
International Journal of Innovative
Computing, Information and Control ICIC International c⃝2019 ISSN 1349-4198
Volume 15, Number 2, April 2019 pp. 569–589

MODEL-BASED SOFTWARE EFFORT ESTIMATION – A ROBUST
COMPARISON OF 14 ALGORITHMS WIDELY USED

IN THE DATA SCIENCE COMMUNITY

Passakorn Phannachitta1 and Kenichi Matsumoto2

1College of Arts, Media and Technology
Chiang Mai University

239 Suthep, Muang, Chiang Mai 50200, Thailand
passakorn.p@cmu.ac.th

2Graduate School of Science and Technology
Nara Institute of Science and Technology

8916-5 Takayama, Ikoma, Nara 630-0192, Japan
matumoto@is.naist.jp

Received June 2018; revised October 2018

Abstract. The emergence of the data science discipline has facilitated the development
of novel and advanced machine-learning algorithms for tackling tasks related to data ana-
lytics. For example, ensemble learning and deep learning have frequently achieved promis-
ing results in many recent data-science competitions, such as those hosted by Kaggle.
However, these algorithms have not yet been thoroughly assessed on their performance
when applied to software effort estimation. In this study, an assessment framework
known as a stable-ranking-indication method is adopted to compare 14 machine-learning
algorithms widely adopted in the data science communities. The comparisons were car-
ried out over 13 industrial datasets, subject to six robust and independent performance
metrics, and supported by the Brunner statistical test method. The results of this study
proved to be stable because similar machine-learning algorithms achieved similar per-
formance results; particularly, random forest and bagging performed the best among the
compared algorithms. The results further offered evidence that demonstrated how to build
an effective stacked ensemble. In other words, the optimal approach to maximizing the
overall expected performance of the stacked ensemble can be derived through a balanced
trade-off between maximizing the expected accuracy by selecting only the solo algorithms
that are most likely to perform outstandingly on the dataset, and maximizing the level
of diversity of the algorithms. Precisely, the stack combining bagging, random forests,
analogy-based estimation, adaBoost, the gradient boosting machine, and ordinary least
squares regression was shown to be the optimal stack for the software effort estimation
datasets.
Keywords: Software effort estimation, Data science, Kaggle, Robust statistics, Empir-
ical software engineering

1. Introduction. Software effort estimation is one of the most vital parts of the software
development process. It highly influences the success of a software development project to
the extent that inaccurate estimation may hinder effective project planning and prevent
a software project from being completed within the schedule or budget [1, 2].

Recently, the emergence of data science competition communities has accelerated ad-
vancement in the development of machine-learning algorithms. For example, an increased
number of studies publishing the winning solutions for data science competitions hosted
by the well-known Kaggle [3] can be widely observed. These studies include, for example,

DOI: 10.24507/ijicic.15.02.569

569

570 P. PHANNACHITTA AND K. MATSUMOTO

the work by Abril and Sugiyama [4], and the studies mentioned in the review by Gold-
bloom [5]. However, the machine-learning algorithms widely recognized as the essence of
the competition winners, such as the gradient boosting machine (GBM) and deep learn-
ing (Deep) [6], have not yet been extensively examined in the literature on software effort
estimation.

The principle aim of this study is to determine a stable performance ranking of different
machine-learning algorithms that appear in the data science competition communities,
and to determine whether these algorithms will also offer outstanding performance for
software effort estimation. The motivational observation is that the Classification and
Regression Trees (CART) have long been the standard benchmark datasets for bench-
marking software effort estimators [7, 8, 9]. However, CART do not seem to be the
algorithm of choice of the data science community. This study improves the statistically
significant testing components of a robust evaluation framework known as the stable-
ranking-indication method proposed by [10], which is the widely accepted evaluation
framework for software effort estimators, to compare 14 machine-learning algorithms,
classified into six groups, over 13 industrial software effort estimation datasets. In short,
the significance of the present study is as follows.

• To the researchers’ knowledge, this study offers the largest performance comparison
results of the more recently developed machine-learning algorithms when utilized as
software effort estimators. The selected algorithms are not only those most frequently
appearing on the current leaderboard of many machine-learning competitions, but
also those that are straightforwardly accessible to any practitioners through the well-
known libraries, such as Scikit-learn [11] and Keras [12].

• The results obtained by the experiment are stable and show similar behaviors to
algorithms whose theoretical concepts are similar. Furthermore, all the experimental
conditions used are provided in a great detail to maximize replicability.

• The present study appears to be the first to offer concrete evidence showing that
combining multiple solo-algorithms into a stacked ensemble of multi-algorithms by
maximizing both the potential performance of each individual algorithm and to
maximizing the level of diversity of the selected individual algorithms has great
potential to offer a more accurate estimation for software effort as compared with
other different stacking approaches.

• The results in the present study are generally in good agreement with those of the
theoretical works in the data science community; however, they appear to be contrary
to earlier studies in software effort estimation. Precisely, CART did not appear to
be an outstanding algorithm despite being known as the standard benchmark and
the state-of-the-art algorithm for the software effort estimation community. On the
contrary, many ensemble-based techniques, such as random forest (RF), bootstrap
aggregation (Bagging), and GBM, which have been part of the winning solutions
of many recent machine-learning competitions, have shown a significantly better
performance over software effort estimation datasets.

The details of the evaluation and analysis are organized in this paper as follows. Section
2 provides the essential background and related works. Section 3 explains the 14 machine-
learning algorithms along with their implementation in the study. Section 4 elaborates
the use of the stable-ranking-indication method throughout this study. Section 5 presents
the results and findings. Section 6 further discusses the results and validity of threats of
the study. Finally, the conclusion is provided in Section 7.

MODEL-BASED SOFTWARE EFFORT ESTIMATION 571

2. Background.

2.1. Model-based software effort estimation. Software effort estimation is the pro-
cess of estimating the amount of effort necessary to complete a particular software de-
velopment project [13, 14]. Software project managers require an accurate and reliable
estimation that can exploit information clear enough for them to ensure that the project
will be completed on time and under budget [1, 2].

According to the surveys on the techniques used in software effort estimation [15, 16],
research studies are more likely to encourage the adoption of model-based techniques in
real-world applications. The key reasons are that model-based techniques do not rely
on human intuition, which is difficult to justify and difficult to transfer between human
individuals. More importantly, model-based techniques are theoretically explicable and
replicable. To date, several variations of model-based techniques have been made avail-
able; those that appear most commonly in the literature are linear models, decision trees,
and instance-based algorithms [2, 10, 13]. The methodology behind these techniques is
to attempt to generate the estimated effort value to be the closest possible to the actual
effort. This estimation is based on the value of one or multiple explanatory variables that
may describe the actual effort. For example, the ordinary least squares regression assumes
the linear relationship between the effort variable (y) and the explanatory variables (X)
to be in the following form:

ŷ(β, X) = β0 + β1X1 + β2X2 + · · · + βnXn, (1)

where ŷ is the estimated effort value of y, βi is the intercept adjusted by the model for
which the difference between ŷ and y is minimized, and Xi is a vector of the software
project feature, which is treated as an explanatory variable.

2.2. Nomination of the best algorithm for software effort estimation. Ranking
instability appears as a main problem in research studies in software effort estimation
because different types of estimation algorithms are suggested for practical applications.
This problem consequently hinders the transfer of knowledge between the research com-
munity and the industries, since conflicting results can make the practitioners confront dif-
ficulties in deciding which performance results should be followed. Shepperd and Kadoda
[17] are among the first who presented the problem to software effort estimation com-
munities. They undertook a simulation study to investigate the conflicting results and
suggested that the conflict in the results is mainly subject to the differences in the dataset
characteristics, such as distribution, as used in different earlier studies.

