ anchor Steiner points in the
optimal solution. In a candidate solution to an instance of the STP-MSPBEL problem,
the total number of anchor Steiner points is given in Equation (2).

nmin =


l(e)

R
− 1 if R < l(e)

0 if R ≥ l(e)

(1)

nsteiner points = nanchor steiner points + nregular steiner points (2)

By determining the solution to an instance of the STP-MSPBEL problem by first
locating the degree-3+ anchor Steiner points, we in fact have converted this problem to
another problem, which is referred to as the dual problem.

Definition 3.1. The primal problem (the STP-MSPBEL problem)
Given a set V of terminal points and a constant R, an interconnected graph with the

following properties is sought: 1) the number of added points initially not in set V (called
anchor Steiner points) should be minimal, and 2) the length of the edge between any two
points is bounded by R.

Definition 3.2. The dual problem
Given a set V of terminal points, the graph with minimum cost that is determined by

Equation (3) is sought. Extra nodes not in set V (which we call anchor Steiner points in
this paper) may be added to the graph to reduce cost.

cost =
∑
e∈E

(
l(e)

R
+ 1

)
+ nanchor steiner points (3)

where E is the set of edges in the MST spanned by the demand points and anchor Steiner
points, l(e) is the length of an edge e ∈ E, and nanchor steiner points is the number of anchor
Steiner points in the tree.

Now that the notion of anchor Steiner points is introduced, we state in Theorem 3.2
that the fitness of a candidate solution is varied only by anchor Steiner points.
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Theorem 3.2. A candidate solution’s fitness is varied only by anchor Steiner points.

Proof: Regular Steiner points are determined by Steinerizing edges in the minimum
spanning tree formed by demand points and anchor Steiner points. Because demand
points are fixed (their quantity and their position are given), only the anchor Steiner
points (their quantity and their position) can affect the minimum spanning tree formed
and thus affect the fitness of a candidate solution.

In MSPSO-STP-MSPBEL, a particle is encoded as a set of points in two-dimensional
Euclidean space, and a point is represented with a pair of numbers that corresponds to
their coordinates in the two-dimensional Euclidean space. For example, a candidate solu-
tion {(3, 4), (6, 8)} represents that there are two anchor Steiner points and that they
are located at coordinates (3, 4) and (6, 8), respectively. Another candidate solution
{(2, 5), (6, 7), (4, 6)} specifies that there are three anchor Steiner points and that they
are located at coordinates (2, 5), (6, 7), and (4, 6), respectively.

A candidate solution to an instance of the STP-MSPBEL problem could have between
zero and infinite anchor Steiner points. To avoid an infinite search, the range limit of the
number of dimensions of the spaces is first determined. The maximum value of this range
is set according to the following observations: the MST heuristic can be used to get an
approximate to the optimal solution to a given instance of the STP-MSPBEL problem.
We try to solve the dual problem to solve the primal problem. In the dual problem,
we are to locate degree-3+ anchor Steiner points in the primal problem using anchor
Steiner points. Because nsteiner points ≥ nanchor steiner points, there is no point in allowing
a candidate solution to the dual problem to have more anchor Steiner points than the
estimate of the number of anchor Steiner points in the primal problem (obtained using the
MST heuristic) since nsteiner points = nanchor steiner points + nregular steiner points; the resulting
candidate solution to the primal problem will have more anchor Steiner points than the
solution obtained using the MST heuristic. Because nsteiner points obtained from using the
MST heuristic will be quite high, this will result in a long runtime since candidate solutions
might initially have long lengths. That is because candidate solutions are searched for in
unnecessary spaces of high dimension. To help reduce the runtime of our optimization
method, the following point is used: in the Steiner Tree Problem (STP), a full Steiner
topology/tree has at most k = N − 2 anchor Steiner points, where N is the number of
demand points in an input instance. Because anchor Steiner points are used to search for
these points, it is intuitive that we limit the number of dimensions allowed for a particular
space to at most N −2 anchor Steiner points. The minimum of this range is set to 0. The
range of the number of dimensions of a particular space (nrange of a particular space) is thus
as given in Equation (4).

