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Abstract. A new recursive identification algorithm using the cosine basis functions has
been developed for the time-varying systems. It is demonstrated that through expanding
the time-varying parameters within a sliding time window into the virtual even period-
ic functions, the parameters in the window can explicitly be approximated by the cosine
series. Following the orthogonality of the trigonometric functions, the parameter estima-
tion and the efficient update of the data matrices are recursively implemented to decrease
the computational complexity. Moreover, a smoothing technique is also considered to re-
duce the estimation error caused by the noise effects. In contrast with the standard RLS,
LMS/NLMS, AP/BOP and the conventional methods based on the basis functions, the
proposed algorithm has higher tracking performance even for the high series degree, and
can reduce the distortion of the Gibbs effect at the window edges.
Keywords: System identification, Recursive algorithm, Time-varying, Basis function

1. Introduction. Due to component aging, fast variation of the environment, the dy-
namic characteristics of a physical process vary with time. When the process varies slowly,
some existing adaptive algorithms, such as the segmentation approach to separate a time-
varying model into several local models [1, 2], the recursive least squares (RLS) with a
forgetting factor [3], the least mean square (LMS) or the normalized least mean square
(NLMS) algorithms [4, 5], the affine projection algorithm (AP) and block orthogonal
projection (BOP) [6], may track the varying dynamics.

Identification of time-varying systems has been successfully applied in many practical
applications. For example, the identification of the time-varying system is used to address
the terminal control problem [7] in computer engineering and robotic manipulator, the
adaptive equalization of rapidly fading communication channels for non-stationary signals
[8], the linear parameter varying model in transportation systems such as flight projectile
and car steering [9, 10], the identification-based fault diagnosis [11] and time-varying
model for effective treatments for certain brain diseases in biomedical engineering [12].

Nevertheless, if the variation is too fast, most of the existing algorithms fail to follow the
variation satisfactorily, unless the prior information of the variation is available [13]. For
the systems with less prior information, several methods use an explicit approximation
of the parameter variation through some orthogonal basis functions such as the trigono-
metric or Legendre basis. They help to approximate the dynamics at an arbitrary rate
when the signals have sufficient excitations, so that they have better tracking performance
than other existing methods. Since the trigonometric functions have differentiability and
computational stability, the varying parameters are often approximated by the Fourier
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series in the conventional basis function methods, where the parameters within a chosen
time window are expanded into the virtual periodic functions whose right and left window
edges correspond to the newest, the oldest information on the process variation, respec-
tively. Nevertheless, the values of the virtual periodic functions are generally different
at the right and left edges. As a result, the discontinuity causes the Gibbs effect in the
series expansion and severely degrades the tracking performance at the window edges
[14]. On the other hand, when expanding the varying parameters into the virtual even
periodic functions that are approximated by the cosine series [15], the virtual functions
are continuous at the window edges when the true parameters vary continuously.
On the other hand, it is expected to implement the algorithms recursively for the rapid

time-varying systems in many applications, where the recursive computability of the basis
functions is an essential issue in the recursive algorithms. Nevertheless, the recursion of
cosine series is more complicated than the standard Fourier series when updating the data
matrices, and their inversion, recursively, so most of the conventional cosine basis based
algorithms work in batches rather than the recursive processing. A recursive identification
algorithm with a forgetting factor for time-varying systems is proposed [16]. The forget-
ting factor makes the time window shift easily since the past data beyond the window
decay to zero, and has high tracking performance in rapid varying system. However, it
will weaken the orthogonality of the basis functions; as a result, the data matrix often has
such large condition number that degrades the tracking performance for the basis series
with high degree.
In order to improve the tracking performance, a new recursive identification algorithm

based on the trigonometric functions is investigated for the rapid time-varying systems in
this paper. In the proposed algorithm, the orthogonality of the trigonometric functions
is applied to effectively implementing the recursion of the cosine basis, and some efficient
approximation is used to decrease the computational complexity. Moreover, a smoothing
technique is also considered to reduce the influence of the noise term. In contrast with
the conventional methods based on the Fourier series expansion, the new one holds the
orthogonality for the high basis degree, and has less Gibbs effect at the window edges.
Consequently, the proposed algorithm has high tracking performance even in the rapid
varying processes.
The rest of the paper is organized as follows. In the next section, the main description of

the problem considered in this paper is summarized. In Section 3, the preliminaries of the
proposed algorithm are illustrated, and then the new recursive identification algorithm is
shown in Section 4. Section 5 demonstrates some numerical simulation examples to show
the effectiveness of the algorithm. Finally, the conclusion and the future research work
are given in Section 6.

