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Abstract. Differential Evolution (DE) is one of the efficient Evolutionary Algorithms
(EAs) for the continuous optimization domain. Similar to other EAs, DE algorithm
works on a population of candidate solutions. Population initialization in DE is an
important operation because it can affect the convergence speed and also the quality of
the obtained solution. If we can provide good initial population to DE, improvement
of search efficiency can be expected. However, in black-box optimization, there exists
no prior information about the search landscape of a given problem. Therefore, in this
research we use DIRECT (DIviding RECTangles) algorithm to provide a good initial
population to DE. DIRECT is a deterministic global optimization algorithm for bound-
constrained problems. The algorithm, based on a space-partitioning scheme, performs
both global exploration and local exploitation by one tuning parameter. In the proposed
method, named DE-DIRECT, first the search by DIRECT is performed until a certain
number of iterations. Next, the solutions obtained by DIRECT are used as the initial
individuals of DE. The remaining search is performed by DE using DIRECT’s solutions
until the total budget is exhausted. In order to extract effective individuals for DE from
the solution set of DIRECT, we introduce a selection method considering diversity as well
as accuracy of solutions. The effectiveness of the proposed DE-DIRECT is examined and
discussed by experiments on various benchmark functions.
Keywords: Differential evolution, DIRECT, Population initialization

1. Introduction. Evolutionary Algorithms (EAs), such as Genetic Algorithm (GA) [1],
Particle Swarm Optimization [2], Differential Evolution (DE) [3], are population-based
stochastic optimization method. EAs have successfully been applied to optimization prob-
lems in various research fields [4]. However, in some real-world applications, execution of
a very expensive simulation may be required to calculate the function value of the search
point. In these problems, EAs must solve optimization problems under tight function
evaluation budget. Differential Evolution (DE) is a stochastic direct search optimization
method for solving global optimization problems in continuous domain. It has exhibited
excellent performance for a wide range of benchmark problems [5, 6]. However, in order
to find high quality solutions in expensive problems, further improvement is required.

In this research, we focus on the method of generating initial individuals of DE for
enhancing its performance. The selection of the initial population in a population-based
heuristic optimization method is very important, since it affects the search for several
iterations and often has an influence on the obtained solution [7]. Therefore, various pop-
ulation initialization techniques have been proposed [8]. This paper presents a heuristic
method based on the combination of DIRECT (DIviding RECTangles) [9] and DE. The
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DIRECT is a global optimization method first motivated by Lipschitz optimization. This
method treats the design variable space as a hypercube and repeats partitioning based
on the evaluation value of center point of the hyper-rectangles. In the proposed method,
called DE-DIRECT, a search by DIRECT is performed first using a part of the given
function evaluation budgets. Next, some individuals are selected from the search points
obtained by DIRECT, and they are used as a part of initial population of DE. In order
to extract effective individuals from DIRECT, we introduce a selection method consid-
ering diversity as well as accuracy of solution. By using the better solution set provided
by DIRECT as the initial population, DE can start the search from the promising area
in the solution space. In numerical experiments, we find out DE-DIRECT can enhance
the search performance of DE for the high dimensional benchmark problems under tight
function evaluation budget.
This paper is organized as follows. In the next section, we briefly describe DIREC-

T algorithm. In Section 3 we describe DE framework. In Section 4 we present our
DE-DIRECT algorithm in detail. In Section 5 we provide computational results using
benchmark problems and compare our algorithm to original DE and DIRECT. Finally,
conclusions are summarized in Section 6.

2. DIRECT. DIRECT is a deterministic sampling method for global minimum of a real
valued objective function over a bound-constrained domain. The method does not need
derivative information and the progress of the optimization is governed only by evaluations
of the objective function. In this study, the following optimization problem with lower
bound and upper bound constraints will be discussed.

minimize f(x)

subject to Lj ≤ xj ≤ Uj, j = 1, . . . , D
(1)

where x = (x1, x2, . . . , xD) is a D-dimensional vector and f(x) is an objective function.
Values Lj and Uj are the lower bound and the upper bound of xj, respectively. In the
search space, every point satisfies the lower and upper bound constraints.
The procedure of DIRECT algorithm is outlined in Algorithm 1. It iteratively identifies

and divides potentially-optimal hyper-rectangles until the evaluation budget is exhausted.
FE direct is the maximum number of function evaluations. In the initialization stage, the
original hyper-rectangular search space is normalized into a unitD-dimensional hypercube

Algorithm 1 DIRECT

1: Normalize the search space to be the unit hypercube with center point c;
2: Set iteration t = 1;
3: Evaluate f(c), fmin = f(c), g = 0, FE = 1;
4: while FE < FE direct do
5: Identify the potentially optimal hyper-rectangle set M ⊂ H;
6: while M ̸= ∅ do
7: Take j ∈M
8: Sample new points, evaluate f at the new points and divide the hyper-rectangle;
9: Update fmin, FE = FE +∆FE
10: Set M = M \ {j}
11: end while
12: t = t+ 1
13: end while
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by Equation (2).

