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Abstract. This paper is concerned with the disturbance-observer-based reliable robust
static output controller design of linear uncertain time-delay systems with actuator faults.
The estimation of exogenous disturbance is derived by a disturbance observer and used
to compensate the negative effect caused by the disturbance. The disturbance-observer-
based static output control scheme is constructed by the estimation and a linear controller
based on system output. The design of the disturbance-observer-based reliable robust out-
put controller follows Finsler lemma, where the sufficient conditions of the closed-loop
system being asymptotically stable are established in a set of linear matrix inequalities.
The effectiveness of the proposed approach is verified by a numerical example.
Keywords: Disturbance observer, Static output control, Robust control, Reliable con-
trol, Time delay

1. Introduction. Time delay is a common phenomenon in a wide range of practical ap-
plications such as networked communication systems, and chemical dynamic process. As
a significant source of system performance degradation and instability, time delay system
has attracted a great deal of attention on stability analysis [1-6] and control synthesis [7-
10] over the past decades. In most of the researches mentioned above, system models used
for controller design are described with explicit knowledge of system parameters. Howev-
er, real systems often contain some uncertainties which can be induced by environment
change or measurement error. To deal with these uncertainties, robust control has been
investigated extensively by researchers in [11-14]. Furthermore, many works regarding
systems under the influence of both uncertain parameters and time delay can be found in
[15-18]. To be specific, for time-delay uncertain systems, robust sliding-mode control is
studied in [15]. [16] addresses robust H∞ filtering issue of time-delay stochastic system-
s with sector-bounded nonlinearities. In [17], the robust stability analysis is developed
for uncertain Markovian jump time-delay systems with polytopic parameter uncertain-
ties. By choosing appropriate Lyapunov-Krasovskii functionals and using an improved
inequality, some novel delay-dependent stability conditions are proposed for time-delay
uncertain systems in [18].

On the other hand, external disturbances such as measurement noise also exist in most
practical systems. As an efficient anti-disturbance mechanism, disturbance-observer-based
(DOB) control has been developed to attenuate the negative impact of these disturbances.
Typically, DOB control mechanism first constructs an observer to estimate the distur-
bance. Combining this estimation with a linear control law, a nonlinear control scheme is
then presented to ensure stability of system under external disturbances. Regarding this
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scheme, some theoretical results can be referred in [19-22], and practical applications in
robotic systems [23], missile systems [24] and so on. However, most of the above results are
obtained under the assumption that full system state is accessible. As has mentioned, this
is inapplicable due to the limitation of devices and cost in real situations. Consequently,
the anti-disturbance control problem of nonlinear Markov jump systems is addressed via
system output in [26], where the time delay and parameter uncertainties are not taken
into account. Apart from this, the above mentioned works fail to consider that system
also suffers from faulty operations of actuators, which is another instability factor of real
systems [27, 28]. To the best knowledge of authors, few results considering reliable robust
DOB output control strategy for time-delay uncertain systems with actuator faults have
been addressed so far.
Motivated by the above observations, this paper investigates reliable robust DOB out-

put control of time-delay uncertain systems with actuator faults. A DOB output control
scheme consisting of a linear control law and the estimation of disturbance is employed
to compensate the impact of disturbance while ensuring the asymptotic stability of the
closed-loop system. With the help of Finsler lemma, sufficient conditions for obtaining
the output controller and observer gains are formed via linear matrix inequalities (LMIs).
A numerical example is given to demonstrate the effectiveness of the provided method.
The paper is organized as below. Problem preliminaries are given in Section 2, which

are prepared to obtain the main results. Section 3 gives the sufficient LMI conditions
for event-triggered non-fragile H∞ filtering of linear Markov jump systems with unre-
liable communications. Section 4 produces a numerical example to show the approach
effectiveness. Then, some conclusions are given in Section 5.

Notation. In this paper, XT is used to mean the transpose of the matrixX. The notation
X > 0 represents X is positive definite and symmetric. Rn denotes the n-dimensional
Euclidean space and Rn×m is n × m real matrices. * stands for the symmetry. Finally,
the symbol He(X) equals X +XT .