2. Problem Statement. In many dynamic systems, the characteristics of a physical
process are described by impulse response. When the impulse response with a finite length
dominates the process characteristics, an FIR model given in (1) can approximate the
relation of the process input-output signals:

y(k) = hk
0u(k) + hk

1u(k − 1) + · · ·+ hk
nu(k − n) + e(k) = ϕT (k)h(k) + e(k), (1)

where n is the model order, u(k), y(k) and e(k) are the input, output and noise, respective-
ly, while the superscript and subscript of the parameter hk

i indicate the lag time i, the nor-
malized sampling instant k, respectively. ϕ(k) = [u(k), . . . , u(k − n)]T , h = [hk

0, . . . , h
k
n]

T

are the regression and parameter vectors. u(k) is assumed as a wide-sense stationary
signal with persistent excitation for system identification, and is independent of the noise
e(k).
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The variation rate of parameters is measured by

κ(k) =

√
tr
{
E{ϕ(k)}cov{h(k)− h(k − 1)}

}
σ2
e

, (2)

where σ2
e is the variance of the noise e(k). E{ϕ(k)}/σ2

e is related to the stationary part,
and cov{h(k) − h(k − 1)} corresponds to the varying part. Empirically, the variation is
indicated as a fast one when κ(k) > 0.0005

√
n, and the conventional methods may fail to

sufficiently track the fast variation.
In the conventional method based on the Fourier series, the parameters hk

i within a
window [0, N ] are expanded into the virtual periodic functions, as shown in Figure 1(a)
where the period is the same as the window width N . It is noted that the discontinuity
at the window edges 0, ±N , ±2N , . . . yields distortion of the prediction error caused by
Gibbs effect.

In the new algorithm, the even periodic expansion is used, and thus the virtual functions
are continuous at the window edges. It implies that the parameter functions within the
window [0, N ] are regarded as the right-half period of the expanded virtual even functions,
as illustrated in Figure 1(b). Therefore, the virtual periodic functions with period 2N can
be approximated by a finite degree of the cosine series representation with a small bias.

k

1 period 

Data window

1 period

0 N−N

(a) Expansion of a virtual periodic function

k

Right-half period 

Data window

Left-half period

0 N−N

(b) Expansion of a virtual even periodic function

Figure 1. Illustration of the virtual expansion of time-varying parameters.
Solid line: true parameters; dashed line: virtual expansion.

At the newest sampling instant k, the sliding time window is [k0, k], which is the right-
half period of the expanded virtual even function. Following the convergence theorem of
the Fourier series, if the parameters hk0+k1

i have at most a finite number of discontinuous
points for 0 ≤ k1 ≤ N , the virtual even periodic functions can be approximated by the
cosine series

hk0+k1
i = hk−N+1+k1

i ∆ hk
i (k1) ∼

M∑
m=0

cki,m cos
(
mωk1

)
, (3)

where ω = π
N
, M is the degree of the series.
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3. Preliminaries. Within the window [k0, k], the input-output relation can be written
as follows:

y(k0 + k1) = y(k −N + k1) ∆ yk(k1)

≈
M∑

m=0

ck0,m cos
(
mωk1

)
u(k0 + k1) +

M∑
m=0

ck1,m cos
(
mωk1

)
u(k0 + k1 − 1)

+ · · ·+
M∑

m=0

ckn,m cos
(
mωk1

)
u(k0 + k1 − n) + e(k0 + k1)

=
(
ϕk

c,0(k1)
)T
θkc,0 +

(
ϕk

c,1(k1)
)T
θkc,1 + · · ·+

(
ϕk

c,M(k1)
)T
θkc,M + e(k0 + k1)

=
(
ϕk

c (k1)
)T
θkc + e(k0 + k1), (4)

where the main regressions are as follows:

ϕk
c (k1) =


ϕk

c,0(k1)

ϕk
c,1(k1)
...