Ω = {x ∈ RD : 0 ≤ xj ≤ 1}, j = 1, . . . , D (2)

2.1. The first iteration. The DIRECT algorithm begins by evaluating f at the center of
Ω, c = (1/2, . . . , 1/2). In the first iteration, Ω itself is the first potentially optimal hyper-
rectangle. Next step is to divide this hypercube. The algorithm samples the objective
values at the points c ± 1

3
ej, where ej is the jth unit vector. The 2D points sampled

become centers of their own hyper-rectangles, and the algorithm continues to the next
iteration.

2.2. General iterations of DIRECT. After the first iteration, the algorithm identifies
potentially optimal hyper-rectangles. Let H be the set of hyper-rectangles created by
DIRECT after t iterations and let fmin be the best value of the objective function found
so far. A hyper-rectangle i ∈ H with center ci and size di is said to be potentially optimal
if there exists K̂ such that for an arbitrarily small ϵ > 0,

f(ci)− K̂di ≤ f(cj)− K̂dj, ∀j ∈ H (3)

f(ci)− K̂di ≤ fmin − ϵ|fmin| (4)

In the above expressions, ϵ is a balance parameter which provides the user control of the
balance between local and global search. Values of ϵ ∈ [10−7, 10−3] are reported to work
well in [9]. In the original DIRECT, hyper-rectangle size is measured by the distance
from its center to a vertex. In the paper, we measure hyper-rectangles by their longest
side [10].

Figure 1 is a geometric interpretation of this definition. First, the hyper-rectangles in H
is ordered in groups according to the size di. Equations (3) and (4) correspond to selecting
rectangles on the lower convex hull of the graph. ϵ can control the position of square dot
(0, fmin− ϵ|fmin|) which alters the lower convex hull. As a result, good hyper-rectangles in
the smaller size groups may exclude. Meanwhile, the best hyper-rectangle in the largest
size group is always selected.

|

Figure 1. Identification of potentially optimal hyper-rectangles

Potentially optimal hyper-rectangles are subdivided along their long coordinate direc-
tions. This strategy ensures equal sampling in every dimension. The procedure of division
is shown as follows.

Step 1: Let R be a potentially optimal hyper-rectangle with center c.
Step 2: Let ξ be the maximal side length of R.
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Step 3: Let I be the set of coordinate directions corresponding to sides of R with length
ξ.

Step 4: Evaluate the objective function at the points c± 1
3
ξej, for all j ∈ I, where ej is

the jth unit vector. Increase of the number of evaluations ∆FE is the number
of newly sampled points.

Step 5: Let wj = min
{
f
(
c± 1

3
ξej

)}
.

Step 6: Divide the hyper-rectangle containing c into thirds along the dimensions in I,
starting with the dimension with lowest wj and continuing to the dimension with
the highest wj.

Figure 2 shows an example of division and selection of potential optimal hyper-rectangle.
In Figure 2(a), the hypercube is cut in the direction perpendicular to x2. Then, the hy-
percube is cut in the direction perpendicular to x1. The hypercube, with a function value
at the center point equal to 2, is the potential optimal hyper-rectangle after two divisions.
Figure 2(b) is the next step in the algorithm. DIRECT will divide the shaded area. Figure
2(c) shows the third step in the algorithm for this example. In this step DIRECT will
divide the two shaded rectangles. The rectangle in the lower area is a square; therefore,
it is divided twice as Figure 2(a). Also, the top larger area is a rectangle and it is divided
once.
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Figure 2. Division and selection of potential optimal hyper-rectangle

3. Differential Evolution. DE is one of the variants of evolutionary algorithms that
use a population. An individual of DE is represented by vector x = (x1, x2, . . . , xD).
There are some variants of DE that have been proposed. The variants are denoted as
DE/base/num/cross, where “base” denotes the manner of constructing the mutant vec-
tor, “num” denotes the number of difference vectors, and “cross” indicates crossover
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Algorithm 2 DE/rand/1/-