nrange of a particular space = [0, min(N − 2, nMST heuristic on the demand points)] (4)

where N is number of demand points in an input instance, nMST heuristic on the demand points

is number of Steiner points determined by the MST heuristic on the demand points.
1) Initialization of Particles
After the range of the number of dimensions of spaces is determined, we generate

particles that randomly vary in the number of dimensions. Then, for each particle in
the swarm, a number r within the range of dimensions of the spaces (Equation (4)) is
randomly generated. Each particle then generates r anchor Steiner points. We state in
Theorem 3.3 below that anchor Steiner points should be located inside the convex hull
formed by the demand points. Hence, anchor Steiner points are generated randomly such
that they are located within the convex hull formed by the demand points. The velocity
of the particles is set to 0 or initialized randomly.
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Theorem 3.3. All Steiner points (anchor and non-anchor) should be located within the
convex hull formed by the demand points.

Proof: There are three points in a triangle; if a fourth point is outside the triangle
formed by the three points, a shorter minimum spanning tree could be formed by placing
the fourth point along the edge of the triangle or inside the triangle. One method is to
place the fourth point along one of the edges of the triangle. Meanwhile, this can be easily
extended to other given numbers of points.

2) Fitness Evaluation
Because we address the primal problem using the dual problem, evaluation of a particle’s

fitness becomes complex. To help understand how this process works, we first review the
course of action of a particle as shown in Figure 4. Initially, a particle consists of an
empty set. During the initialization phase, each particle generates a random number r.
Each particle then randomly generates r Steiner points and adds them to the set. After
an iteration, the fitness values of the particles are evaluated. The cost function to be used
for evaluation of particles is as shown in Equation (2). By emulating/mimicking the MST
construction process and recording the number of points needed to Steinerize an edge
in the MST in the process, we can determine the total number of anchor Steiner points
needed for the primal problem. The detailed algorithm for determining the total number
of anchor Steiner points needed for the primal problem is presented in Algorithm 1.

Figure 4. The course of action of a particular particle
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Given: 1) demand points
2) anchor Steiner points

Output: The total number of anchor Steiner points in a candidate solution for the
primal problem

1. Assign every node vi to different groups, grpi : grpi ← vi, 0 < |V | − 1
2. Combine groups that are interconnected into one resulting in a less number of n

groups, n ≤ |V |.
3. Initial numNonAnchorSteinerPointsNeeded← 0.
4. While (n > 1) // tree not spanning

a. Let grp0 be the source group: grpsrc. Get the group among n − 1 other
groups with the shortest distance to grpsrc, call this group the destination
group, grpdst.

b. Calculate the number of anchor Steiner points needed to steinerize the shortest
edge between grpsrc and grpdst. Let this answer be k.

c. numNonAnchorSteinerPointsNeeded ← numNonAnchorSteinerPoints
Needed + k

d. n← n− 1 // there is now one group less since we combined grpsrc and grpdst

5. End while
6. Return numNonAnchorSteinerPointsNeeded + number of anchor Steiner

points

Algorithm 1. Algorithm for determining the total number of anchor Steiner points
in a candidate solution for the primal problem

3) Updating of the Space That Particles Belong to
After an iteration of the classical Particle Swarm Optimization (PSO) meta-heuristic,

the best position obtained by the entire swarm (gbest) and particles’ personal best loca-
tions (pbest) are updated as necessary. In MSPSO-STP-MSPBEL, we want the particles
to behave similarly. In this section, we discuss how the number of anchor Steiner points
a particle specifies is updated.

The number of anchor Steiner points in a particle is discrete/integer-valued. A concept
similar to the one employed in the Jumping Frog Optimization (JFO) [20] designed for
discrete optimization problems is adopted. A random number is generated in the range
[0, 1) and the action to take depends on the range the random number falls into. In the
range [0, w), a particle stays in the current space or explores the neighboring space. In the
range [w, w+c1), a particle gets attracted to and moves towards the space pbest is located
in. In the range [w + c1, 1) a particle gets attracted to and moves towards the space gbest
is located in. The number of anchor Steiner points thus contributes to one dimension
of the problem. In the [0, w) range, another random variable in [0, 1) is generated to
see if it should remain in the current space or explore the neighboring space. If this
variable falls within [0,PROB EXPLORE NEIGHBORING SPACE ), then the particle
explores the space of one dimension lower or higher with equal probability; otherwise, the
particle remains in the same space. The reason for the reuse of the same parameters is as
follows: in the classical PSO, particles are attracted towards new positions in space in the
directions of pbest and gbest, and in MSPSO, we want the particles to behave similarly
with respect to the variable number of anchor Steiner points.
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Figure 5. Component-wise updating of variables