ϕk
c,M(k1)

 , ϕk
s(k1) =

 ϕk
s,1(k1)
...

ϕk
s,M(k1)

 ,

ϕk
c,0(k1) = [u(k0 + k1), u(k0 + k1 − 1), . . . , u(k0 + k1 − n)]T ,

ϕk
c,m(k1) =W

k1
c,mϕ

k
c,0(k1), ϕ

k
s,m(k1) =W

k1
s,mϕ

k
c,0(k1),

W k1
c,m = cos(mωk1)I, ϕ

k
s,m(k1) = sin(mωk1)I, (5)

while the coefficient vectors are

θkc =
[(
θkc,0
)T

,
(
θkc,1
)T

, . . . ,
(
θkc,M

)T]T
, θkc,m =

[
ck0,m, c

k
1,m, . . . , c

k
n,m

]T
, (6)

where I is an identity matrix with the appropriate dimension, W k1
c,m and W k1

s,m are the
diagonal matrices whose diagonal elements are cos(ωmk1), sin(ωmk1), respectively.
The approximation in (3) and (4) implies that the variation of model parameters can

be approximated by the linear combination of the known basis functions, whereas the
estimation of coefficients θkc becomes an important issue. Therefore, the parameter es-
timation problem of a time-varying model can be realized by estimating the coefficient
vector θkc instead of the direct estimation of the varying model parameters. θkc can be
estimated by minimizing the criterion function

θ̂
k

c = argmin
θk

c

N∑
k1=0

(
yk(k1)−

(
ϕk

c (k1)
)T
θkc

)2
. (7)

The minimization problem can be solved by some optimization algorithms such as the
least squares algorithm

θ̂
k

c =

(
N∑

k1=0

ϕk
c (k1)

(
ϕk

c (k1)
)T)−1( N∑

k1=0

ϕk
c (k1)y

k(k1)

)
=
(
Φk

cc

)−1
ϕk

cy ∆ P kϕk
cy, (8)

where Φk
cc and P

k are the correlation matrix and its inverse, ϕk
cy is the correlation vector

of the regression and the process output in the window [k0, k]. It indicates that (8) turns
the estimation of varying parameter into the estimation problem of the series coefficients.
The window shifts forward to [k0+1, k+1] at the next instant k+1. Correspondingly,

the updated regression in the new time window is

ϕk+1
c,0 (k1) =

[
u(k0 + k1 + 1), u(k0 + k1), . . . , u(k0 + k1 + 1− n)

]T
= ϕk

c,0(k1 + 1), (9)
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and following W k1
c,m =W 1

c,mW
k1+1
c,m +W 1

s,mW
k1+1
s,m , ϕk+1

c,m (k1) can be expressed by

ϕk+1
c,m (k1) =W

k1
c,mϕ

k+1
c,0 (k1) =

[
W 1

c,m W 1
s,m

] [ ϕk
c,m(k1 + 1)

ϕk
s,m(k1 + 1)

]
. (10)

It illustrates that besides the time-shift termW 1
c,mϕ

k
c,m(k1+1), an extra termW 1

s,mϕ
k
s,m

(k1 + 1) also appears in (10). Then, the correlation matrix Φk+1
cc is updated by

Φk+1
cc =

N∑
k1=0

ϕk+1
c (k1)

(
ϕk+1

c (k1)
)T

=
[
W c W s

]([ ϕk
c (N + 1)

0

] [
ϕk

c (N + 1) 0
]

−
[
ϕk

c (0)
0

] [
ϕk

c (0) 0
]
+

[
Φk

cc Φk
cs

Φk
sc Φk

ss

])[
W c

W s

]
, (11)

where W c and W s are the diagonal matrices with the diagonal blocks W 1
c,m, W

1
s,m,

m = 0, 1, . . . ,M , respectively.
From (11), it is deduced that Φk+1

cc consists of the innovative term, the term beyond
the new window and the transition term. Let the inverse of Φk+1

cc be denoted as P k+1, the

coefficient vector can be obtained by θ̂
k+1

c = P k+1ϕk+1
cy , where the computation of P k+1

suffers from the heavy computational load due to extra terms such as Φk
cs, Φ

k
sc and Φk

ss

in (11). Therefore, a novel recursive algorithm is proposed to solve this problem.

