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ABSTRACT. Matriz-factorization- (MF-) based collaborative filtering (CF) is known to
be an effective approach to recommendation, which has been widely used in many rec-
ommender systems. Stochastic gradient descent (SGD) is one of the most popular al-
gorithms for solving MF-based CF. However, the large computational burden required
by SGD poses a challenge of accelerating the SGD process. In the past few years, the
graphics processing unit (GPU) has evolved into a very flexible and powerful computing
resource. SGD methods for GPUs exist, and the main job is to find the parallelism in the
calculation. However, existing parallel SGD approaches ignore the inherent parallelism of
vector computation and so do not use the characteristic that a GPU is suitable for vector
and matrix computing. In this paper, we aim to design an approach using the inherent
parallelism of vector computation to exploit the large-scale parallelization features of a
massively multi-threaded GPU to perform SGD. We make full use of the characteristic
that GPU is suitable for vector and matriz computing to design the parallel SGD algo-
rithm. Ezxperimental results demonstrate that the proposed method can be well suited for
the massively parallel GPU architecture and can outperform the existing method.
Keywords: Collaborative filtering, Matrix factorization, Stochastic gradient descent,
GPU

1. Introduction. Nowadays, the content of the Internet is growing exponentially and
the variety of content is making Internet services increasingly more complex. In such an
environment, users have difficulty in finding content of interest within the tremendous
amount of information. Hence, a great number of Internet service companies have de-
veloped recommender systems [1, 2, 3] to help their customers find information more
efficiently.

Collaborative filtering (CF) [4, 5], as a key technique in recommender systems, has been
successfully utilized in many applications. The basic idea of CF employs the similarity of
user behaviors to build a profile of each user to make recommendations. For example, to
establish a profile of interests, each user of a CF system rates items they have experienced.
Then, the CF system matches the user with people of similar interests or tastes. Ratings
from those like-minded people are used to generate recommendations for the given user.
The fundamental assumption behind this method is that other users’ opinions can be
selected and aggregated in such a way to provide a reasonable prediction of the active
user’s preferences.

Matrix factorization (MF) is used in many data-mining and pattern-recognition prob-
lems [6, 7, 8, 9], such as image recognition and text analysis. MF can also be used for CF
[10]. The matrix to factorize is an incomplete matrix consisting of the ratings that users
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have given to items such as books, songs, and movies. MF-based CF maps both users
and items to a joint latent factor space, such that user-item interactions are modeled as
inner products in that space. MF characterizes both items and users by the vector factors
inferred from item-rating patterns. High inner product results between item and user
factors lead to a recommendation.

Different from MF used in image recognition and text analysis, MF for CF must process
missing values because the matrix is an incomplete matrix. Therefore, the traditional lin-
ear algebra method cannot be used to factorize the matrix. Scholars have proposed many
methods for solving the problem of MF with missing values [10, 11, 12], the most popular
of which is stochastic gradient descent (SGD), which is widely used in modern machine
learning applications [13, 14, 15]. Although promising recommendation performance can
be delivered, calculation efficiency is still a problem worth exploring.

In the past few years, the graphics processing unit (GPU) has evolved into a very
flexible and powerful computing resource [16]. Originally designed as a specialized device,
a GPU has now evolved into a highly parallel, multi-threaded, many-core processor with
tremendous computational horsepower and high memory bandwidth. NVIDIA’s GPU
with CUDA (compute unified device architecture) provides a standard C-like interface
that is quite easy to use. Owing to the great contribution of CUDA, a number of complex
computational problems have been significantly accelerated. Solving MF on the GPU
currently has many achievements [17, 18, 19]. It is also possible to make use of a GPU to
improve the computation efficiency of an SGD-based MF method for CF [20, 21]. SGD
methods exist for GPUs, but the existing approaches do not use the characteristic that a
GPU is suitable for vector and matrix computing [22].

In this paper, we aim to exploit the large-scale parallelization features of a massively
multi-threaded GPU to perform SGD. The contributions of the paper are the following.

(1) We analyze the difference between the existing SGD methods for GPUs and other
gradient descent methods implemented on the GPU. We imitate the implementation of
other gradient descent methods to design the parallel SGD approach. The new parallel
SGD approach is designed with the inherent parallelism of vector computation and hence
makes full use of the characteristic that a GPU is suitable for vector and matrix computing.