4) Updating of Anchor Steiner Point Velocities and Positions
During the velocity update of particles, the current position vi could have a different

number of dimensions compared to pbest or gbest. However, particles from different spaces
can share information with each other. Hence, we employ component-wise updating similar
to that proposed in [17] for the unit commitment problem. Figure 5 shows the component-
wise updating of variables. Component-wise updating is used because particles share
information with each other only between identical dimensions. Particles do not anticipate
or borrow information from alien or unknown space dimensions.

The velocity of a particle is updated in two steps. First, we update it towards pbest.
Then in step two, it is updated toward gbest. The position of a particle is updated by
simply adding its previous position to the updated velocity.

5) Transform Solution of the Dual Problem to Solution of the Primal Problem
The MSPSO meta-heuristic is only used to determine the anchor Steiner points. Anchor

Steiner points are approximates of degree-3+ Steiner points in the optimal solution for the
input instance of the STP-MSPBEL problem. The remaining non-anchor/regular Steiner
points still need to be determined. The detailed algorithm to determine the non-anchor
Steiner points is described formally in Algorithm 2.

4. Results and Discussions. We implemented MSPSO-STP-MSPBEL in C/C++ in
Ubuntu 15.10. To demonstrate the feasibility of the proposed method, we generate random
instances of the STP-MSPBEL problem, use our program to obtain approximate solutions
to these instances, and compare our results with those obtained by the Minimum Spanning
Tree (MST) heuristic and approximation algorithm. Random instances of the problem of
varying input size (number of demand points) were generated with 2 instances for each
input size. In all instances, we assume node placement in a square region of 1000 units
by 1000 units. In Particle Swarm Optimization (PSO), the number of particles (swarm
size) determines how many different agents are used to solve a given input instance. If
more particles are used, the probability of finding a better solution increases. Due to
the inherent complexity of the STP-MSPBEL problem, 2000 particles were used in all
instances. To allow sufficient iterations for particles to search for a good solution, the
MSPSO-STP-MSPBEL was programmed to terminate after 500 iterations. As PSO is
based on the concept of iterative search, if a low value of number of iterations is used, the
particles might not converge by the time the search process is terminated. In all instances,
we assume that the transmission range of all nodes R = 25 units. The values of w, c1,
and c2 are set as 0.2, 0.35, and 0.45, respectively. We run the program on a system with
an Intel Core i5-5200U processor and 8 GB of RAM.

In general, we found that our program can address the generated instances with better
results compared to those obtained by using the MST heuristic. For practical input in-
stance size, we found that our program has a fast runtime. For instance, referring to Table
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Given: 1) demand points
2) anchor Steiner points
3) the transmission range of nodes, R

Output: A minimal spanning tree involving the given nodes.

1. Group nodes that are interconnected into a larger group.
2. While (number of groups, (n > 1)) // tree not spanning

a. Select the first group as the starting group grpsrc.
b. Find the group closest in Euclidean distance to grpsrc and name it the

destination group grpdst.
c. Get the shortest edge between grpsrc and grpdst. Name the point of the edge

in grpsrc as ptsrc and the point of the edge in grpdst as ptdst.
d. While (d(ptsrc, ptdst) > R)

i. diff x = ptdst · x− ptsrc · x;
ii. diff y = ptdst · y − ptsrc · y;
iii. ratio = R÷ d(ptsrc, ptdst);
iv. Add (ptsrc · x + ratio× diff x, ptsrc · y + ratio× diff y) as a non-anchor