4. New Recursive Identification Algorithm. The mild assumptions in the proposed
algorithm are summarized as follows: the input signal u(k) has quasi-stationarity and
ergodicity, and is independent of the noise e(k); the window width N > (n + 1)(M +
1); the varying parameters have at most a finite number of discontinuous points in the
window. Then, following the expansion theorem of cosine series, the approximation in (3)
is guaranteed for the parameter estimation if these assumptions hold.

4.1. Properties of data matrices. In order to illustrate the update of the matrices in
the recursive algorithm, their properties are investigated. Let the matrices Φ1, Φ2 be
denoted as

Φ1 = ϕ
k
c (N + 1)

(
ϕk

c (N + 1)
)T − ϕk

c (0)
(
ϕk

c (0)
)T

+Φk
cc = Ψk+1 +Φk

cc,

Φ2 =W
−1
cs Φ

k
sc +Φk

csW
−1
cs +W−1

cs Φ
k
ssW

−1
cs ,

ψk+1 =
[
ϕk

c (N + 1), ϕk
c (0)

]
, ψ̄

k+1
=
[
ϕk

c (N + 1), −ϕk
c (0)

]
,

ȳk+1 =
[
yk(N + 1), −yk(0)

]T
, (12)

where W−1
cs =W−1

c W s, then Φk+1
cc in (11) can be expressed by

Φk+1
cc =W c

(
Φ1 +Φ2

)
W c. (13)

It is seen that the extra matrices in Φ2 make the inverse of Φk+1
cc be very complicated.

The matrix inverse will be simplified by using the properties of data matrices in the new
recursive algorithm.

According to the properties of quasi-stationarity and orthogonality, ∥Φ1∥ >> ∥Φ2∥
holds for N >>M , and the entries of Φ−1

1 Φ2 are much smaller than 1. Consequently, the
following inversion can be approximated by(

I +Φ−1
1 Φ2

)−1
= I −Φ−1

1 Φ2 +
(
Φ−1

1 Φ2

)2 − · · · ≈ I −Φ−1
1 Φ2, (14)
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and it yields the approximation of inverse of P k+1, i.e., the inverse of Φk+1
cc as follows

P k+1 =
(
Φk+1

cc

)−1
=W−1

c (Φ1 +Φ2)
−1W−1

c ≈W−1
c

(
I −Φ−1

1 Φ2

)
Φ−1

1 W
−1
c , (15)

where Φ−1
1 can be updated following matrix inversion lemma

Φ−1
1 =

(
I − gk+1

(
ψ̄

k+1
)T)

P k, (16)

whereas gk+1 is a gain vector given by

gk+1=P kψk+1

(
I2 +

(
ψ̄

k+1
)T
P kψk+1

)−1

. (17)

In (17), I2 is a (2×2) identity matrix, so the calculation of

(
I2 +

(
ψ̄

k+1
)T
P kψk+1

)−1

is very easy in the recursive algorithm.
Similarly as Φk+1

cc , the correlation vectors ϕk+1
cy and ϕk+1

sy can be updated by

ϕk+1
cy =W c

(
ψk+1ȳk+1 + ϕk

cy +W
−1
cs ϕ

k
sy

)
,

ϕk+1
sy = −W s

(
ψk+1ȳk+1 + ϕk

cy

)
+W cϕ

k
sy. (18)

From (18), the extra term ϕk
sy can be expressed by the past data

ϕk
sy = −W s

(
ψkȳk + ϕk−1

cy

)
+W cϕ

k−1
sy , (19)

Since the matrices W c, W s and W
−1
cs are diagonal, ϕk

sy can be rewritten as

ϕk
sy =W c

(
I +W−2

cs

)
ϕk−1

sy −W−1
cs ϕ

k
cy. (20)

4.2. Update of parameter estimation. Now substitute the approximated formulae of

P k+1 and ϕk+1
cy to deduce the recursive estimation θ̂

k+1

c = P k+1ϕk+1
c in the new window

[k0 + 1, k + 1], where ϕk+1
cy in (18) is split into two parts: W c

(
ψk+1ȳk+1 + ϕk

cy

)
and

W sϕ
k
sy.