2. Problem Statement and Preliminaries. Consider the following time delay uncer-
tain system described as ẋ(t) = [A+∆A(t)]x(t) + [Ad +∆Ad(t)]x(t− τ) + B(u(t) + d(t))

x(t) = ϕ(t)
y(t) = Cx(t)

(1)

where x(t) ∈ Rn is the system state, u(t) ∈ Rm is control input, y(t) is output measure-
ment, and ϕ(t) is the initial state vector of the system. A, Ad, B, C are known system
matrices and the matrix B is full column rank, τ is the time delay, ∆A(t) and ∆Ad(t)
are uncertain parameter matrices, and d(t) ∈ R is the system disturbance input which is
described by {

ω̇(t) = Wω(t)

d(t) = V ω(t)
(2)

where ω(t) ∈ Rn, d(t) ∈ Rm, W and V are known constant matrices.
To compensate the effect on systems induced by the disturbance d(t), a disturbance

observer with respect to y(t) is used to estimate d(t):
d̂(t) = V ω̂(t)

ω̂(t) = v(t)− Ly(t)

v̇(t) = (W + LCBV )ω̂(t) + LCBu(t)

(3)
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where v(t) is the disturbance observer, ω̂(t) and d̂(t) mean the estimation of ω(t) and
d(t), and L is the observer gain to be designed.

Remark 2.1. Compared with the DOB state feedback control scheme used in [20, 26]
where the full state of real systems is assumed to be accessible, system output is used to
construct the DOB control scheme in this paper due to practical considerations.

The control input with estimated disturbance d̂(t) and a linear control law is formulated
as

u(t) = Ky(t)− d̂(t), (4)

where K is the controller gain to be designed.
Moreover, considering the actuator faults, the corresponding system model is captured

by

ẋ(t) = [A+∆A(t)]x(t) + [Ad +∆Ad(t)]x(t− τ) + B(I − ρ)(u(t) + d(t)), (5)

with ρ = diag(ρ1, . . . , ρm) satisfying:

0 ≤ ρ
k
≤ ρk ≤ ρ̄k < 1, k = 1, 2, . . . ,m, (6)

where ρk (k = 1, . . . ,m) represents the loss of effectiveness of the kth actuator. It is
supposed that, the lower and upper bounds of ρk are known constants. Define ρ =

diag
(
ρ
1
, . . . , ρ

m

)
, ρ̄ = diag (ρ̄1, . . . , ρ̄m). Taking the upper and lower bounds

(
ρk, ρk

)
into account, it gives:

Nρ =
{
ρ : ρ = diag{ρ1, ρ2, . . . , ρm}, ρk = ρ

k
or ρk, k = 1, 2, . . . ,m

}
, (7)

where Nρ contains a maximum of 2m elements.

Remark 2.2. Different from some existing results for DOB control issue in which the
actuator is assumed perfect, this paper takes actuator faults into consideration by covering
the normal case (ρ = 0) and faulty case (ρ ̸= 0).

Define e(t) = ω(t)− ω̂(t). From (5) and (3), one has

ė(t) = ω̇(t)− ˙̂ω(t) = Wω(t)− (v̇(t)− Lẏ(t))

= (W + LCB(I − ρ)V )e(t) + LC(A+∆A)x(t)

+ LC(Ad +∆Ad)x(t− τ)− LCBρKCx(t). (8)

Based on (3), (5) and (8), the augmented DOB closed-loop system is established as

ξ̇(t) = Āξ(t) + Ādx(t− τ) (9)

with ξ(t) ,
[
xT (t) eT (t)

]T
, and

Ā =

[
A+∆A+B(I − ρ)KC B(I − ρ)V

LC(A+∆A)− LCBρKC W + LCB(I − ρ)V

]
, Ād =

[
Ad +∆Ad

LC(Ad +∆Ad)

]
.

Before ending this section, some assumptions and technical lemmas are given as below.