In 2004, the tera-PROMISE repository was founded by Menzies and Sayyad [18]. The
repository soon became one of the most widely used repositories by software engineering
researchers. With a great variety of software effort estimation datasets gathered from
various sources available in the repository, researchers have been able to revisit the ranking
instability problem. For example, Keung et al. [10] adopted an assessment framework to
target the stable and precise ranking of software effort estimators. The assessment is based
on the total number of times an estimator is statistically significantly outperformed by all
the other estimators of the comparison set. In Keung et al. [10], nine machine-learning
algorithms commonly appearing in the software effort estimation literature together with
ten data preprocessors were compared subject to even error measures. Supported by the
Wilcoxon rank-sum test [19], CART was nominated to be the most suitable algorithm
for software effort estimation datasets. Subsequently, CART has generally appeared as
the standard benchmark algorithm in prominent literature on software effort estimation,
such as in several studies by Kocaguneli et al. [7, 8, 9].

572 P. PHANNACHITTA AND K. MATSUMOTO

2.3. Data science and data science competitions. Data science is an emerging field
of scientific study focusing on exercising multidisciplinary expertise to support and guide
the extraction and synthesis of knowledge from data. An expert data scientist team can
deliver an organization a massive competitive advantage by generating business value
from the data that are already flowing throughout the organization. For example, market
analysis and customer segmentation are the data analytics tasks mostly carried out to
effectively market to each target customer type [20]. Overall, application of data science
in industries can be used to increase the enterprise’s net profit by means of maximizing
the revenue, and minimizing the possible loss. This, therefore, makes the profession of
a data scientist a rising career option, attracting significant attention from the industry,
which is demonstrated by the fact that Glassdoor recently nominated the vocation of a
data scientist as one of the best jobs in America based on competitiveness of salary and
job satisfaction [21].

Given the fact that data science is relatively new to the industry where the skill and
the experience of a data scientist are strongly associated with fruitful outcomes, searching
for data scientists specialized in particular business functions may not be simple. In
recent days, data science competitions have become more and more commonplace in
companies during the hiring of skilled and experienced data scientists. The current most
popular competition is Kaggle [5], which is where many big technology companies like
Facebook host competitions to tackle difficult problems for million-dollar prizes. This
highly competitive environment fosters competitions in many different positive ways, such
as by facilitating advancements in machine-learning techniques by motivating individuals
with expertise to improve their competencies. In the authors’ view, these competitions
have influenced the acceleration of advancements in machine learning much faster than
any other kinds of activities have in the past. Since the performance of machine-learning
techniques are what determines estimation performance, there is no reason not to attempt
to transfer the lessons learned from the competitions to the software effort estimation
community so as to investigate the practices which are dominating the competitions’
leaderboards.

3. Fourteen Machine-Learning Algorithms. At the time of writing, there are vo-
luminous machine-learning algorithms listed on the public Wikipedia page of the official
Kaggle competition web site [3]. In this study, a comparison of 14 algorithms applicable
to numerical estimation problems are carried out. Other algorithms were excluded be-
cause they are mainly for classification and clustering, which are inapplicable to the tasks
related to software effort estimation. Implementation of the selected algorithms is made
to be available in widely-recognized libraries known as Scikit-learn [11] and the Keras
python library [12]. These 14 algorithms can be classified into 6 groups, as given below.

3.1. Five generalized linear models. Ordinary least squares regression (OLS) is one of
the simplest machine-learning algorithms for numerical estimation problems. It is highly
sensitive to random error and generally produces high variance, one of the main sources
of estimation errors leading to overfitting. In a study by Keung et al. [10], OLS ranked
the worst in their experimental setup.

Ridge regression (Ridge) applies a regularization technique to alleviating the problem of
overfitting due to the high variance generally produced by OLS. Generally, the potential
reason for such high variance is because the resultant model develops a high regression
coefficient when it attempts to fit every single data point in the dataset. To address
such problems, Ridge imposes a penalty on the size of the coefficients; this makes the

MODEL-BASED SOFTWARE EFFORT ESTIMATION 573

resultant model become somewhat biased, but the huge reduction in the variance makes
Ridge generally more accurate than the simple OLS.

Least absolute shrinkage and selection operator regression (LASSO) applies regulariza-
tion to avoiding the problem of overfitting with the main difference from Ridge being that
LASSO attempts to perform feature selection to eliminate highly dependent features,
ultimately leading to reduction in error. LASSO is suitable for problems in which the
datasets contain large amounts of features that may be dependent where access to feature
reduction techniques is limited.

Elastic-Net regression (ElasticNet) attempts to combine the strengths of Ridge and
LASSO, by adopting a regularization technique that applies both feature selection and
the assigning of penalty on the size of the regression coefficients.

Least-angle regression (LARS) applies feature selection based on the correlation coef-
ficient over iterations. Particularly, in an iteration, LARS finds the OLS model with the
strongest correlation coefficient with the target variables. LARS is suitable for datasets
having the number of features excessively higher than the number of instances.

3.2. One decision tree. CART generates a binary decision tree that best explains the
target variable. Based on information gain, CART recursively partitions the training
set into mutually exclusive instance subsets where the degree of variability, measured by
the Gini index [10], within each subset is minimized. The recurrent partitioning will be
terminated when no further gain can be achieved. Keung et al. [10] nominated CART
as the best software effort estimation algorithm in their proposal of the stable-ranking-
indication method.

3.3. One support vector machine. Support vector regression (SVR) attempts to find
a certain function that best fits the dataset based on optimization. If there is no explicit
linear relationship between the descriptive and the target variables, SVR will utilize a
kernel function to map these variables into a higher dimension and finds a hyperplane
that can simply fit the dataset. This therefore transforms a simple regression problem
into optimization problem that focuses on finding the optimal hyperplane and minimizing
the error residual. In addition, the use of kernel functions enables SVR to handle non-
linear regression, making it a powerful technique for handling data with an arbitrary
shape.

3.4. One instance-based learning. Analogy-based estimation (ABE) applies the k-
nearest neighbor algorithm to estimating the target variable. Applying ABE in software
effort estimation, the estimated effort value for a new software project can be defined
as the total amount of effort used in past similar software projects [22]. Despite its
simplicity, ABE is a favorite technique for both research communities and the industry
[23] mostly because it usually delivers excellent accuracy as well as being intuitively easy
to understand and use.

3.5. Two neural networks. Artificial neural networks (ANN) simulates the human
brain mechanism to solve machine-learning problems. It is composed of interconnected
nodes lying in different layers to form a network. Generally, ANN consists of an input
layer, an output layer, and one hidden layer. In the case of numerical estimation problems,
the task for ANN is to learn the optimal weight values assigned to each edge in the network
in order to produce the estimated target variable with minimal error residual.

Deep can be considered an ANN with more than one hidden layer. This, thus, forms
a much more complex network. The distinctive features inherent in such complex net-
works on implementation are not only performance and flexibility in handling non-linear
problems but also a complete automated feature selection, particularly useful for massive

574 P. PHANNACHITTA AND K. MATSUMOTO

and unstructured data. The theoretical work of Deep has been available for decades [6];
however, the bottlenecks in the technologies to handle such a computationally expensive
network had hindered the workforce as regards its empirical support. More recently, the
establishment of massively parallel chips housed in graphic processing units [24] has caused
a significant leap in the availability of computation, ultimately making Deep accessible
by consumer markets.

3.6. Four ensemble learning models. Bagging builds an ensemble model by randomly
generating instance subsets (with replacements) from the original training datasets, then
applying a learning model, e.g., a regression tree for general cases, to all the instance
subsets. The final estimated value is the mean value aggregated from all the estimated
values produced. Theoretically [25], any ensemble method can potentially reduce the error
due to undesirable model variance when the aggregated results are based on independent
sampling.

RF is a particular kind of Bagging especially tuned for minimizing the error residual
produced by regression trees. The extension from Bagging is that RF also performs feature
reduction along with a subsetting of instances. With sound theoretical support and with
its performance being recognized for a wide range of problems, RF is one of the most
popular techniques for both research communities and practitioners [4].