Multiplying Φ−1
1 W

−1
c by the first part of ϕk+1

cy yields that

Φ−1
1 W

−1
c W c

(
ψk+1ȳk+1 + ϕk

cy

)
=

(
ψk+1

(
ψ̄

k+1
)T

+Φk
cc

)−1 (
ψk+1ȳk+1 + ϕk

cy

)
. (21)

Similarly as the standard recursive formula in [17], (21) can be compactly rewritten as

P kϕk
cy + g

k+1εk+1 = θ̂
k

c + g
k+1εk+1, (22)

where the prediction error εk+1 is defined by

εk+1 = ȳk+1 −
(
ψ̄

k+1
)T
θ̂
k

c . (23)

For the second part of ϕk+1
cy , substituting (19) into the multiplication of P k+1 and

W sϕ
k
sy yields that

Φ−1
1 W

−1
c W sϕ

k
sy ≈

(
I − gk+1

(
ψ̄

k+1
)T)(

I +W−2
cs

)
θ̄
k
s

−
(
I − gk+1

(
ψ̄

k+1
)T)

W−2
cs θ̄

k
c .

(24)
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Now, we complement the rest terms in the update of P k+1 and θ̂
k+1

c . Denote the
following gain matrices to simplify the recursive formulae

Ωk = P k
(
W−1

cs ϕ
k
cs +

(
ϕk

cs

)T
W−1

cs +W−1
cs ϕ

k
ssW

−1
cs

)
,

Gk+1 =W−1
c

(
I −

(
I − gk+1

(
ψ̄

k+1
)T)

Ωk

)
, Gk+1

s = Gk+1

(
I − gk+1

(
ψ̄

k+1
)T)

.

Then, by combining (22) with (24), the new parameter vector and the inverse of the
correlation matrix can be concluded as follows:

θ̂
k+1

c = P k+1ϕk+1
cy = Gk+1

(
θ̂
k

c + g
k+1εk+1

)
+ θ̂

k+1

s , (25)

P k+1 = Gk+1Φ−1
1 W

−1
c = Gk+1

(
I − gk+1

(
ψ̄

k
)T)

P kW−1
c . (26)

The estimate in (25) is composed of 2 parts: the first part projects the term θ̂
k

c +

gk+1εk+1 onto the cosine basis in the new window, while the second part θ̂
k+1

s corresponds
to transition effect on the sliding window with respect to the extra terms ϕk

s , ϕ
k
sy appeared

in the update of ϕk+1
c and ϕk+1

cy .
Moreover, the correlation matrix and vector are updated as follows:[

Φk+1
cc Φk+1

cs

Φk+1
sc Φk+1

ss

]
=

[
W c W s

−W s W c

][
Φk

cc +Ψk+1 Φk
cs

Φk
sc Φk

ss

] [
W c −W s

W s W c

]
. (27)

4.3. Simplification of recursive computation. It is seen that in (25) the matrix size
(M + 1)(n + 1) makes the computation of matrix multiplication complicated for the
high order model approximated by the high degree cosine series. In order to reduce the
computational complexity, the implementation of the parameters and matrices’ update is
divided into (M +1) sub-blocks for each of the basis function cos(mωk1), with respect to
the orthogonality of the trigonometric functions. Following the structure of ϕk

c,m(k1) and

ϕk
c (k1) defined in (5), it is seen that Φk

cc is composed of the following sub-blocks

Φk
cc,m1m2

=
N∑

k1=0

ϕk
c,m1

(k1)
(
ϕk

c,m2
(k1)

)T
. (28)

Similar definitions are given for the blocks of Φk
cs,m1m2

, Φk
sc,m1m2

and Φk
ss,m1m2

. For the

simplicity of notation, the blocks for m1 = m2 = m are abbreviated as Φk
cc,m, Φ

k
ss,m.