Steiner point
e. End while
f. n ← n − 1 // there is now one less group since we combined grpsrc and

grpdst

3. End while

Algorithm 2. Algorithm for determining the non-anchor Steiner points

3, for an input instance size of 200 demand points, our program was able to obtain a run-
time of just over 3 hrs. Runtime is an important criterion in this paper. If one algorithm
takes an unacceptable amount of time to search for a good solution, it becomes useless.
The lower runtime also indicates the lower computation complexity. From Tables 1, 2
and 3, we observed that the runtime accelerates with increasing input instance size. This
is because the fitness evaluation process of a particle requires that the MST construction
process be emulated/mimicked, and this takes (n2) time, where n is the number of nodes.
In our program, we employed the traditional method of updating the MST when anchor
points are added, removed, or changed in position. If a more efficient method of updating
the MST is used, such as dynamic MST construction, better runtime performance is pos-
sible. However, implementing such an efficient MST updating process algorithm is not
the focus of this paper. Meanwhile, we compared our program with an approximation
algorithm, in which we first select a critical node from the uncovered sensor nodes and
then determine the location of the relay node based on the principle of preferring to cover
the sensor node closer to the critical node. We found that our program has better perfor-
mance compared to the approximation algorithm. Moreover, PSO is an iterative search
technique, and thus one should not compare its runtime to simple heuristics such as the
MST heuristic. For example, with no termination criteria, PSO continues to search for
the optimal solution continuously, even if it has already found it.

4.1. 50 demand points.
1) Instance #1
Figure 6(a) shows the result obtained by using our program, Figure 6(b) shows the

result obtained by using the MST heuristic, and Figure 6(c) gives the result obtained by
using the approximation algorithm. In these figures, black dots are demand points, red
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(a) (b) (c)

Figure 6. (color online) (a) Result obtained using our program; (b) result
obtained using the MST heuristic; (c) result obtained using the approxima-
tion algorithm

(a) (b) (c)

Figure 7. (color online) (a) Result obtained using our program; (b) result
obtained using the MST heuristic; (c) result obtained using the approxima-
tion algorithm

dots are anchor Steiner points, blue dots are regular Steiner points, and brown dots are
Steiner points obtained by using the MST heuristic.

2) Instance #2
Figure 7(a) shows the result obtained by using our program, Figure 7(b) shows the

result obtained by using the MST heuristic, and Figure 7(c) gives the result obtained by
using the approximation algorithm. In these figures, black dots are demand points, red
dots are anchor Steiner points, blue dots are regular Steiner points, and brown dots are
Steiner points obtained by using the MST heuristic.

3) Summary
Table 1 shows a summary of the three input instances with 50 demand points.

4.2. 100 demand points.
1) Instance #1
Figure 8(a) shows the result obtained by using our program, Figure 8(b) shows the

result obtained by using the MST heuristic, and Figure 8(c) gives the result obtained by
using the approximation algorithm. In these figures, black dots are demand points, red
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Table 1. Summary of three instances with 50 demand points

Instance 1 2
Number of relay

nodes in the solution
obtained by our program

159 164

Number of relay
nodes in the solution

obtained by the
MST heuristic

166 173

Number of relay
nodes in the solution

obtained by the
approximation algorithm

165 171

Improvement

4.22% and 3.63%,
respectively to MST

heuristic and
approximation algorithm

5.2% and 4.09%,
respectively to MST

heuristic and
approximation algorithm

Number of anchor
Steiner points

by our program
7 7

Runtime of our program 421.5 s 463.3 s
Runtime of the MST

heuristic
474.7 s 522.7 s

Runtime of the
approximation algorithm

465.2 s 499.1 s

Runtime improvement

11.2% and 9.39%,
respectively to MST

heuristic and
approximation

algorithm

11.36% and 7.17%,
respectively to MST

heuristic and
approximation

algorithm

(a) (b) (c)

Figure 8. (color online) (a) Result obtained using our program; (b) result
obtained using the MST heuristic; (c) result obtained using the approxima-
tion algorithm
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(a) (b) (c)

Figure 9. (color online) (a) Result obtained using our program; (b) result
obtained using the MST heuristic; (c) result obtained using the approxima-
tion algorithm