Adaptive boosting (AdaBoost) first builds a regression tree over the entire training
dataset. Then, it iteratively builds a weak estimator focusing on more difficult sub tasks
and adds them to the stronger estimator built in the earlier iterations. The method used
in building weak learners is based on assigning weights on the less accurately estimated
instances higher than those of the accurately estimated. In the succeeding iteration, the
model will focus more on the instances with high weight values. However, AdaBoost may
not be able to offer high accuracy when the dataset is highly contaminated with noise
[26, 27] because the adaptation toward lower accuracy instances can instead result in
amplifying the erroneous data instances.

GBM is also based on the boosting principle with the main difference from AdaBoost
being that the error residual produced by a strong learner is also fed to the training of its
succeeding weak learner as an additional input. It thus enables the potential improvement
of the model by adding the error-correcting components to the iterative workflow. In other
words, a major improvement from the other ensemble methods is that GBM directly
utilizes the value of the estimation error in an attempt to reduce it. In addition, in
order to optimize the error correction process, GBM makes use of the gradient descent
technique [11] as an optimization method guiding the error reduction based on boosting
to move toward the resultant model with minimal overall error. Chollet [6] noted that
since 2017, GBM has been dominating the Kaggle leaderboards for the problems in which
structured data are available. Otherwise, Deep is more suitable.

A summary of these algorithms is shown in Table 1, along with the libraries used for
their implementation in this study’s experiments.

4. Evaluation Methodologies. The experimental framework is mainly based on the
researchers’ improvement of the statistical methods used in Keung et al.’s stable ranking
indication method [10]. A detailed explanation of the framework is provided throughout
this section. Let the term estimator denote the combination of a data normalization
technique, a variable selection method, and a machine-learning algorithm. This study is
concerned with data normalization and variable selection in the experiment because they
often have a significant impact on the estimation performance of any machine-learning
task [7, 23].

MODEL-BASED SOFTWARE EFFORT ESTIMATION 575

Table 1. Learning algorithms and their hyperparameter configurations

Abbr. Algorithm Library used in the study [11, 12]
1 OLS Ordinary least squares re-

gression
Sklearn.linear model.LinearRegression

2 Ridge Ridge regression Sklearn.linear model.Ridge
3 LASSO Least absolute shrinkage

and selection operator re-
gression

Sklearn.linear model.Lasso

4 ElasticNet Elastic-Net regression Sklearn.linear model.ElasticNet
5 LARS Least angle regression Sklearn.linear model.Lars
6 CART Classification and regres-

sion tree
Sklearn.tree.DecisionTreeRegressor

7 SVR Support vector regression Sklearn.svm.SVR
8 ABE Analogy-based estimation Sklearn.neighbors.KNeighborsRegressor
9 ANN Artificial neural networks Sklearn.neural network.MLPRegressor

10 Deep Deep neural networks Keras.wrappers.scikit learn.KerasRegressor
11 Bagging Bootstrap aggregating Sklearn.ensemble.BaggingRegressor
12 RF Random forest Sklearn.ensemble.RandomForestRegressor
13 AdaBoost Adaptive boosting Sklearn.ensemble.AdaBoostRegressor
14 GBM Gradient boosting

machine
Sklearn.ensemble.GradientBoostingRegressor

All the implementations of the machine-learning algorithms, data normalization tech-
niques, and feature selection methods were developed using Python version 3.6, Scikit-
learn library version 0.19.0, and Keras version 2.1.6. The experiments were carried out
on an Intel Core i5 laptop with 8 GB of main memory. For the components related to
the statistical test, a robust statistical test library proposed by Wilcox [19] was used. It
was only available as an R package named WRS at the time of writing.

4.1. Datasets. Thirteen datasets were selected, as listed in Table 2, for the performance
comparison of the algorithms. They are all available in the tera-Promise data repository
(accessible through [18]). It is a large repository storing numerous software engineering
datasets. As demonstrated in Table 2, Albrecht contains IBM software projects completed
in the 70s [28]. Cocomo-sdr contains 12 projects from various companies in Turkey [29].
Cocomo81-e and Cocomo81-non-e are homogenized from the well-known COCOMO81
datasets [30], where the projects were completed in the embedded mode and the non-
embedded mode of the COCOMO principle, respectively. Desharnais contains software
projects developed in Canada in the late 90s [22]. The researchers homogenized the
Desharnais dataset into two datasets based on the computer languages used in their
development. Desharnais-cobol and Desharnais-4GL are those that were developed in
Cobol and 4GL languages, respectively. The Finnish dataset contains project cases from
different companies in Finland [31]. Kemerer contains large business applications [32].
Maxwell contains projects from commercial banks in Finland [33]. Miyazaki94 contains
projects developed in the COBOL language [34]. Nasa93-c1, Nasa93-c2, and Nasa93-c5
are decomposed from the Nasa93 dataset [35] by using the development center variables.
The postfixes c-1, c-2, and c-5 indicate the centers at which each project was developed.

To maximize the generalization ability of empirical results, Kitchenham et al. [36]
suggested that the distributions of all the experimental datasets should be required to
be totally independent. Following the techniques discussed in Kitchenham et al., Figure

576 P. PHANNACHITTA AND K. MATSUMOTO

Table 2. Experimental datasets

Datasets #Features #Instances
The development effort
Min Median Max

1 Albrecht 7 24 0.5 11.5 105.2
2 Cocomo-sdr 23 12 1.0 3.5 22.0
3 Cocomo81-e 17 28 9.0 354.0 11400.0
4 Cocomo81-non-e 17 35 5.9 50.0 6400.0
5 Desharnais-cobol 8 67 805.0 3913.5 23940.0
6 Desharnais-4GL 8 10 546.0 1123.5 5880.0
7 Finnish 4 38 460.0 5430.0 26670.0
8 Kemerer 5 15 23.2 130.3 1107.3
9 Maxwell 24 62 583.0 5189.5 63694.0

10 Miyazaki94 7 48 5.6 38.1 1586.0
11 Nasa93-c1 20 12 24.0 66.0 360.0
12 Nasa93-c2 20 37 8.4 82.0 1350.0
13 Nasa93-c5 20 39 72.0 571.4 8211.0

400

600

800

1000

5e−04 1e−03

Cocomo−sdr

0

10

20

30

0.0 0.1 0.2 0.3 0.4 0.5

Albrecht

Kemerer

0.00

0.25

0.50

0.75

1.00

0 5 10 15 20

Finnish

Maxwell

Miyazaki94

0.00
0.05
0.10
0.15
0.20

0 10 20 30 40 50

Cocomo81−e

Cocomo81−non−e

0.0

0.1

0.2

0.3

0.4

0 5 10 15

Nasa93−c1

Nasa93−c2

Nasa93−c5

0.0

0.1

0.2

10 20 30 40

Desharnais−4GL

Desharnais−cobol

 X−axis: Productivity and Y−axis: Density

Figure 1. The kernel density plots of the selected datasets showing their
high level of independence in software productivity, i.e., effort/software size

1 illustrates the kernel density plots of the distributions of the development productivity
calculated by dividing the effort variable with the software size variable [23] for all the
datasets given in Table 2. Overall, the kernel density plots confirm that our 13 selected
datasets were independent.

4.2. Training/test sample generation. The leave-one-out approach [13] is the selected
sampling technique for the present study. It is a technique that makes one instance become
the test instance of a model built from the remaining instances. This technique will be

MODEL-BASED SOFTWARE EFFORT ESTIMATION 577

repeated until all the instances are tested. The leave-one-out approach is opted over
other popular alternatives, such as 10-fold cross validation [37], based on the suggestion
from the study by Kocaguneli and Menzies [13] that the leave-one-out approach could be
concluded as the most suitable sampling technique for software effort estimation studies
because it is more robust when experimenting on small- and medium-sized datasets, i.e.,
containing less than 100 instances.

4.3. Data preprocess. For each experiment, nine pairs of data preprocessors were ini-
tially generated based on three data normalization techniques and three feature subset
selection methods. The single best preprocessor for a certain training instance set is de-
termined by using the widely used grid search technique [38]. Precisely, a process pipeline
that first examines a normalization technique, followed by a variable selection method,
and finally the learning algorithm, was implemented. The grid search was applied to these
pipelines to determining the one that best fits the training instance being examined. This
pipeline is then applied to the test instance to estimating the effort.