The updates are just given by replacing the counterparts with the sub-blocks cor-
responding to mth degree of the basis function. For example, the gain vector gk+1

m is
calculated as follows:

gk+1
m = P k

m ψ
k+1
m

(
I2 +

(
ψ̄

k+1
m

)T
P k

mψ
k+1
m

)−1

. (29)

Furthermore, the matrices Gk+1
m , Gk+1

s,m are given by

Gk+1
m =W−1

c,m

(
I −

(
I − gk+1

m

(
ϕ̄

k+1
m

)T)
Ωk

m

)
, (30)

Gk+1
s,m = Gk+1

m

(
I − gk+1

m

(
ϕ̄

k+1
m

)T)
. (31)
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Then θ̂
k+1

s,m and θ̂
k+1

c,m can be given by

εk+1
m = ȳk+1

m −
(
ψ̄

k+1
m

)T
θ̂
k

c,m, (32)

θ̂
k+1

s,m = Gk+1
s,m

((
I +W−2

cs,m

)
θ̄
k
s,m −W−2

cs,mθ̄
k
c,m

)
, (33)

θ̂
k+1

c,m = Gk+1
m

(
θ̄
k
c,m + gk+1

m εk+1
m

)
+ θ̄

k+1
s,m . (34)

Moreover, the correlation matrix and its inverse are updated as follows:

P k+1
m = Gk+1

m

(
P k

m − gk+1
m

(
ψ̄

k+1
m

)T
P k

m

)
W−1

c,m, (35)[
Φk+1

cc,m Φk+1
cs,m

Φk+1
sc,m Φk+1

ss,m

]
=

[
W c,m W s,m

−W s,m W c,m

][
Φk

cc,m +Ψk+1
m Φk

cs,m

Φk
sc,m Φk

ss,m

][
W c,m −W s,m

W s,m W c,m

]
. (36)

It is obvious thatW c,0 is an identity matrix, and all the elements ofW s,0, ϕs,0(k1) are

zero, then Ωk
0 = 0, θks,0 = θ

k+1
s,0 = 0. Therefore, the update for m = 0 is almost the same

as the standard RLS algorithm. The simplified algorithm can be regarded as an extension
of RLS algorithm into the high degree of the basis series to track the rapid variations.

4.4. Smoothing of parameter estimates. A smoothing technique is applied in the
proposed algorithms to improve the resistance against the noise. Notice that the (k+1)th

recursion of estimation θ̂
k+1

c yields the parameter estimates of ĥk+1
i , ĥk

i , ĥ
k−1
i , . . . within

the window [k0 + 1, k + 1], where ĥk
i , ĥ

k−1
i , . . . are overlapped with the window [k0, k].

Consequently, the simple smoothing way is by using the overlapped parameters to smooth
the estimated parameters at k, k − 1, . . .. For example, the parameters of ĥk−n0

i can be

smoothed by using the cosine expansion with θ̂
k−n0+1

c , . . . , θ̂
k+1

c at point k−n0 as follows:

ĥk−n0+1
i =

1

n0 + 1

n0+1∑
k1=1

(
M∑

m=0

ĉk−n0+k1
i,m cos (mω(N + 1− k1))

)
. (37)

Moreover, by using some methods to estimate the jump points [18], the Gibbs effect
inside the window can be further mitigated at the discontinuous points, and can improve
the approximation accuracy of the cosine series.

5. Numerical Examples. A time-varying digital communication channel is considered
in the numerical examples. Assume that the true channel model is described by (1) where
u(k) and y(k) are the transmitted training signal, received signal, respectively, e(k) is a
white additive noise that is independent of u(k), the parameter hk

i varies with the instant
k, and the variation rate in (2) is κ(k) > 0.1 >> 0.0005

√
n, so the processes are the fast

time-varying ones and their parameter estimation is not an easy task.

5.1. Simulation example 1. Let the model order n = 5 and the time varying param-
eters of the channel model be the time functions. The following are the examples of hk

0

and hk
2 given by

hk
0 =


−1, for k ∈ [1, 1204], or [3072, 3372],

0.35 sin

(
kπ

150
+

π

6

)
, for k ∈ [2561, 2880],

1 + 0.35 sin

(
kπ

150
+

π

6

)
, otherwise,
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hk
2 =


−0.75, for k ∈ [1, 1204], or [3072, 3372],

−1

4

(
1− sin

(
kπ

100
+

π

3

))
, for k ∈ [2561, 2880],

0.5 + 0.25 sin

(
kπ

100
+

π

3

)
, otherwise.