(2) In order to increase parallel computing, we partition the rating matrix to find
elements that are not in the same row or column. We present a new method of partitioning
the rating matrix that will not create blank blocks.

(3) We design the kernel function to implement the proposed new parallel SGD ap-
proach. The kernel function is designed to finish all the work of iteration on the GPU.
At the same time, caching use is also optimized.

We introduce a matrix partition-based SGD method on GPUs to address the key issues.

The rest of the paper is organized as follows. In Section 2, we present background
knowledge and related work. In Section 3, we introduce the GPU computing model with
the existing approach for the SGD method, and in Section 4 we describe the proposed
GPU accelerated SGD algorithm. The experimental results are presented in Section 5.
Section 6 concludes the paper.

2. Related Work. We first introduce MF-based CF, and then the SGD solver. Finally,
we analyze why it is difficult to implement SGD on GPUs and review two of the most
widely used ways of overcoming the problems.

2.1. MF-based CF. In the context of recommender systems, R is an incomplete matrix
and denotes the interaction between users and items, e.g., the rating matrix, where m is
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the number of users and n is the number of items. We assume that €2 is the observed
entries of R.

The entry (u,v) € € implies that user u has given a rating r,, to item v, where
u=1,2,....,mand v=1,2,...,n. Accordingly, each user u is associated with a vector
pu. € R/, and each item v is associated with a vector ¢, € R/. For a given user u, the
vector p, indicates their preference, the element of which denotes their interest to a latent
group, which can be positive, zero, or negative; for a given item v, each element of g,
represents how likely it belongs to the latent group, which can also be positive, zero, or
negative. The resulting inner product, plq,, captures the interaction between user u and
item v over all the latent groups. By using the latent factors, we can approximate the
rating interaction between user u and item v as

Tuw & DL, (1)

For an unknown rating, one can find the inner product by the vector of the corresponding
user and item. This will result in recommendations based on the results.

2.2. SGD algorithm. To learn the factors (p, and ¢,), MF leads to the following ob-
jective function:

min > (ruw = i) = A (Ipall® + ll.lP) (2)
(u,v)€Q
The constant A controls the extent of regularization and is usually determined by cross-
validation.
Instead of calculating the gradient on the whole training set, we can randomly pick up
one sample from the training set and update using the gradient on that particular sample:

Qv < @y + Y [(Tuv - ngv) DPu — )‘QU]

(3)

where v is the iteration step and can be set manually and adjusted automatically. This
approach is called the SGD algorithm.

2.3. Parallel SGD algorithm. We hope to use parallel hardware to solve SGD but
solving it in parallel will introduce the problem of losing updates. When the training
data r,, are used, p, and ¢, will be updated simultaneously. If we use another processor
to process the training data r,,, p, or ¢, will also be updated. This will create conflict
and lead to loss of updates. In order to implement the SGD in parallel, we should solve
this problem first.

The problem of losing updates is not inevitable. If two elements in the rating matrix
are not in the same row or column, loss of updates will not occur.

In order to make the elements that are processed concurrently not in the same row or
column, the two following methods are widely used.

2.3.1. HogWild. HogWild [23] assumes that the rating matrix is highly sparse and deduces
that, for two randomly sampled ratings, the four serial updates via Equation (3) are likely
to be independent. The reason is that the selected ratings to be updated almost never
share the same user identity and item identity. That is to say, iterations of SGD, Equation
(3), can be executed in parallel in different threads. HogWild drops the synchronization
that prevents concurrent variable access via atomic operations, each of which is a series
of instructions that cannot be interrupted. Even though potential overwriting may occur,
the convergence is proved under some assumptions, such as the rating matrix being very
sparse. There are also parallel solutions based on HogWild [21].
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2.3.2. Partitioning rating matriz. The HogWild algorithm uses overly optimistic assump-
tions. Different from HogWild, the partitioning rating matrix takes the property that
some blocks of the rating matrix are mutually independent, and their corresponding vari-
ables can be updated in parallel. The partitioning rating matrix uniformly grids the
rating matrix R into many sub-matrices (also called blocks) and applies SGD to some
independent blocks simultaneously. In the following discussion, we say two blocks are
independent of each other if they share neither any common column nor any common row
of the rating matrix.

Based on the main idea of the partitioning rating matrix, scholars have proposed the
distributed SGD algorithm [24], fast parallel SGD [25], fast distributed SGD [26], etc.