The three candidate normalization techniques are as follows. Apply nothing means
to leave all data values unadjusted. Interval 0-1 normalizes each feature value xi of
a continuous feature x by subtracting the minimum value of x of xi, and dividing the
product by the difference between the maximum value of x and the minimum value of
x. This technique is mostly used in the literature on software effort estimation, such as
[8, 10], mainly to ensure equal influence of all the features. Logarithmic transformation
converts all the continuous features to a natural logarithmic scale. This technique is a
very simple procedure that approximates a normal distribution [39], enabling a wide range
of statistical methods that require normal distribution, such as correlation analysis, to
correctly capture the characteristic of the datasets.

For the choices of variable selection methods, the three candidate methods are as follows.
Select all features means to select all the explanatory variables of the dataset. Recursive
feature elimination iteratively removes variables from the dataset until the termination
criteria are met, e.g., the default configuration of the Scikit-learn implementation is to
eliminate half of the variables from the initial set. For each iteration, Recursive feature
elimination fits models, e.g., OLS, over all the possible variable subsets with the size of
the current subset minus one. Then, it ranks the accuracy score, e.g., the mean squared
error, of all the models and eliminates the variable associated with the model with the
least accuracy. Principal component analysis transforms the dataset by mapping its data
to a new lower-dimensional space without dropping any important information. This
transformation is done by decomposing the entire dataset into orthogonal components
that explain the maximum variance.

4.4. Hyperparameter optimization. Hyperparameter optimization is an influential
factor toward the performance of many empirical software engineering tasks, such as
software defect prediction [40]. Table 3 presents a set of hyperparameter configurations
that the researchers’ attempted to optimize for each of the 14 machine learning algorithms.
Particularly, the selection of the optimal hyperparameter is included in the same process
pipeline, such that the grid search has determined the three-tuple (data normalization
technique, feature subset selection method, and the best hyper-parameter set) for every
single training instance set examined in the experiments of the study.

4.5. Performance metrics. The performance metrics mostly used in the software effort
estimation literature are the quantified levels of estimation errors [2, 10, 41]. Regarding the
stable-ranking-identification method, it is recommended that the largest possible number

578 P. PHANNACHITTA AND K. MATSUMOTO

Table 3. Learning algorithms and their set of their hyperparameters for
optimization. α is the regularization strength used in linear models. ρ is
the parameter used in scaling the regularizers exclusive for ElasticNet. C
is the penalty parameter of the error term used in training an SVR model.
N is the number of instances in a dataset.

Algorithm Hyperparameter set

OLS −
Ridge α = {0.01, 0.05, 0.1, 0.5, 1}
LASSO α = {0.01, 0.05, 0.1, 0.5, 1}
ElasticNet α = {0.01, 0.05, 0.1, 0.5, 1}, ρ = {0, 0.2, 0.4, 0.6, 0.8, 1}
LARS α = {0.01, 0.05, 0.1, 0.5, 1}
CART minimum samples split =

{
2, 3, . . . ,

⌈√
N

⌉}
SVR kernel = {linear, rbf}, C = {1, 10, 100, 1000}
ABE number of analogs = {1, 3, 5}, distance = {Manhattan, Euclidean}
ANN hidden layer sizes =

{
2, 4, 8, . . . ,

⌈
log2(N)

⌉}
, activation = relu,

solver = adam
Deep hidden layer sizes =

{
2, 4, 8, . . . ,

⌈
log2(N)

⌉}
, number of hidden layers

= {2, 4}, batch size = N , epochs = 20, activation = relu, solver = adam
Bagging number of estimators = {2, 4, 8, . . . , 256}, max samples = {0.5, 1.0}
RF number of estimators = {2, 4, 8, . . . , 256}, minimum samples split ={

2, 3, . . . ,
⌈√

N
⌉}

, max depths =
⌈√

N
⌉

AdaBoost number of estimators = {2, 4, 8, . . . , 256}, learning rate = {0.001, 0.01, 0.1}
GBM number of estimators = {2, 4, 8, . . . , 256}, minimum samples split ={

2, 3, . . . ,
⌈√

N
⌉}

, max depths =
⌈√

N
⌉
, learning rate = {0.001, 0.01, 0.1}

of performance metrics be used to maximize the credibility of the performance conclusion.
The procedure used in selecting the performance metrics is as given below.

1) A literature review on software effort estimation was carried out over 3 years of pub-
lications appearing in the IEEE Xplore digital library [42].

2) The surveys suggested ten metrics; namely, the Mean Magnitude of Relative Error
(MMRE), the Prediction at level 25 (Pred(25)), the Mean Magnitude of Error Relative
to the Estimate (MMER), the Mean Absolute Error (MAE), the Mean of the Balanced
Relative Error (MBRE), the Inverted Mean of the Balanced Relative Error (MIBRE),
the Standard Deviation (SD), the Relative Standard Deviation (RSD), the Logarith-
mic Standard Deviation (LSD), and the Standardized Accuracy (SA) which have all
appeared in more than one publication [1, 14, 23, 43, 44].

3) MMRE and Pred(25) were removed from the list since they have been widely criticized
as being biased metrics [14, 41].

4) The redundancy analysis was carried out by applying the redun function of the R
package, Hmisc [45], over the estimation results produced by the ten performance
metrics.

5) Several metrics were very likely to be redundant; thus, only six independent metrics
were selected and applied throughout the experiments of the present study. The six
metrics and their formulas are depicted as follows:

MAE = mean (∀i |yi − ŷi|) , (2)

where yi and ŷi denote the actual effort and the estimated effort for a projecti, that is,

MODEL-BASED SOFTWARE EFFORT ESTIMATION 579

for the ith instance of the dataset, respectively.

RSD =

√√√√∑N
i=1

(
yi−ŷi

ssi

)2

N − 1
, (3)

where N is the total number of instances of a dataset, and ssi denotes the explanatory
variable describing the software size of an instance i. For the dataset where the adjusted
function points (afp [23]) are available, ssi will be afp. Otherwise ssi will denote one
single variable that best describes the software size, such as line of codes.

LSD =

√∑N
i=1

(
ei −

(
− s2

2

))2

N − 1
, (4)

where ei is given by ln(yi) − ln(ŷi), and s2 is the variance of ei. As noted in the study
proposing LSD [41], the mean and the variance of errors of a model used by the
logarithm are equal to s2/2 and s2, respectively, if they exhibit normal distribution.

MBRE = mean

(
∀i

|yi − ŷi|
min (yi, ŷi)

)
(5)

MMER = mean

(
∀i
|yi − ŷi|

ŷi

)
(6)

SA =

(
1 −

MAEPj

MAE random

)
, (7)

where MAEPj
is the MAE of the estimator; that is, the pipeline, Pj is being evaluated,

and MAE random is the MAE of a large number, for example, 1000 runs [43], of random
guesses. SA shows how much better Pj is than to random guessing the effort by simply
picking an effort value from the dataset.

4.6. Pairwise comparison. The overall performance of an effort estimator is determined
by the number of times it was statistically significantly outperformed by the others, where,
0 times indicates the ideal performance result. This counting method is known as win-
tie-loss statistics, mainly used in recent and prominent literature on empirical software
engineering, such as [7, 8, 40, 43]. For the testing of statistical significance, Kitchenham
et al. [36] recommended the Brunner test [46] as the most suitable method for datasets
having a size and distribution similar to the common software effort estimation datasets.

In the experiment, a counter named losses was associated with an estimator. When
the Brunner test suggests that the performance between any pair of estimators being
evaluated is significantly different, that is, the p-value is less than 0.05, the losses counter
associated with the estimator with less accuracy will undergo an increment. Following
Keung et al. [10], the conclusion on the performance of the various estimators can be
stably drawn from this type of analysis if and only if the estimators based on similar
algorithms are ranked closely to each other.