Table 2. Summary of three instances with 100 demand points

Instance 1 2
Number of relay

nodes in the solution
obtained by our program

212 228

Number of relay nodes
in the solution obtained
by the MST heuristic

221 234

Number of relay nodes in
the solution obtained by the

approximation algorithm
219 230

Improvement

4.07% and 3.19%,
respectively to MST

heuristic and
approximation algorithm

2.98% and 0.86%,
respectively to MST

heuristic and
approximation algorithm

Number of anchor Steiner
points by our program

9 9

Runtime of our program 2092.0 s 1962.2 s
Runtime of the
MST heuristic

2346.6 s 2314.4 s

Runtime of the
approximation algorithm

2241.7 s 2246.1 s

Runtime improvement

10.84% and 6.68%,
respectively to MST

heuristic and
approximation algorithm

15.21% and 12.64%,
respectively to MST

heuristic and
approximation algorithm

dots are anchor Steiner points, blue dots are regular Steiner points and brown dots are
Steiner points obtained by using the MST heuristic.

2) Instance #2
Figure 9(a) shows the result obtained by using our program, Figure 9(b) shows the

result obtained by using the MST heuristic, and Figure 9(c) gives the result obtained by
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using the approximation algorithm. In these figures, black dots are demand points, red
dots are anchor Steiner points, blue dots are regular Steiner points and brown dots are
Steiner points obtained by using the MST heuristic.

3) Summary
Table 2 shows a summary of the three input instances with 100 demand points.

4.3. 200 demand points.
1) Instance #1
Figure 10(a) shows the result obtained by using our program, Figure 10(b) shows the

result obtained by using the MST heuristic, and Figure 10(c) gives the result obtained by
using the approximation algorithm. In these figures, black dots are demand points, red
dots are anchor Steiner points, blue dots are regular Steiner points and brown dots are
Steiner points obtained by using the MST heuristic.

2) Instance #2
Figure 11(a) shows the result obtained by using our program, Figure 11(b) shows the

result obtained by using the MST heuristic, and Figure 11(c) gives the result obtained by

(a) (b) (c)

Figure 10. (color online) (a) Result obtained using our program; (b) result
obtained using the MST heuristic; (c) result obtained using the approxima-
tion algorithm

(a) (b) (c)

Figure 11. (color online) (a) Result obtained using our program; (b) result
obtained using the MST heuristic; (c) result obtained using the approxima-
tion algorithm



566 Y. XU, Y. XIAO AND Q. SUN

Table 3. Summary of three instances with 200 demand points

Instance 1 2
Number of relay

nodes in the solution
obtained by our program

267 277

Number of relay
nodes in the solution

obtained by the
MST heuristic

281 286

Number of relay
nodes in the solution

obtained by the
approximation algorithm

278 280

Improvement

4.98% and 3.96%,
respectively to MST

heuristic and
approximation algorithm

3.15% and 1.07%,
respectively to MST

heuristic and
approximation algorithm

Number of anchor
Steiner points

by our program
14 11

Runtime of our program 9074.5 s 11060.3 s
Runtime of the
MST heuristic

12456.4 s 13146.1 s

Runtime of the
approximation algorithm

10234.1 s 11902.4 s

Runtime improvement

27.14% and 11.33%,
respectively to MST

heuristic and
approximation

algorithm

15.86% and 7.08%,
respectively to MST

heuristic and
approximation

algorithm

using the approximation algorithm. In these figures, black dots are demand points, red
dots are anchor Steiner points, blue dots are regular Steiner points, and brown dots are
Steiner points obtained by using the MST heuristic.

3) Summary
Table 3 shows a summary of the three input instances with 200 demand points.

5. Conclusion. In this paper, the single-tiered minimum relay nodes placement problem
in two-dimensional Euclidean space is approached. The problem can be formulated as a
Steiner Tree Problem with Minimum Steiner Points with Bounded Edge Length (STP-
MSPBEL). In the literature, most algorithms proposed to solve the problem are based on
the Minimum Spanning Tree (MST) heuristic. In this paper, a novel variable-dimension
meta-heuristic based on Particle Swarm Optimization (PSO) was proposed to address the
problem. The optimization method was put to the test for several randomly generated
instances of the problem. We found that the method is effective in obtaining good ap-
proximate solutions to those instances of the problem. For the majority of cases, a better
approximate solution was obtained compared to that obtained from the MST heuristic.
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