Assumption 2.1. [20]. The time delay is continuous function which is bounded and
satisfies

0 ≤ τ ≤ τM , τ̇ ≤ τD,

where τM and τD are given constants which mean the upper bound of the time delay and
the derivative of the time delay, respectively.
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Assumption 2.2. [20]. The system uncertainty ∆A(t) and the time-varying uncertainty
∆Ad(t) satisfy the condition described as:[

∆A(t) ∆Ad(t)
]
= DF (t)

[
E1 E2

]
,

where E1 and E2 are known constant matrices with appropriate dimensions, and F (t) is
a time-varying uncertain matrix satisfying F T (t)F (t) ≤ I.

Lemma 2.1. For any real constant α > 0, the following inequality holds:

XTY + Y TX ≤ αXTX + α−1Y TY.

Lemma 2.2. [29]. Finsler Lemma. Letting υ ∈ Rn, P = PT ∈ Rn×n, and H ∈ Rm×n

such that rank(H) = r < n, then the following statements are equivalent:
1) υTPυ, for all υ ̸= 0, Hυ = 0;
2) H⊥TPH⊥ < 0;
3) ∃S ∈ Rn×m such that P +He(SH) < 0.

3. Main Results. In this section, stability analysis and control synthesis conditions of
the closed-loop system (9) are presented in Theorem 3.1 and Theorem 3.2, respectively.

Theorem 3.1. For given positive constants αi, i ∈ (1, 2, 3, 4), if there exist positive
definite matrices P1, P2, R and matrices Q1 ∈ Rn×n, Q2 ∈ Rn×n, Q3 ∈ Rn×n, Q4 ∈ Rn×n

such that the following inequality holds:

Γ =


Γ11 Γ12 Γ13 Γ14

∗ Γ22 Γ23 Γ24

∗ ∗ Γ33 Γ34

∗ ∗ ∗ Γ44

 < 0, (10)

where

Γ11 = He(P1(A+B(I − ρ)KC)) + (α1 + α2)PDDTP

+ (α−1
1 + α−1

3 )ET
1 E1 + P1 −Q1 −QT

1 ,

Γ12 = P1B(I − ρ)V + (P2LCA− P2LCBρKC)T −Q4,

Γ13 = P1Ad −Q2 +QT
1 , Γ14 = QT

1 −Q3,

Γ22 = He(P2(W + LCB(I − ρ)V )) + (α3 + α4)P2LCDDTCTLTP2,

Γ23 = P2LCAd +QT
4 , Γ24 = QT

4 , Γ34 = QT
2 +Q3, Γ44 = QT

3 +Q3,

Γ33 = (α−1
2 + α−1

4 )ET
2 E2 + (τD − 1)R +QT

2 +Q2,

then the augmented DOB closed-loop system is said to be asymptotically stable.

Proof: Choose a candidate Lyapunov functional as

V (t) = ξT (t)

[
P1 0
0 P2

]
ξ(t) +

∫ t

t−τ

xT (s)Rx(s)ds. (11)

The derivation of (11) is computed as:

V̇ = 2xT (t)P1ẋ(t) + 2eT (t)P2ė(t) + xT (t)Rx(t)

+ (τ̇ − 1)xT (t− τ)Rx(t− τ) + 2

(∫ t

t−τ

ẋ(s)ds− x(t) + x(t− τ)

)T

×
(
Q1x(t) +Q2x(t− τ) +Q3

∫ t

t−τ

ẋ(s)ds+Q4e(t)

)
. (12)
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To deal with the nonlinear terms induced by ẋ(t) and ė(t) via using Lemma 2.1, it
yields

2xT (t)P1DF (t)E1x(t) ≤ α1x
T (t)P1DDTPx(t) + α−1

1 xT (t)ET
1 E1x(t),

2xT (t)P1DF (t)E2x(t− τ) ≤ α2x
T (t)P1DDTP1x(t) + α−1

2 xT (t− τ)ET
2 E2x(t− τ),

2eT (t)P2LCDF (t)E1x(t) ≤ α3e
T (t)P2LCDDTCTLTP2e(t) + α−1

3 xT (t)ET
1 E1x(t),

2eT (t)P2LCDF (t)E2x(t− τ) ≤ α4e
T (t)P2LCDDTCTLTP2e(t)