5. Results.

5.1. The performance comparison. Table 4 shows the ranking results of the 14 esti-
mators. Each column of the table sorts the estimators with regard to their total losses.
Given that 14 estimators were compared using six performance metrics, the maximum
losses an estimator can achieve for each dataset is 13 × 6 = 78. In these results, the

580 P. PHANNACHITTA AND K. MATSUMOTO

Table 4. Comparison results sorted by the number of losses in ascend-
ing order. Lower losses indicate better performance. Entries highlighted in
lightgray represent these estimators with total losses lower than 5% of the
maximum possible losses, which is 13 × 6 × 0.05 = 3.9.

Rank Albrecht Cocomo-sdr Cocomo81-e Cocomo81-non-e Desharnais-Cobol

1 ABE(0) ABE(0) ANN(0) GBM(0) ANN(0)
2 AdaBoost(0) Bagging(0) Bagging(1) Bagging(3) Deep(0)
3 Bagging(0) ElasticNet(0) RF(1) AdaBoost(4) ElasticNet(0)
4 CART(0) OLS(0) ABE(3) ABE(6) GBM(0)
5 GBM(0) RF(0) CART(9) RF(6) LARS(0)
6 OLS(0) Ridge(0) Deep(10) CART(10) LASSO(0)
7 RF(0) SVR(0) SVR(10) SVR(13) OLS(0)
8 Ridge(0) CART(1) ElasticNet(12) Ridge(20) RF(0)
9 SVR(0) AdaBoost(2) GBM(13) OLS(22) Ridge(0)

10 ANN(6) GBM(2) Ridge(14) LASSO(23) SVR(0)
11 ElasticNet(10) LARS(2) AdaBoost(18) ElasticNet(24) Bagging(2)
12 LASSO(11) LASSO(2) OLS(22) LARS(34) ABE(8)
13 LARS(12) ANN(5) LASSO(27) ANN(40) CART(19)
14 Deep(27) Deep(40) LARS(33) Deep(46) AdaBoost(41)

Rank Desharnais-4GL Finnish Kemerer Maxwell Miyazaki94

1 ABE(0) ABE(0) ElasticNet(0) ABE(0) AdaBoost(0)
2 Bagging(0) ANN(0) LASSO(0) ANN(0) GBM(0)
3 RF(1) Bagging(0) Ridge(0) Deep(0) RF(0)
4 CART(3) GBM(1) OLS(2) RF(0) Bagging(1)
5 GBM(4) RF(1) CART(3) SVR(5) ABE(2)
6 AdaBoost(5) LARS(2) AdaBoost(4) AdaBoost(6) OLS(2)
7 SVR(8) LASSO(2) SVR(6) GBM(6) Ridge(5)
8 LARS(10) OLS(2) LARS(10) Bagging(7) LASSO(6)
9 LASSO(10) Ridge(2) RF(12) LARS(10) ElasticNet(9)

10 OLS(10) AdaBoost(3) GBM(27) LASSO(10) CART(10)
11 ANN(13) ElasticNet(4) Bagging(30) OLS(10) LARS(13)
12 Ridge(16) Deep(7) Deep(30) Ridge(10) ANN(26)
13 ElasticNet(17) CART(8) ABE(34) ElasticNet(13) SVR(30)
14 Deep(52) SVR(19) ANN(60) CART(40) Deep(54)

Rank Nasa93-c1 Nasa93-c2 Nasa93-c5

1 ABE(0) ABE(1) Bagging(0)
2 AdaBoost(0) AdaBoost(2) RF(0)
3 CART(0) ElasticNet(2) SVR(0)
4 OLS(0) SVR(5) ABE(1)
5 RF(0) Bagging(6) GBM(1)
6 GBM(1) LARS(7) AdaBoost(2)
7 LARS(1) ANN(8) LASSO(3)
8 LASSO(1) RF(8) Ridge(3)
9 Bagging(2) LASSO(9) LARS(4)

10 ElasticNet(4) GBM(17) OLS(4)
11 Ridge(4) Ridge(18) ElasticNet(5)
12 ANN(23) CART(20) CART(6)
13 SVR(36) OLS(23) Deep(7)
14 Deep(64) Deep(56) ANN(9)

MODEL-BASED SOFTWARE EFFORT ESTIMATION 581

performance of the estimators was not highly consistent over the selected datasets, the
ensemble-learning algorithms, and ABE were observed to perform better than the others.
Deep was observed to perform to worst. Another thing to observe in these results is that
tie-ranks largely appeared in a way that a simple rank aggregation, for example, the mean
rank, may not be fully appropriate for illustrating the performance of the estimation. For
example, Bagging was ranked #11 in the Desharnais-Cobol datasets; however, its total
losses were only 2/78 times. Subsequently, for each dataset, we defined that the estimators
which achieved the total losses less than 5% of the maximum possible losses (i.e., 78 ×
0.05 = 3.9) as being the estimators performing equally highly. These estimators are
highlighted in gray in Table 4.

Table 5 summarizes the results of Table 4 by summing the number of datasets for
which the estimators performed highly or poorly. Three bands of performance were de-
fined: losses ∈ [0%, 5%) represent the estimator performing the best for their correspond-
ing datasets. For the other bands, losses ∈ [5%, 15%) and losses ∈ [15%,∞) represent
the moderate performers and the poor performers of their corresponding datasets, re-
spectively. The estimators with the higher number of datasets that fall in band losses
∈ [0%, 5%) are the overall best performing estimators in terms of both accuracy and
consistency (i.e., rarely outperformed by any other estimator across multiple datasets).

Table 5. The overall losses over 13 datasets. Entries are sorted by the
number of datasets for which an algorithm achieved total losses less than
5% of the maximum possible losses (i.e., 3.9) in the experiment.

Rank Algorithm losses ∈ [0%, 5%) losses ∈ [5%, 15%) losses ∈ [15%,∞)

1 RF 10/13 2/12 1/13
2 Bagging 10/13 2/12 1/13
3 ABE 10/13 2/12 1/13
4 GBM 8/13 2/13 3/13
5 AdaBoost 7/13 4/13 2/13
6 OLS 7/13 3/13 3/13
7 CART 6/13 5/13 2/13
8 LASSO 6/13 5/13 2/13
9 Ridge 6/13 3/13 4/13

10 ElasticNet 4/13 5/13 4/13
11 LARS 4/13 5/13 4/13
12 SVR 4/13 5/13 4/13
13 ANN 4/13 3/13 6/13
14 Deep 2/13 3/13 8/13

In addition to the results of Table 4, Table 5 clearly shows that the estimators can
be consistently divided into three bands based on their overall performance. That is,
RF, Bagging, and ABE, performed the best overall, as shown by the highest number
of datasets they achieved for losses less than 5%. These algorithms performed poorly,
that is, with losses higher than 15%, only on the Kemerer dataset. On the other end of
the table, ANN and Deep were the poor performers overall. Their losses were found to
exceed 5% for the highest number of datasets tested. As for the remaining estimators,
in most cases, their losses were lower than 15%; however, they achieved less than 5%
losses for significantly fewer times than RF, Bagging, and ABE. This finding aligns well
with Keung et al. [10] that the largest proportion of algorithms being compared with the
stable ranking indication method are those having mediocre performance with non-stable

582 P. PHANNACHITTA AND K. MATSUMOTO

ranking results. Note that in Table 5, RF and Bagging were ranked higher than ABE
because the two algorithms had total losses, calculated over all datasets, less than that
of ABE.

Research studies in data science, such as Abril and Sugiyama [4], have suggested that
learning algorithms based on ensemble learning are more suitable for structured datasets,
where Deep appears to be more suitable for unstructured large datasets. Thus, the re-
sults of this study are in good agreement with the research findings of the data science
community.