The existing SGD approach for GPUs is also based on the idea of the partitioning rat-
ing matrix, but it uses every thread to process different elements, and updates elements
in a vector serially. In the SGD for MF, elements inside a vector have no dependency, so
elements in a vector are also updated simultaneously. In this paper, we explore the com-
bination of partitioning rating matrix and the inherent parallelism of vector computing.

3. GPU Computing. A GPU is built around an array of streaming multiprocessors
(SMs) [27]. A multi-threaded program is partitioned into blocks of threads that execute
independently from each other, so that a GPU with more multiprocessors will automati-
cally execute the program in less time than a GPU with fewer multiprocessors.

Figure 1 shows the GPU computing model. Threads are grouped into blocks, and
blocks are grouped into a grid. Each thread has a unique local index in its block, and
each block has a unique index in the grid. Kernels can use these indices to compute array
subscripts, for instance.

Grid Block(1.0)

—

Block (0,0) Block (0.1) Thread (0.0) Thread (0.1)

/]

Block (1.0 Block (1.1
ock (1,0) ock (L.1) Thread (1,0) Thread (1.1)

F1cURE 1. GPU computing model

Threads in a single block will be executed on a single multiprocessor, sharing the soft-
ware data cache, and can synchronize and share data with threads in the same block; a
warp will always be a subset of threads from a single block. Threads in different blocks
may be assigned to different multiprocessors concurrently, to the same multiprocessor con-
currently (using multi-threading), or to the same or different multiprocessors at different
times, depending on how the blocks are scheduled dynamically.

These abstractions provide fine-grained data parallelism and thread parallelism, nested
within coarse-grained data parallelism and task parallelism. They guide the programmer
to partition the problem into coarse sub-problems that can be solved independently in
parallel by blocks of threads, and each sub-problem into finer pieces that can be solved
cooperatively in parallel by all threads within the block.

Furthermore, threads in a block are partitioned into wraps. NVIDIA GPUs have used
similar wrap configurations in which each wrap consists of 32 threads. The execution
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of wraps is implemented by single instruction multiple data (SIMD) hardware. SIMD
hardware executes all threads of a wrap as a bundle. An instruction is run for all threads
in the same wrap. This works well when all threads within a wrap follow the same
execution path. When threads within a wrap take different control flow paths, e.g., an
if-else construct, the SIMD hardware will take multiple passes through these divergent
paths. These passes are sequential to each other; thus, they will add to the execution
time. When threads in the same wrap follow different paths of control flow, we say that
these threads diverge in their execution.

A GPU supports several types of memory that can be used by programmers. Figure
2 shows these GPU memory types. Global memory is allocated to all threads and all
threads can access it. Registers are allocated to individual threads and each thread can
only access its own registers. Shared memory is allocated to thread blocks and all threads
in a block can access variables in the shared memory. Registers, shared memory, and
global memory have different latencies. Registers comprise the most efficient storage,
while global memory is least efficient. When designing parallel programs, selecting the
appropriate storage is required.

Block Block
Shared Memory Shared Memory
A A A A
Register Register Register Register
A A A A
4 v \ A\ A A \J Y
Thread Thread Thread Thread
A A A A
\J A A \J
Global Memory

FiGUuRrE 2. GPU memory model

Previous work developed SGD on a GPU, which is called GPUSGD [20]. To utilize
the computing power of a GPU, the rating matrix is divided into [ x [ blocks, where [
is the number of thread blocks. Within a block of the rating matrix, the rating element
is also divided into several groups, and the elements in the same group share neither the
same row nor column. After this data processing, every thread of the GPU will update
a user vector and an item vector with no update loss and also avoid thread divergence.
In the process of updating, all elements in the user vector and the item vector will be
updated serially. In this work, every thread is used to update a user vector and item
vector associated with a rating in the rating matrix. The core of this work is to ensure
that a large number of threads execute in parallel and do not interfere with each other.

GPU parallelism is well suited for vector or matrix calculations. Matrix calculations
can be done very quickly on a GPU and many matrix computing libraries have already
been developed. SGD for MF is full of matrix computing. However, the past work did
not study the parallel optimization of SGD on a GPU from the vector perspective.