+ α−1
4 xT (t− τ)ET

2 E2x(t− τ). (13)

Substituting (13) into (12), one can get

V̇ ≤ 2xT (t)P1(A+B(I − ρ)KC)x(t) + 2xT (t)P1B(I − ρ)V e(t)

+ 2xT (t)P1Adx(t− τ) + α1x
T (t)P1DDTP1x(t) + α−1

1 xT (t)ET
1 E1x(t)

+ α2x
T (t)P1DDTP1x(t) + α−1

2 x(t− τ)TET
2 E2x(t− τ)

+ xT (t)Rx(t) + (τD − 1)xT (t− τ)Rx(t− τ)

+ 2eT (t)
[
P2(W + LCB(I − ρ)V )e(t) + 2eT (t)P2(LCA− LCBρKC)

]
x(t)

+ 2eT (t)P2LCAdx(t− τ) + α3e
T (t)P2LCDDTCTLTP2e(t) + α−1

3 xT (t)ET
1 E1x(t)

+ α4e
T (t)P2LCDDTCTLTP2e(t)

+ α−1
4 xT (t− τ)ET

2 E2x(t− τ) + 2

(∫ t

t−τ

ẋ(s)ds− x(t) + x(t− τ)

)T

×
(
Q1x(t) +Q2x(t− τ) +Q3

∫ t

t−τ

ẋ(s)ds+Q4e(t)

)
, (14)

which can be rewritten as

V̇ ≤ ζT (t)Γζ(t), (15)

where ζ(t) =
[
xT (t) eT (t) xT (t− τ)

∫ t

t−τ
ẋT (s)ds

]T
and Γ is just given in (10).

To guarantee the asymptotic stability of system (9), one just needs V̇ (t) < 0, which
can be ensured by (10). Thus, the proof is completed. �

The stability analysis condition derived in Theorem 3.1 is established in nonlinear form,
which cannot be used to solve the corresponding controller and observer gains. Then, with
the help of Finsler lemma, control synthesis conditions are formed in the framework of
LMIs in Theorem 3.2.

Theorem 3.2. For given positive constants b1, b2, µ, αi, i ∈ (1, 2, 3, 4), if there exist
symmetric matrices P1 > 0, P2 > 0, R > 0, matrices Q1, Q2, Q3, Q4, M , Z, N such that
the following inequality holds for ρ ∈ Nρ:

Λ =



Λ11 Λ12 Λ13 Λ14 Λ15 Λ16 0
∗ Λ22 Λ23 Λ24 Λ25 0 Λ27

∗ ∗ Λ33 Λ34 0 0 0
∗ ∗ ∗ Λ44 0 0 0
∗ ∗ ∗ ∗ Λ55 0 0
∗ ∗ ∗ ∗ ∗ Λ66 0
∗ ∗ ∗ ∗ ∗ ∗ Λ77


< 0, (16)

where

Λ11 = He(P1A+ b1B(I − ρ)NC) +
(
α−1
1 + α−1

3

)
ET

1 E1 +R−He(Q1),
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Λ12 = P1B(I − ρ)V + (MCA− b2BρNC)T −Q4, Λ13 = P1Ad −Q2 +QT
1 ,

Λ14 = QT
1 −Q3, Λ15 = P1B(I − ρ)− b1B(I − ρ)Z + µ(NC)T , Λ16 = P1D,

Λ22 = He(P2W +MCB(I − ρ)V ), Λ23 = MCAd +QT
4 ,

Λ24 = QT
4 , Λ25 = b2BρZ −MCBρ, Λ27 = MCD,

Λ33 =
(
α−1
2 + α−1

4

)
ET

2 E2 + (τD − 1)R +He(Q2), Λ34 = QT
2 +Q3, Λ44 = He(Q3),

Λ55 = −µHe(Z), Λ66 = −(α1 + α2)
−1I, Λ77 = −(α3 + α4)

−1I,

then the augmented DOB closed-loop system is said to be asymptotically stable under
K = Z−1N and L = P−1

2 M .

Proof: Based on (10) in Theorem 3.1, it results in

H⊥TPH⊥ < 0, (17)

where

P =

[
Γ 0
∗ 0

]
, H⊥ =

[
H⊥

1

B⊥
i2

]
, H⊥

1 = diag{I, I, I, I}, H⊥
2 =

[
KC 0 0 0

]
.