In summary, the assessment framework can offer a conclusive stable ranking such that
estimators having similar algorithms, such as RF and Bagging, rank closely together. It
can be seen that a stable conclusion regarding performance of the selected algorithms can
be drawn and ranked as follows:

Ensemble learning based on Bagging

≥
Instance-based learning

>

Ensemble learning based on Boosting

>

General linear models ≈ Decision tree ≈ SVM

>

Neural networks

5.2. On the value of stacked ensembles. Kocaguneli et al. [7], based on empirical
experiments extended from Keung et al. [10], observed that a combination of multiple
estimators using the stacking technique, e.g., simply taking the average of the estimated
target variables from many estimators, can generally improve accuracy compared to us-
ing a single estimator. Kocaguneli et al. suggested an effective scheme to generate an
algorithm stack based on the selection of algorithms that perform the best overall from
the analysis of the estimation performance in terms of rank changes over a large set of
pairwise comparisons with regard to large sets of algorithms and datasets [7].

However, Kocaguneli et al.’s proposed stacking schemes do not consider the diversity
between the combined algorithms, though diversity is the essential theoretical component
of the ensemble in machine learning [47]. Elsewhere, many studies on ensemble, such as
several studies by Brown et al. [25, 48, 49] and Hogarth [50], have demonstrated that
an attempt to maximize the level of diversity could result in gaining much promising
accuracy. To observe the trade-off between (1) selecting the solo estimators in order
to maximize the expected performance of each individual estimator, and (2) selecting
the solo estimators in order to maximize the diversity of the selected algorithms, four
stacking schemes were compared with RF and CART. The four stacking schemes are as
given below.

• RF+Bagging+ABE denotes the stack that maximizes the overall expected accuracy
of each individual estimator. They are the highest performed estimators in this
study’s experiments, as demonstrated in the results of Table 4.

• Ensembles+ABE denotes the stack of the top 5 estimators given in Table 4. This
stack somewhat trades off the overall expected accuracy with the diversity by in-
cluding AdaBoost and GBM in the stack.

• Ensembles+ABE+OLS denotes the stack of the top 6 estimators, presented in Table
4. This stack further trades off the overall expected accuracy of each individual

MODEL-BASED SOFTWARE EFFORT ESTIMATION 583

estimator with the diversity by including OLS in the stack. Note that, only OLS
was included because it performed within the 5% losses threshold for more than half
of the datasets.

• RF+ABE+OLS+CART+SVR+ANN denotes the stack that maximizes the diver-
sity of the estimators, for instance, all of these estimators are based on different
algorithms.

Table 6 shows the results of the comparison among the four stacking schemes, RF and
CART using the same approach that generated the results presented in Table 4 and Table
5. The most noteworthy result, as shown in Table 6, is that neither the maximization of
the overall expected accuracy of each individual estimator nor the level of diversity yielded
the best performance from the comparisons. Notwithstanding, a trade-off between the
two objectives did. To the best of the researchers’ knowledge, this finding is novel for
the software effort estimation community and should be a good direction in the future to
search for an optimum way to generate an effective effort estimator stack.

Another noteworthy fact that can be observed from Table 6 is that Ensembles+ABE+
OLS is the best performer and that it has never exhibited losses exceeding 15%. In
comparing the two best stacking schemes of Table 6, Ensembles+ABE+OLS considered
the level of diversity more than Ensembles+ABE because it added OLS to the stack.

Table 6. Comparison of the four stacked ensemble schemes with RF and
CART, using the approach used in generating the results of Table 4 and
Table 5.

Algorithm stacks
losses ∈ losses ∈ losses ∈
[0%, 5%) [5%, 15%) [15%,∞)

1 Ensembles+ABE+OLS 11/13 2/13 0/13
2 Ensembles+ABE 11/13 1/13 1/13
3 RF+ABE+OLS+CART+SVR+ANN 10/13 3/13 0/13
4 RF+Bagging+ABE 5/13 5/13 3/13
5 RF 4/13 6/13 3/13
6 CART 3/13 3/13 7/13

Figure 2 illustrates the raw performance spectrums of Ensembles+ABE+OLS, RF, and
CART based on the six performance metrics used throughout the study. Plots in this
figure sort all the metrics over 13 datasets in the ascending order. The lower values indicate
the better performance of MAE, RSD, LSD, MBRE, and MMER. In contrast, the higher
values indicate the better performance of SA. In these plots, clearly the performance
spectrums of Ensembles+ABE+OLS were demonstrated to be better than the other two
solo-estimators for all six metrics.

In sum, stacking ensembles significantly outperformed the solo estimators in this ex-
periment. These results align with the findings of a study of Kocaguneli et al. [7] and
confirm its superiority. Furthermore, similar to Kocaguneli et al., this study found that
the performance of the process of stacking ensembles relies on optimizing the set of solo
estimators, where the highest expectable accuracy of stacking ensembles is likely to be
obtained when the trade-off between selecting the solo estimators with the highest ex-
pected performance in the case of each individual, and maximizing the diversity of the
selected algorithms is optimum.

584 P. PHANNACHITTA AND K. MATSUMOTO

Ensemble+ABE+OLS RF CART

0
1000
2000
3000
4000

1 13
All MAE, sorted

M
A

E

0

10

20

1 13
All RSD, sorted

R
S

D

0.4

0.8

1.2

1.6

1 13
All LSD, sorted

LS
D

0.4

0.8

1.2

1.6

1 13
All MBRE, sorted

M
B

R
E

0.3
0.4
0.5
0.6
0.7

1 13
All MMER, sorted

M
M

E
R

0.5
0.6
0.7
0.8
0.9

1 13
All SA, sorted

S
A

Figure 2. The spectrums of the six performance metrics comparing
Ensembles+ABE+OLS, RF, and CART. Lower MAE, RSD, LSD, MBRE,
and MMER indicate better performance. Higher SA indicates better per-
formance.

6. Discussion.

6.1. Findings contrary to existing studies. The finding most contrary to earlier
studies in software effort estimation is that CART does not appear to be an outstanding
algorithm. It is the authors’ belief that the findings of the present study are well substan-
tiated. The main differences between the setup of this study and that of the study which
nominated CART as the best non-ensemble algorithm are as follows.

• Different statistical significance test methods were used in this study. Several years
after the publication of Keung et al. [10], Kitchenham et al. [36] corroborated theo-
retical and empirical works and recommended that the Brunner’s test appears to be
the superior test method in comparison to the Wilcoxon rank-sum test widely used
in software effort estimation studies in the past.

• In one of the authors’ past studies [51], it was observed that many performance met-
rics used in the literature on software effort estimation are redundant. For example,
even though SD and RSD are two of the few metrics used, Foss et al. [41] proved
that they are less vulnerable to bias than many other metrics. The test of redun-
dancy using the redun R package suggested that only one of the two should be used.
Subsequently, six metrics were used in the experiments, and the results in Figure 2
show that all the selected six metrics were not redundant.

• Kitchenham et al. [36] also suggested applying the Kernel density estimation to all
the datasets used in empirical studies in order to confirm that they are independent
in the distributions. Kernel density estimation was suggested over other common
alternatives such as box plots because of its superior ability to capture and visualize
the existence of outliers and extreme values. The level of independence is important

MODEL-BASED SOFTWARE EFFORT ESTIMATION 585

to justify the generalization ability of the findings obtained from the datasets. Figure
1 confirms that experimental datasets are totally independent.

Aside from the results of CART, OLS is the other algorithm whose performance signif-
icantly differed from that of earlier studies. The main reasons for OLS performing much
better in the present study’s experiments is the use of the grid search hyperparameter
optimization. In the experiments of this study, the optimal choices with regard to data
normalization method and feature selection techniques are exhaustively searched along
with the optimal hyperparameter set. That is, OLS discussed in the present study can be
considered as the optimal choice from all the linear models preprocessed with a majority
of the data preprocessors examined in the study of Keung et al. [10]. This may confirm
the importance of the hyperparameter optimization process in software analytics, such
as software effort estimation. Even though the hyperparameter optimization has been
widely studied in other areas such as defect prediction, there was only one single recent
study by Xia et al. [44] that has explored its importance in software effort estimation.