In this paper, we develop a new method that can implement the SGD on a GPU from
the vector perspective.
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4. NewGPUSGD Method. From the above description of a GPU, we can conclude
that it is suitable for computing with many different data executing the same instruction.
Matrix computing is suitable for a GPU. Other optimization methods, when solving,
generally use the GPU to calculate all the elements in the vector at the same time. The
SGD is also used to update the vector. Thus, we design SGD for MF-based CF for
GPU computing along this idea. This is called NewGPUSGD. The thread workflows of
GPUSGD and NewGPUSGD are shown in Figure 3. GPUSGD updates every element in
a vector serially in a thread, while NewGPUSGD updates every element in a vector in
parallel.

However, there is a significant difference between SGD for MF and for other optimiza-
tion methods. The solution vector of other optimization methods is always of thousands,
so it can make full use of a GPU if every thread computes an element.

SGD for MF computes many vectors as the goal of optimization. The vectors solved
by SGD for MF are only tens or hundreds, far less than the number of threads that the

Thread 1 Thread 2 Thread 3 Thread 4
Py Pui Pui Pu1
o - N S D A JE S L . e
Puw2 Puw2 Puw2 Puw2
P Ao SRS D A N T P
Pu3 Pu3 Pu Pu
@ b——m—m e SRS DU A S D Iy
Pu4 Pu4 Pu4 Pu4
~_
(a) The workflow of GPUSGD
Thread 1 Thread 2 Thread 3 Thread 4
Pui Pu2 Pu3 Pua
@ Tmm - el e - @
Pul Pu2 Pu3 Pus
o - —— - [ JES P JEE S Py
Pul Pu2 Pu3 Pu4
'_ - —_— e —— e — - —_— —_— e e —— —— — —_ — _ —_— s — — .‘
Pul Pu2 Pu3 Pu4
T\/?

(b) The workflow of NewGPUSGD

F1GURE 3. Thread workflows of GPUSGD and NewGPUSGD); dotted lines
across all threads represent data synchronization



A NEW APPROACH OF GPU-ACCELERATED SGD METHOD FOR MF 703

GPU can run. Therefore, we must calculate multiple solution vectors at the same time.
This is needed to avoid the problem of losing updates, and data partitioning is used.

If we want to use several threads to update all the elements in a vector, another problem
arises, namely the result of pl¢q, is necessary. Therefore, we need to obtain p?!gq, before
updating the vectors. The difficulty of designing a kernel function of an updating vector
is to calculate plg, through multi-threads.

We use different thread blocks to update different vectors, and threads within a thread
block update different elements in a vector.

Next, we introduce how to partition the rating matrix and how to design the kernel
function for a GPU.

4.1. Data partitioning and sorting. The dimension of a user vector and item vector
is small. To make full use of GPU computing power, we must update more than one
vector at the same time. According to the analysis in Section 2, the vectors updated at
the same time should share neither the same user nor the same item.

The common idea is to partition R into several blocks as in FPSGD and GPUSGD. If
we plan to assign [ thread blocks, then the matrix needs to be divided into [ x [ blocks. We
can label every block with a tag and require that the block shares neither the same row
index nor column index having the same tag. We label the block in a diagonal direction
as shown in Figure 4. Up to [ tags can identify all the blocks.

Blocks with the same tag can be processed at the same time. In each round of iterations,
all blocks are processed in tag order, so that all elements are calculated.

If the blocks that identify different tags are processed at the same time, loss of updates
will also occur. For example, as shown in Figure 4, if a thread block has already processed
the block (1, 1) and starts processing (1, 2) immediately and another thread block is still
processing the block (2,2), the situation in which two elements share the same row or
column in R may occur. Thus, each time blocks identified by a tag are processed, the
calculation needs to be synchronized once. The matrix in Figure 4 is being processed in
a GPU as shown in Figure 5.

(1, | 1,2) | (1,3) | (14

2D | @22 23 | 24

G.D | G2 | B3 | GH

“D | @42 | 43) | 44

FIGURE 4. Data partitions and labelling with tags

In GPUSGD, R is partitioned into [ x [ blocks of size z x z. The rating matrix is not
a square matrix, so it sets z = 7 if m > n and z = 7 if m < n. This fills the original
matrix to a square matrix. This is because GPUSGD also needs to select elements that
can be processed simultaneously in a block, and a square block is convenient. However,
our method will not process the elements in the same block simultaneously, so, in the
proposed NewGPUSGD, R is partitioned into [ x [ blocks of size ¢ X s, where t = 7 and

S:T’
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F1GURE 5. Block workflow of NewGPUSGD; dotted lines across all thread

blocks represent data synchronization

S

(a) Partition method for GPUSGD

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

(b) Partition method for NewGPUSGD

FIGURE 6. Data partition methods of GPUSGD and NewGPUSGD

The difference between the two partitioning methods is shown in Figure 6. In actual
data, the number of users is usually much greater than the number of items, or the number
of items is much greater than the number of users. Therefore, the original method of
division into square matrices produces too many blank blocks. It can be seen that our

partitioning method is more efficient.