According to Lemma 2.2, (17) can be rewritten as

P +He(MH) < 0, (18)

where

H =
[
KC 0 0 0 −I

]
, M =

[
MT

1 MT
2 0 0 µZT

]T
,

M1 = b1B(I − ρ)Z − P1B(I − ρ), M2 = −b2BρZ +MCBρ, M = P2L,

He(MH) =


∆11 ∆12 0 0 ∆15

∗ 0 0 0 ∆25

∗ ∗ 0 0 0
∗ ∗ ∗ 0 0
∗ ∗ ∗ ∗ −µHe(Z)

 ,

∆11 = He(b1B(I − ρ)NC − P1B(I − ρ)KC), ∆12 = (−b2BρNC +MCBρ),

∆25 = b2BρZ −MCBρ, ∆15 = P1B(I − ρ)− b1B(I − ρ)Z + µ(NC)T .

Thus, P +He(MH) < 0 can be rewritten by

Θ =


Θ11 Θ12 Θ13 Θ14 Θ15

∗ Θ22 Θ23 Θ24 Θ25

∗ ∗ Θ33 Θ34 0
∗ ∗ ∗ Θ44 0
∗ ∗ ∗ ∗ Θ55

 < 0, (19)

with

Θ11 = He(P1A+ b1B(I − ρ)NC) + (α1 + α2)P1DDTP1

+
(
α−1
1 + α−1

3

)
ET

1 E1 +R−He(Q1),

Θ12 = P1B(I − ρ)V + (MCA− b2BρNC)T −Q4,

Θ13 = P1Ad −Q2 +QT
1 , Θ14 = QT

1 −Q3,

Θ15 = P1B(I − ρ)− b1B(I − ρ)Z + µ(NC)T , Θ25 = b2BρZ −MCBρ,

Θ22 = He(P2W +MCB(I − ρ)V ) + (α3 + α4)P2LCDDTCTLTP2,

Θ23 = MCAd +QT
4 , Θ33 = (α−1

2 + α−1
4 )ET

2 E2 + (τD − 1)R +He(Q2),
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Θ24 = QT
4 , Θ34 = QT

2 +Q3, Θ44 = He(Q3), Θ55 = −µHe(Z).

Then, (19) is equivalent to (16) by applying the Schur complement. �

Remark 3.1. From (4), the presented reliable robust DOB output controller consists

of linear control law Ky(t) and the disturbance estimation d̂(t). The linear part Ky(t)

ensures the closed-loop system stability, and the estimation d̂(t) is adopted to offset the
effect of disturbance.

Remark 3.2. If we choose ρ = 0, then Theorem 3.2 reduces to the conventional normal
case, which is shown in the next corollary.

Corollary 3.1. For given positive constants b1, b2, µ, αi, i ∈ (1, 2, 3, 4), if there exist
symmetric matrices P1 > 0, P2 > 0, R > 0, matrices Q1, Q2, Q3, Q4, M , Z, N such that
the following inequality holds

Ω =



Ω11 Ω12 Ω13 Ω14 Ω15 Ω16 0
∗ Ω22 Ω23 Ω24 0 0 Ω27

∗ ∗ Ω33 Ω34 0 0 0
∗ ∗ ∗ Ω44 0 0 0
∗ ∗ ∗ ∗ Ω55 0 0
∗ ∗ ∗ ∗ ∗ Ω66 0
∗ ∗ ∗ ∗ ∗ ∗ Ω77


< 0, (20)