6.2. Findings consistent with previous studies. The findings showing the superi-
ority of ensemble-learning algorithms are in broad agreement with the studies in both
software effort estimation and other domains. Abril and Sugiyama [4] adopted an esti-
mator based on RF to approach a Kaggle competition in stock prediction and won it. In
the literature on software effort estimation, the comparison of performance between the
stacked ensemble and the non-stacked ensemble has not been extensively explored. That
is, there seems to be no single software effort estimation study extensively exploring the
potential performance of the stacked ensemble that combines multiple ensemble-based
solo algorithms, such as a combination of RF, Bagging, and AdaBoost. Even though
Minku and Yao [52] showed that Bagging performed better than other ensemble-learning
algorithms on software effort datasets, they did not further investigate whether Bagging
could offer better performance when combined with other algorithms as a stacked ensem-
ble. Therefore, the present study appears to be the first that offers concrete evidence
showing that combining multiple ensemble algorithms and non-ensemble algorithms into
a stacked ensemble has great potential to offer a more accurate estimation for software
effort.

For the results concerning the relatively poor performance of ANN and Deep, we hy-
pothesized that significant overfitting had occurred. Chollet [6] noted that the worst over-
fitting was more likely to be introduced to some deep learning-based estimators when the
datasets are small and have a clear structure. As for empirical evidence, Nassif et al. [53]
compared multiple software effort estimators based on neural networks and deep learning
algorithms and noted that all the estimators that they compared tended to generate an
inaccurate estimation for nearly all of their experimental datasets.

Another result that aligns well with the studies in software effort estimation is the
outstanding performance of ABE. From Table 4 and Table 5, it is evident that ABE was
the only non-ensemble algorithm to achieve consistent and high rank. Even if ABE is
based on the simple k-nearest neighbors principle which has not often shown outstanding
performance elsewhere [54], the performance of ABE has long been recognized in the
software effort estimation community [22, 23, 55]. The authors believe that its essential
hypothesis, stating similar software projects with similar characteristics are likely to re-
quire similar effort to complete their development, is consistent, making the k-nearest
neighbors perform highly and distinguishably for software effort estimation.

6.3. Threats to validity. Use of hyperparameter optimization via the grid search tech-
nique is this study’s strategy as far as internal validity is concerned. For external validity,

586 P. PHANNACHITTA AND K. MATSUMOTO

the high level of independence confirmed by the kernel density estimations is the approach
that was opted to handle the possible external validity threats. Finally, the researchers
attempted to maximize the construct validity by pruning a list of commonly used metrics
to six robust and non-redundant metrics by carrying out a statistical redundancy test. It
is important to note that recent studies in software effort estimation were often criticized
for their inadequate use of biased performance metrics such as MMRE [41]. In contrast to
this, the authors believe that the strategies that were selected in this study to approach
the validity threats will promote a reliability of the results and the findings of the study.

7. Conclusion. The present study extensively explores whether the machine-learning
algorithms that performed outstandingly in recent active data-science competitions will
also perform equally well for software effort estimation. Particularly, 14 machine learning
algorithms including the increasingly popular: the gradient boosting machine and deep
learning, were compared over 13 benchmark-standard software effort estimation datasets
[18], and all of them were confirmed as genuinely independent. Based on the stable ranking
evaluation method that is most widely used in the literature on software effort estimation,
the following are the key findings of this study.

• Ensemble learning algorithms based on the principle of Bootstrap aggregating, for
example, Bagging and RF, performed the best overall over the 13 datasets. This
finding is different from that in other areas, such as computational physics [56], where
an ensemble based on the Boosting principle generally offers higher performance.

• ABE appeared to be the highest-performing non-ensemble learning algorithm in the
comparisons. This finding aligns well with many studies in software effort estimation
such as the studies by Kocaguneli et al. [8] and Shepperd and Schofield [22].

• Combining multiple effort estimators into a stacked ensemble, for instance, to simply
average the estimated effort values, consistently offered higher accuracy than any of
the 14 estimators compared in the study. Particularly, the stacked ensemble that
offered the best overall accuracy in this study took the average of the estimated effort
values produced by Bagging, RF, ABE, AdaBoost, GBM, and OLS. Each of these
algorithms had its hyperparameters and data preprocessors optimized by using the
grid search technique [38].

• The researchers confirm the findings of Xia et al. [44] that hyperparameter config-
urations strongly affect the performance offered by machine learning-based software
effort estimators.

• The stable-ranking-identification method [10] is recommended for comparing mul-
tiple machine-learning algorithms. The most important lessons for the use of the
method are as follows. (1) The number of datasets should be large, and all of the
datasets must have significantly different distributions. Kernel density estimation
[36] is recommended by the authors to examine the distribution. (2) The number of
performance metrics should be large, and none of the metrics should be overlapped.
A redundancy test [45] is recommended by the authors to observe this. (3) The
statistical test method should be sufficiently robust. For small datasets, such as the
software effort estimation datasets which generally contain less than 100 instances,
the Brunner test [46] is recommended by the authors.

For future research in software effort estimation that adopts machine-learning algo-
rithms, the authors propose that finding the optimal combination scheme for generating
the optimal stacked ensemble should be undertaken. The key results of the present study
hinted strongly that better selection schemes for combining the estimators should con-
sider both the overall expected accuracy of each individual estimator as well as the level
of diversity of the estimators to be combined. However, to be able to directly optimize

MODEL-BASED SOFTWARE EFFORT ESTIMATION 587

the two objectives, further investigation is required to find a more precise way to quantify
overall expected accuracy and level of diversity.

REFERENCES

[1] L. L. Minku and X. Yao, Which models of the past are relevant to the present? A software effort
estimation approach to exploiting useful past models, Automat. Softw. Eng., vol.24, no.3, pp.499-542,
2017.

[2] M. K. S. Ganesh and K. Thanushkodi, An efficient software cost estimation technique using fuzzy
logic with the aid of optimization algorithm, International Journal of Innovative Computing, Infor-
mation and Control, vol.11, no.2, pp.587-597, 2015.

[3] Kaggle: Your Home for Data Science, https://www.kaggle.com, 2018.
[4] I. M. de Abril and M. Sugiyama, Winning the Kaggle algorithmic trading challenge with the com-

position of many models and feature engineering, IEICE T. Inf. Syst., vol.96, no.3, pp.742-745,
2013.

[5] A. Goldbloom, Data prediction competitions – Far more than just a bit of fun, Proc. of IEEE Int.
Conf. on Data Mining Workshops, pp.1385-1386, 2010.

[6] F. Chollet, Deep Learning with Python, Manning Publications Co., 2017.
[7] E. Kocaguneli, T. Menzies and J. Keung, On the value of ensemble effort estimation, IEEE T.

Software Eng., vol.38, no.6, pp.1403-1416, 2012.
[8] E. Kocaguneli, T. Menzies, J. Keung, D. Cok and R. Madachy, Active learning and effort estimation:

Finding the essential content of software effort estimation data, IEEE T. Software Eng., vol.39, no.8,
pp.1040-1053, 2013.

[9] E. Kocaguneli, T. Menzies, J. Hihn and B. H. Kang, Size doesn’t matter? On the value of software
size features for effort estimation, Proc. of the 8th Int. Conf. on Predictive Models in Software
Engineering, pp.89-98, 2012.

[10] J. Keung, E. Kocaguneli and T. Menzies, Finding conclusion stability for selecting the best effort
predictor in software effort estimation, Automat. Softw. Eng., vol.20, no.4, pp.543-567, 2013.

[11] Scikit-Learn: Machine Learning in Python, http://scikit-learn.org/, 2018.
[12] Keras: The Python Deep Learning Library, https://keras.io/, 2018.
[13] E. Kocaguneli and T. Menzies, Software effort models should be assessed via leave-one-out validation,

J. Syst. Software, vol.86, no.7, pp.1879-1890, 2013.
[14] F. Sarro, A. Petrozziello and M. Harman, Multi-objective software effort estimation, Proc. of the

38th Int. Conf. on Software Engineering, pp.619-630, 2016.
[15] M. Jorgensen and M. Shepperd, A systematic review of software development cost estimation studies,

IEEE T. Software Eng., vol.33, no.1, pp.33-53, 2007.
[16] K. Molokken and M. Jorgensen, A review of software surveys on software effort estimation, Proc. of

Int. Symp. on Empirical Software Engineering, pp.223-230, 2003.
[17] M. Shepperd and G. Kadoda, Comparing software prediction techniques using simulation, IEEE T.