4.2. Kernel function. Here, we design the kernel function to update the vector. We
want every thread to update an element. Therefore, when calling a kernel function, the

number of threads in each thread block needs to be equal to the latent dimension.
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FIGURE 7. Schematic of summation by multi-thread

Before updating the vector, we should calculate 7, — plgq, first. Every thread will use
this result. If all the threads calculate the result once, it is a waste of time and storage.

When calculating plq,, the first step is to calculate every multiplication of the corre-
sponding elements. This step has no result dependencies and can therefore be directly
assigned to each thread. The next step is to calculate the sum of f elements by multi-
threads. As shown in Figure 7, after [ threads calculate [ multiplications, two items are
summed with half the number of threads in each round, and this process is performed
recursively until the final result is obtained.

In the simple GPU program, every thread will only access the data of itself. However,
in this step, every thread must access the result obtained by other threads. Thus, it
cannot be stored in the register that can be only accessed by a thread. To meet this
requirement, we store the results obtained by f multiplications in shared memory, whose
data belong to the thread block and which is more efficient than the global memory, so
that each thread in the thread block can access it efficiently. The GPU kernel can be seen
in Algorithm 1.

Algorithm 1 NewGPUSGD (GPU Kernel)
1: Allocating an array preScore in the shared memory
2: tid < thread ID
3: for every block assigned to this thread block do
4: for every element in this block do

5: Determine the corresponding user and vector

6: preScore(tid] «— userVector[idz] x item Vector|idzx]

7 sign «— 1

8: while sign x 2 < f do

9: if tid%2 = 0 then

10: preScore(tid| < preScore[tid] + preScore[tid + sign]

11: Synchronize

12: Sign «— sign X 2

13: userVector|idz] <« userVector[idx] + v x {(rating — preScore[0])
x item Vector|idx] — A x userVector|idx]}

14: item Vector|idz| < itemVector[idz] + v x {(rating — preScore[0])
xitem Vector|idz] — X x item Vector[idz]}

15: Synchronize

16: Synchronize
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4.3. Analysis of NewGPUSGD. Compared to the GPUSGD method, the proposed
method has the following advantages.

(1) GPUSGD must select data in the same block that can be processed simultaneously
and update every element of a vector serially. The proposed NewGPUSGD uses all threads
in a thread block to process a vector, and it is very easy to avoid the divergence of threads.
GPUSGD must rearrange data to achieve this goal. NewGPUSGD avoids many operations
in data pre-processing.

(2) The new blocking strategy of NewGPUSGD reduces many blank blocks. This can
take full advantage of the GPU’s computing resources and avoid waste of resources.

(3) Compared to the existing SGD approach for GPUs, the new kernel function will
make less idle threads. For example, in a block shown in Figure 8, if the dimension of the
hidden feature is 3, NewGPUSGD needs to allocate three threads in the thread block,
and it takes eight units of time to complete the computation of the block. In the case of
GPUSGD, also in the case of allocating three threads, four phases are required to process
this block. The first phase processes elements 1, 6, 11, and 16. Since there are only three
threads, elements 1, 6, and 11 must be processed in parallel, and then one thread is used
to process element 16, at the same time the other two threads are in a wait state. This
computation of the first phase is completed in six units of time. It takes a total of 15
units of time for GPUSGD to process this block. As can be seen from the analysis of this
example, NewGPUSGD is more efficient than GPUSGD.

1 2 3 4

5 6 7 8

9 10 | 11 | 12

I3 14 15 | 16

FiGURE 8. Example block. Elements with the shadow represent that the
value is known; elements without shadow represent that the value is missing.

5. Experiment. The performance of the proposed NewGPUSGD method is evaluated
using four datasets: MovieLens10M, M100k, Netflix, and BDMovie. These datasets are
all publicly available on the Internet.

GPU results were achieved using an NVIDIA GX1080TI and CUDA-SDK 9.0. In the
following, the performance of the proposed SGD on GTX1080Ti is first presented, and
the computation time is then compared to GPUSGD on the same platform.