1: /*Initialize a population*/
2: P = NP individuals {xi} generated randomly in S;
3: Set scaling factor F and Crossover rate CR;
4: while FE < FEmax do
5: for i = 1 to NP do
6: /*DE operation*/
7: (xr1 ,xr2 ,xr3) = randomly selected from P s.t. r1 ̸= r2 ̸= r3 ̸= i;
8: vi = xr1 + F (xr2 − xr3);
9: ui = trial vector generated from xi and vi by a crossover;
10: end for
11: for i = 1 to NP do
12: if f(ui) ≤ f(xi) then
13: xnew

i = ui;
14: else
15: xnew

i = xi;
16: end if
17: end for
18: P = {xnew

i , i = 1, 2, . . . ,NP};
19: end while

method. The pseudo-code of DE/rand/1/- is presented in Algorithm 2, where FE is the
current number of function evaluations and FEmax is the maximum number of evaluations.

In the initialization phase, NP individuals P = {xi, i = 1, 2, . . . ,NP} are randomly
generated in a given search space. Each individual contains D genes as decision variables.
At each generation, DE creates a mutant vector vi = (vi1, vi2, . . . , viD) for each individual
xi (called a target vector) in the current population. In case of DE/rand/1 strategy, a
mutant vector vi is generated as follows:

vi = xr1 + F (xr2 − xr3) (5)

The indices r1, r2 and r3 are distinct integers uniformly chosen from the set {1, 2, . . . ,NP}
\{i}. The parameter F is called the scaling factor, which amplifies the difference vectors.

After mutation, DE performs the crossover operator between target vector and mutant
vector, and generates a trial vector ui = (ui1, ui2, . . . , uiD). In this paper, we use shuffled
exponential crossover, which does not rely on arbitrary dependencies between adjacent
variables [12]. In the crossover, CR is the crossover rate within the range [0, 1) and
presents the probability of generating genes for a trial vector ui from a mutant vector vi.
If the jth element uij of the trial vector ui is infeasible (i.e., out of the boundary [Lj, Uj]),
it is reset as follows:

uij =

{
2Lj − xij (uj < Lj)
2Uj − xij (uj > Uj)

(6)

After all of the trial vectors have been generated, the selection operator is performed
to select a better one from the target vector xi and its corresponding trial vector ui

according to their fitness values f(·). The selected vector is given by

xnew
i =

{
ui if f(ui) ≤ f(xi)
xi otherwise

(7)

and xnew
i is used as a target vector in the next generation. The algorithm is terminated

when the maximum number of function evaluations is reached.
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4. DE with DIRECT Algorithm. In this section we propose a combination of DE and
DIRECT to realize efficient and robust search in expensive optimization problems. In the
proposed method, called DE-DIRECT, firstly a search by DIRECT is performed using a
part of the given function evaluation budgets. The search of DIRECT is terminated when
the number of function evaluations reaches FE direct. After DIRECT, the remaining search
is performed by DE until the number of function evaluations reaches FEmax. FE direct is
given as follows:

FE direct = FEmax × rfe (8)

where rfe is a parameter for controlling function evaluation budgets of DIRECT.
After the search of DIRECT is finished, solution set Pdirect is extracted from the set

of hyper-rectangles H which are obtained by DIRECT. In the initialization phase, DE
obtains NPdirect individuals from DIRECT, and the remaining (NP−NPdirect) individuals
are generated randomly. NPdirect is given as follows:

NPdirect = NP × rnp (9)

where rnp is the proportion of individuals that are selected from DIRECT.
To improve the convergence speed of DE, it is desirable to provide good solutions from

DIRECT to DE. However, diversity of the initial population may be decreased if the
extracted search points are concentrated in a specific area of solution space. Therefore,
we introduce an extraction method considering diversity as well as accuracy of solution.
Algorithm 3 is the procedure of selection method of initial individuals from DIRECT.

Firstly, the hyper-rectangles H are sorted in groups according to the size d as shown in
Figure 3(a). Let ∆s be the set of all hyper-rectangles of the same size d, for s = 1, . . . , S.