Software Eng., vol.27, no.11, pp.1014-1022, 2001.
[18] Tera-PROMISE: One of the Largest Repositories of SE Research Data, http://openscience.us/repo/,

2015.
[19] R. Wilcox, Modern Statistics for the Social and Behavioral Sciences: A Practical Introduction, CRC

Press, 2011.
[20] K. S. Mathad, S. Chittal, S. Sharma, S. Mulik, K. Rajhansh and B. Tech, Share market analysis

and prediction system using machine learning, International Journal of Engineering Science and
Computing, vol.7, no.6, pp.12795-12800, 2017.

[21] L. Columbus, Data Scientist Is the Best Job In America According Glassdoor’s 2018 Rank-
ings, https://www.forbes.com/sites/louiscolumbus/2018/01/29/data-scientist-is-the-best-job-in-am
erica-according-glassdoors-2018-rankings, 2018.

[22] M. Shepperd and C. Schofield, Estimating software project effort using analogies, IEEE T. Software
Eng., vol.23, no.11, pp.736-743, 1997.

[23] P. Phannachitta, J. Keung, A. Monden and K. Matsumoto, A stability assessment of solution adap-
tation techniques for analogy-based software effort estimation, Empir. Softw. Eng., vol.22, no.1,
pp.474-504, 2017.

[24] M. Garland, S. Le Grand, J. Nickolls, J. Anderson, J. Hardwick, S. Morton, E. Phillips, Y. Zhang
and V. Volkov, Parallel computing experiences with CUDA, IEEE Micro, vol.28, no.4, pp.13-27,
2008.

588 P. PHANNACHITTA AND K. MATSUMOTO

[25] G. Brown, J. L. Wyatt and P. Tiňo, Managing diversity in regression ensembles, J. Mach. Learn.
Res., vol.6, pp.1621-1650, 2005.

[26] E. Bauer and R. Kohavi, An empirical comparison of voting classification algorithms: Bagging,
boosting, and variants, Machine Learning, vol.36, nos.1-2, pp.105-139, 1999.

[27] H. Zhao and S. Ram, Constrained cascade generalization of decision trees, IEEE T. Knowl. Data.
En., vol.16, no.6, pp.727-739, 2004.

[28] A. J. Albrecht and J. E. Gaffney, Software function, source lines of code, and development effort
prediction: A software science validation, IEEE T. Software Eng., vol.9, no.6, pp.639-648, 1983.

[29] A. Bakır, B. Turhan and A. B. Bener, A new perspective on data homogeneity in software cost
estimation: A study in the embedded systems domain, Software Qual. J., vol.18, no.1, pp.57-80,
2010.

[30] K. Srinivasan and D. Fisher, Machine learning approaches to estimating software development effort,
IEEE T. Software Eng., vol.21, no.2, pp.126-137, 1995.

[31] B. Kitchenham and K. Känsälä, Inter-item correlations among function points, Proc. of the 15th Int.
Conf. on Software Engineering, pp.477-480, 1993.

[32] C. F. Kemerer, An empirical validation of software cost estimation models, Commun. ACM, vol.30,
no.5, pp.416-429, 1987.

[33] K. Maxwell, Applied Statistics for Software Managers, Prentice-Hall, Englewood Cliffs, NJ, 2002.
[34] Y. Miyazaki, M. Terakado, K. Ozaki and H. Nozaki, Robust regression for developing software

estimation models, J. Syst. Software, vol.27, no.1, pp.3-16, 1994.
[35] T. Menzies, D. Port, Z. Chen, J. Hihn and S. Stukes, Validation methods for calibrating software

effort models, Proc. of the 27th Int. Conf. on Software Engineering, pp.587-595, 2005.
[36] B. Kitchenham, L. Madeyski, D. Budgen, J. Keung, P. Brereton, S. Charters, S. Gibbs and A. Po-

hthong, Robust statistical methods for empirical software engineering, Empir. Softw. Eng., vol.22,
no.2, pp.579-630, 2017.

[37] R. Kohavi, A study of cross-validation and bootstrap for accuracy estimation and model selection,
Proc. of the 14th Int. Joint Conf. on Artificial Intelligence, pp.1137-1143, 1995.

[38] V. Vo, J. Luo and B. Vo, A turning points method for stream time series prediction, International
Journal of Innovative Computing, Information and Control, vol.9, no.10, pp.3965-3980, 2013.

[39] B. Kitchenham and E. Mendes, Software productivity measurement using multiple size measures,
IEEE T. Software Eng., vol.30, no.12, pp.1023-1035, 2004.

[40] K. E. Bennin, J. Keung, P. Phannachitta, A. Monden and S. Mensah, Mahakil: Diversity based
oversampling approach to alleviate the class imbalance issue in software defect prediction, IEEE T.
Software Eng., 2017.

[41] T. Foss, E. Stensrud, B. Kitchenham and I. Myrtveit, A simulation study of the model evaluation
criterion MMRE, IEEE T. Software Eng., vol.29, no.11, pp.985-995, 2003.

[42] M. Wilde, IEEE Xplore digital library, The Charleston Advisor, vol.17, no.4, pp.24-30, 2016.
[43] E. Kocaguneli, T. Menzies and E. Mendes, Transfer learning in effort estimation, Empir. Softw.

Eng., vol.20, no.3, pp.813-843, 2015.
[44] T. Xia, R. Krishna, J. Chen, G. Mathew, X. Shen and T. Menzies, Hyperparameter optimization

for effort estimation, arXiv:1805.00336, 2018.
[45] Hmisc: Harrell Miscellaneous, https://cran.r-project.org/package=Hmisc, 2018.
[46] E. Brunner, U. Munzel and M. L. Puri, The multivariate nonparametric Behrens-Fisher problem, J.

Stat. Plan. and Inf., vol.108, no.1, pp.37-53, 2002.
[47] X. Zhu, P. Zhang, X. Lin and Y. Shi, Active learning from stream data using optimal weight classifier

ensemble, IEEE T. Syst. Man. Cy. B., vol.40, no.6, pp.1607-1621, 2010.
[48] G. Brown, J. Wyatt, R. Harris and X. Yao, Diversity creation methods: A survey and categorisation,

Inform. Fusion, vol.6, no.1, pp.5-20, 2005.
[49] G. Brown and L. I. Kuncheva, “Good” and “bad” diversity in majority vote ensembles, Int. Workshop

on Multiple Classifier Systems, pp.124-133, 2010.
[50] R. M. Hogarth, A note on aggregating opinions, Organ. Behav. Hum. Perf., vol.21, no.1, pp.40-46,

1978.
[51] P. Phannachitta, J. Keung, K. E. Bennin, A. Monden and K. Matsumoto, Filter-INC: Handling

effort-inconsistency in software effort estimation datasets, Proc. of the 23rd Asia-Pacific Software
Engineering Conference, pp.185-192, 2016.

[52] L. L. Minku and X. Yao, Ensembles and locality: Insight on improving software effort estimation,
Inform. Software Tech., vol.55, no.8, pp.1512-1528, 2013.

MODEL-BASED SOFTWARE EFFORT ESTIMATION 589

[53] A. B. Nassif, M. Azzeh, L. F. Capretz and D. Ho, Neural network models for software development
effort estimation: A comparative study, Neural Comput. Appl., vol.27, no.8, pp.2369-2381, 2016.

[54] J. Wei, X. Qi and M. Wang, Collaborative representation classifier based on k nearest neighbors for
classification, J. Softw. Eng., vol.9, no.1, pp.96-104, 2015.

[55] P. Phannachitta, Robust comparison of similarity measures in analogy based software effort estima-
tion, Proc. of the 11th Int. Conf. on Software, Knowledge, Information Management and Applica-
tions, pp.1-7, 2017.

[56] T. Chen and T. He, Higgs boson discovery with boosted trees, NIPS Workshop on High-Energy
Physics and Machine Learning, pp.69-80, 2015.