(38)

As shown in Figure 2, it is seen that there are significant jump points at k = 2561, 2880,
3072, 3372. Assume that the signal to noise ratio (SNR) is 10dB.
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Figure 2. Estimation of time-varying channel

Generally, the more rapid variations arise in the time window, the higher series degree
is necessary. On the other hand, the approximation with high series degree is easily
influenced by the noise, and a long time window is often required to reduce the noise
influence. Therefore, both the parameter variation velocity and the noise level should
be considered when choosing the time window length N and series degree M . In the
simulation, the window width is chosen as N = 1024, and the series degree M = 3. The
mean values of the estimated parameters ĥ0,k and ĥ2,k for 50 simulation runs are plotted
in Figure 2. As a comparison, the results of RLS with the forgetting factor 0.95, and
NLMS with the updating step size 0.15 are also shown in the figure. It illustrates that the
proposed algorithm tracks the variation more promptly than RLS and NLMS, especially
at the sharp jump points.

Define the mean square error (MSE) σ2 of the estimated parameters as follows:

σ2 =
1

LK

L∑
l=1

K∑
k1=1

(
n∑

i=0

(
ĥk0+k1
i − hk0+k1

i

)2)
, (39)

where L and K are the number of simulation runs, the number of recursions, respectively.
The values of σ2 for k ∈ [2400, 3600] in the proposed algorithm, the standard RLS and
NLMS algorithms are 0.0844, 0.1584, 0.1475, respectively. It is seen that the proposed
algorithm has a smaller mean square error than the other two methods under the same
simulation conditions, especially around the rapid varying points.
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5.2. Simulation example 2. Let SNR be from 0dB to 15dB. The other simulation
conditions are the same as example 1. The mean squares errors σ2 obtained by estimating
with 5 points, 10 points in 50 simulation runs are shown in Figure 3(a). It is shown that
the MSE can be decreased by applying the smoothing technique.

5.3. Simulation example 3. Let the series degree M be chosen from 1 to 6. The values
of σ2 under various noise environments are shown in Figure 3(b). It is seen that σ2

decreases with increasing M under the low noise environment, whereas it becomes large
for the high degree M under the strong noise environment due to the fluctuation in the
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estimation of θk+1
c,m . These results imply that the optimal identification performance can

be obtained through selecting an appropriate M with respect to the noise level and the
variation velocity of the model parameters at the present instant, which may be detected
by combining the algorithm with some detection methods for the rapid variations.

5.4. Simulation example 4. Consider the channel model has long lag time of n = 60.
The window width and the series degree are chosen as N = 3072, M = 30, respectively.
The value of σ2 is 0.1237, and the estimates’ mean values of ĥ0,k and ĥ2,k are plotted in
Figure 4. As a comparison, the parameters are also estimated by AP, BOP, RLS and
NLMS, and the values of σ2 are 0.2498, 0.2748, 0.2751, 0.2778, respectively, which are
more than 2 times of that in the proposed algorithm. Though the orthogonal projection
of input data can improve the convergence performance when the input signal is colored,
the AP and BOP methods also have lower convergence rate than the proposed algorithm
since they do not use the explicit projection of the parameter variation. Moreover, the
estimation error σ2 of the algorithm [16] where the forgetting factor is chosen as 0.96
is 0.1934, which is larger than that of the proposed algorithm since the noise influences
become relatively large for high degree M .
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Figure 4. Estimation of h0 and h2 in example 4

6. Conclusions. The recursive identification algorithm based on the trigonometric func-
tions has been developed for the linear time-varying systems. When the parameters of the
process model have at most finite discontinuous points in the data window, they can be
approximated by the cosine series through virtually expanding them into the even period-
ic functions, and then the parameter estimation can be obtained through estimating the
coefficients of the cosine series. By making use of the orthogonality of the basis functions,
the recursive identification algorithm has been proposed where the recursive computabil-
ity is guaranteed. The simulation results demonstrate that the proposed algorithm has a
higher convergence rate than the conventional methods. The extension of the algorithm
under the strong noise environment will be investigated in our future work.
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