Algorithm 3 Selection procedure of initial individuals from DIRECT

Set index s = 1;
Set Pdirect ← ∅;
while (|Pdirect| < NPdirect) do
if ∆s ̸= 0 then
Choose best point bestp ∈ ∆s;
Set Pdirect ← Pdirect ∪ bests;
Set ∆s ← ∆s \ {bests};

end if
s = (s+ 1)%S;

end while

Δ  

(a) Grouping

Select best point in each Δ

(b) Extraction

Figure 3. Grouping and extraction of hyper-rectangle set H
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Next, a phase of extracting search points is performed as shown in Figure 3(b). Here, index
s is set to 1 and the best search point best1 in the smallest ∆1 is added to Pdirect. After
that, while increasing s, the best points from each ∆s are added to Pdirect. If s exceeds
S, s resets to 1. Also, individuals to be selected do not allow duplication. By considering
not only the function value but also the size of hyper-rectangle, it is possible to select the
good search points evenly from the whole solution domain searched by DIRECT.

5. Experiment.

5.1. Setup. In this section, we investigate the performance of DE-DIRECT using the
benchmark functions as shown in Table 1, where dimension D = 100. In summary,
functions F1-F4 are unimodal and functions F5-F8 are multimodal. All functions have an
optimal value 0. For functions where the optimal solution is located at the origin, the
position of its optimal solution is shifted by random vector o. The maximum number
of function evaluations FEmax is set to 2 × 105. In DE and DE-DIRECT, independent
10 runs are performed for each function. Since DIRECT is a deterministic optimization
algorithm, only one trial was performed. Each algorithm stops when the number of
function evaluations exceeds the FEmax.

Table 1. Benchmark functions

Name Expression Domain

F1: Sphere f(z) =
D∑
i=1

z2i , z = x− o [−5.12, 5.12]D

F2: Ridge f(z) =

D∑
i=1

 i∑
j=1

zj

2

, z = x− o [−100, 100]D

F3: Rosenbrock(chain) f(x) =
D−1∑
i=1

{
100

(
xi+1 − x2

i

)2
+ (xi − 1)2

}
[−2.048, 2.048]D

F4: Rosenbrock(star) f(x) =
D∑
i=2

{
100

(
x1 − x2

i

)2
+ (xi − 1)2

}
[−2.048, 2.048]D

F5: Griewank f(z) = 1 +

D∑
i=1

z2i
4000

−
D∏
i=1

(
cos

(
zi√
i

))
, z = x− o [−512, 512]D

F6: Schaffer f(z) =
D−1∑
i=1

(
z2i + z2i+1

)0.25 × {
sin2

(
50

(
z2i + z2i+1

)0.1)
+ 1

}
, [−100, 100]D

z = x− o

F7: Schwefel f(x) = 418.9829D −
D∑
i=1

xi sin
(√
|xi|

)
[−500, 500]D

F8: Rastrigin f(z) = 10D +

D∑
i=1

z2i − 10cos(2πzi), z = x− o [−5.12, 5.12]D

The strategy of DE is DE/rand/1/exp and the parameters settings for DE are as follows
– the population size NP = 200, F = 0.5, CR = 0.95. In DIRECT, the balance parameter
ϵ is set to 10−6. The performance of the DE-DIRECT has been evaluated for rnp ∈
{0.5, 0.7}, rfe ∈ {0.1, 0.3, 0.5}.

5.2. Results. Table 2 shows the results (mean function value and standard deviation)
of DE, DIRECT, and DE-DIRECT. For each function, mean is shown in the top row
and standard deviation is shown in the bottom row. For Sphere (F1) and Griewank (F5)
functions, DIRECT obtains better results than other methods. In the DIRECT method,
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Table 2. Experimental results on DE, DIECT, and DE-DIRECT. The top
row is mean function value and the bottom row is standard deviation.

Function DE DIRECT
DE-DIRECT (rnp, rfe )

(0.5, 0.1) (0.5, 0.3) (0.5, 0.5) (0.7, 0.1) (0.7, 0.3) (0.7, 0.5)

F1
1.47E+00 1.08E−05 1.60E−01 1.02E−02 1.88E−03 1.83E−01 6.68E−03 9.99E−04
1.19E−01 1.65E−02 3.93E−04 2.82E−04 8.57E−02 1.08E−03 7.89E−05

F2
1.30E+05 1.65E+04 2.43E+04 1.77E+04 1.55E+04 2.31E+04 1.64E+04 1.45E+04
8.11E+03 5.83E+02 5.54E+02 4.04E+02 8.19E+02 4.97E+02 4.92E+02

F3
9.76E+02 9.68E+01 9.47E+01 9.54E+01 9.58E+01 9.41E+01 9.51E+01 9.56E+01
7.59E+01 1.34E−01 2.04E−01 1.02E−01 1.62E−01 2.71E−01 1.33E−01