where

Ω11 = He(P1A+ b1BNC)) + (α−1
1 + α−1

3 )ET
1 E1 −He(Q1),

Ω12 = P1BV + (MCA)T −Q4, Ω13 = P1Ad −Q2 +QT
1 ,

Ω14 = QT
1 −Q3, Ω15 = P1B − b1BZ + (b2NC)T ,

Ω16 = P1D, Ω22 = He(P2W +MCBV ),

Ω23 = MCAd +QT
4 , Ω24 = QT

4 , Ω27 = MCD,

Ω33 = (α−1
2 + α−1

4 )ET
2 E2 + (τD − 1)R +QT

2 +Q2,

Ω34 = QT
2 +Q3, Ω44 = He(Q3), Ω55 = He(−b2Z),

Ω66 = −(α1 + α2)
−1I, Ω77 = −(α3 + α4)

−1I,

then the augmented DOB closed-loop system is said to be asymptotically stable under
K = Z−1N and L = P−1

2 M .

4. Numerical Example. The parameters of the time delay uncertain system are given
as follows:

A =

[
2.8 −1.7
−1.5 −1.2

]
, Ad =

[
0.9 0.7
−0.5 −1

]
, B =

[
−6
2

]
,

D =

[
1 0
0 1

]
, E1 =

[
0.02 −0.01
−0.01 0.02

]
, E2 =

[
0.03 0
0 0.03

]
,

W =

[
0 0.5

−0.5 0

]
, V =

[
2 0

]
, C =

[
1 0

]
.

Other parameters are selected as τD = 0.2, α1 = α2 = α3 = α4 = 1, b1 = 10, b2 = 0.1,
µ = 1. One possible actuator fault parameter is considered as ρ̄ = 0.8, ρ = 0, which
means the actuator can lose effectiveness up to 80%.
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The output feedback control gain K and observer gain L are calculated by solving the
Theorem 3.2 as

K = 22.5073, L =
[
0.0323 0.0012

]T
.

Given the initial condition as x0 =
[
−1 0.5

]T
and ρ = 0.75, the curves of augmented

closed-loop system state x(t), e(t) and the estimation error d(t)− d̂(t) of the disturbance
observer with standard controller solved by Corollary 3.1 and reliable controller solved by
Theorem 3.2 are given in Figures 1-6, respectively.

Figure 1. Curves of system state responses in Corollary 3.1

From Figure 1, with standard DOB control approach, the dynamics of the closed-
loop system are not asymptotically stable when actuator works in faulty case. Figure
2 and Figure 3 illustrate that the standard DOB control approach fails to estimate the
disturbance with actuator faults. However, it is observed in Figure 4 that the state of the
closed-loop system with the designed reliable robust controller is asymptotically stable.
From Figure 5 and Figure 6, it is also seen that the disturbance observer considering
actuator fault can effectively approximate the external disturbance. Thus, these figures
indicate that the proposed reliable control scheme in Theorem 3.2 is able to tolerate some
actuator fault, while the standard DOB control approach may lose the effectiveness of
guaranteeing the system stability when actuator fault happens.

5. Conclusions. In this article, the issue of reliable robust DOB output feedback con-
trol for time-delay uncertain systems with actuator faults is studied. First, a disturbance
observer considering actuator fault is used to derive the estimation of the exogenous
disturbance. Second, consisting of the estimation and a linear controller based on sys-
tem output, the disturbance-observer-based static output control scheme is constructed.
Third, with the help of Finsler lemma, sufficient conditions are formed in terms of LMIs
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Figure 2. Curves of e(t) in Corollary 3.1

Figure 3. Curves of d(t)− d̂(t), d(t), d̂(t) in Corollary 3.1
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Figure 4. Curves of system state responses in Theorem 3.2

Figure 5. Curves of e(t) in Theorem 3.2
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Figure 6. Curves of d(t)− d̂(t), d(t), d̂(t) in Theorem 3.2

to ensure the asymptotic stability of the closed-loop system. A numerical example is
simulated to show the validity of the presented method in the end. Note that faulty op-
erations of sensors are not considered in this paper; further studies on control strategies
for systems with both actuator and sensor faults will be carried out in the future.
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