F4
1.02E+03 6.76E+01 5.52E+01 5.27E+01 5.62E+01 7.57E+01 5.16E+01 5.47E+01
8.77E+01 3.73E−01 2.02E−01 2.59E−01 5.64E+00 2.51E−01 4.09E−01

F5
4.68E+00 1.01E−02 1.40E+00 8.64E−01 3.09E−01 1.46E+00 6.45E−01 1.71E−01
2.96E−01 4.13E−02 2.15E−02 3.10E−02 2.14E−01 4.75E−02 3.02E−02

F6
3.95E+02 2.14E+02 2.13E+02 1.51E+02 1.62E+02 2.14E+02 1.59E+02 1.69E+02
6.88E+00 4.82E+00 4.28E+00 6.40E+00 1.13E+01 1.09E+01 6.89E+00

F7
1.42E+04 1.18E+04 9.76E+03 1.00E+04 9.90E+03 1.03E+04 1.13E+04 1.08E+04
4.28E+02 1.53E+02 6.24E+02 3.47E+02 4.39E+02 2.49E+02 2.82E+02

F8
4.72E+02 2.89E+02 2.66E+02 1.57E+02 1.68E+02 2.55E+02 1.65E+02 1.80E+02
1.50E+01 1.37E+01 4.29E+00 5.42E+00 1.00E+01 6.84E+00 1.00E+01

when applied to a high-dimensional problem, an area to be divided is enlarged, making
exhaustive search impossible. Therefore, the DIRECT method is not used much for the
high dimensional problems [11]. However, if the objective function is simple unimodal
landscape like the Sphere function, DIRECT can easily identify promising areas and
perform effective search even in higher dimensions. Also, Griewank function is multimodal
landscape but it is not so rugged. Due to this, it is considered that DIRECT showed good
results.
For other functions which have dependencies between variables (F2, F3, and F4) and

multimodal landscape (F6, F7, and F8), DE-DIRECT shows superior performance in
almost all combinations of rfe and rnp. However, the combination of the best parameters
differs according to the objective function. Also, as the number of individuals selected from
DIRECT is larger, the search efficiency of DE-DIRECT is not always improved. Except
for F2, F3, and F4, when the proportion of DIRECT individuals is large, population
diversity decreases and the search efficiency of DE stagnates.
Next, Figure 4 shows the convergence graphs of function F1, F5, F7, and F8 where the

mean best objective values of DE, DIRECT, DE-DIRECT are plotted over the number of
function evaluations. Here, the plot of DE-DIRECT is the best parameter combination.
As can be seen from these figures, DIRECT shows faster convergence than DE in F1 and
F5. However, for F7 and F8 which are strong multimodal landscape, the objective value of
DIRECT stagnates at the beginning of the search. On the other hand, in DE-DIRECT,
population diversity can be preserved by combining the solutions obtained by DIRECT
with random individuals, and consequently it is able to eventually find the good solution.
From the above results, we conclude that DE-DIRECT has the advantages of both high
search efficiency of DIRECT and robustness of DE, and consequently realize more effective
search than DE.

6. Conclusion. The selection of the initial population in DE is very important, since it
affects the search efficiency and the goodness of the obtained solution. In this study, we
focused on the method of generating initial individuals of DE. In order to provide a good
initial individual to DE, we proposed a search method combining DE and DIRECT. In
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Figure 4. Convergence graphs

the proposed method, called DE-DIRECT, a search by DIRECT is performed first using
a part of the given function evaluation budgets. Next, some individuals are selected from
the search points obtained by DIRECT as a part of initial population of DE. In order to
extract effective individuals from the solution set obtained by DIRECT, we introduced
a selection method considering diversity as well as accuracy of solution. To evaluate the
performance of the proposed DE-DIRECT, we conducted experiments using large-scale
benchmark functions. From the experimental results, we confirmed that DE-DIRECT
showed faster convergence than DE and realized efficient search in multimodal functions
where DIRECT stagnates in the early stage of search. However, it was found that the
setting of appropriate parameters in DE-DIRECT is dependent on the function landscape.
In the future, we intend to conduct more detailed sensitivity analysis about rfe and rnp
on various expensive optimization problems [13]. Furthermore, we will combine the DE-
DIRECT with landscape detection technique [14] and aim to develop dynamic parameter
adaptation of rfe and rnp.
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