The main target of this paper is to accelerate the computation of the GPU, so we
chose a suitable set of parameters. We fixed 100 as the maximum number of iterations to
observe the iteration time. y was set to 0.005 and A to 0.03. Step is not particularly large,
so it will make the iteration swing. The regularization parameters are small and do not
have an excessive effect on the result. Setting of the parameter affects the convergence of
the iteration but does not affect the acceleration. The observed experimental results are
from two precisions, single and double.

5.1. Proposed SGD method. The proposed method mainly has two variables: latent
dimension and number of blocks. In the GPU implementation, the number of blocks is
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equal to the number of thread blocks, and the latent dimension is equal to the number of
threads in every thread block.

First, we observe the convergence of the iterations when the number of blocks is differ-
ent. The trend of the iteration is shown according to the root-mean-square error (RMSE):

1 . 2
RMSE = \/ v, > (o = Tuw) (4)

u,v)EN
where V' is the validation set and ||V|| the cardinality of set V. RMSE can be used to
evaluate the precision of a recommendation. We block the rating matrix into 64 x 64 and
1024 x 1024 matrices and fix the latent dimension at 16. The result is shown in Figure 9.

M10M M100k
0.94 . I T I 1.25 o T I I I I
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FiGureE 9. RMSE trend

It can be seen that, although the number of blocks is different, each round of iterations
calculates all the samples for one round, and while the order will bring minor changes,
the overall trend is similar. Therefore, we can see that NewGPUSGD is stable and will
not change the final iteration result with the change of matrix partition.

We analyzed the effect of these two variables through experiments as follows. We fixed
the latent dimensions at 16 and 32. The effect of the number of different blocks is shown
in Figure 10. It can be seen from the figure that the more blocks are, the greater the
efficiency is.

When the number of blocks is small, there will be fewer thread blocks allocated on
the GPU. Therefore, many GPU computing resource resources are not utilized. As the
number of blocks increases, the computing resources of the GPU are more fully utilized
and the computational efficiency is increased. At the same time, if the block number
increases, the distribution of the elements will be more balanced, so thread blocks in the
waiting state will be reduced.
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We then fixed the number of blocks at 64 and 1024, and observed the effect of changing
latent dimension. The result is shown in Figure 11. When the dimension of hidden features
increases, the number of threads needed increases, as does the duration of the calculation.

As the dimension of the latent dimension increases, the amount of computation increases
in an approximately linear manner. Owing to the fact that the computing resources of
the GPU are fixed, the calculation time also increases in an approximately linear manner.

5.2. Comparison with GPUSGD. The paper introducing the previous GPUSGD was
the first on implementing the SGD algorithm on a GPU. Therefore, we compared our
experimental results with the results presented in that paper.

We blocked the rating matrix into a 64 x 64 matrix and fixed the latent dimension
at 16. We then blocked the rating matrix into a 1024 x 1024 matrix and set the latent
dimensions at 16 and 256. When using GPUSGD, the number of threads per thread block
does not need to equal the latent dimension. To be fair, we used the same number of
thread blocks and threads to calculate the same problem. We set the number of threads
per thread block to equal the latent dimension. The result is shown in Figure 12.

When the number of blocks is 64 x 64, the two methods allocate 16 thread blocks on
the GPU, so neither method can fully utilize the computing resources of the GPU. At
this time, both methods have their own outcomes. On Netflix, GPUSGD is faster. On
the other three datasets, NewGPUSGD is faster.

When the number of blocks becomes 1024 x 1024, both methods can make full use of
the computing resources of the GPU. At this time, due to the fact that NewGPUSGD
does not generate blank blocks and the task allocation of threads is more balanced, the
advantages of NewGPUSGD compared to GPUSGD are apparent.

When the number of blocks is 1024 x 1024, the advantage of NewGPUSGD is further
highlighted by increasing the dimension of the latent feature to 256. The computation
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time of both NewGPUSGD and GPUSGD grows in an approximately linear fashion.
Thus, NewGPUSGD has an advantage after the dimension of latent features increases.

In general, NewGPUSGD has obvious advantages under the same allocation of com-
puting resources.

6. Conclusion. MF-based CF has been widely used in many recommender systems.
SGD is one of the most popular algorithms for solving MF problems with missing values.
However, the large computational burden required by SGD poses a challenge of accel-
erating the SGD process. In the past several years, the GPU has evolved into a very
flexible and powerful many-core processor. We implemented SGD on GPU and solved
two problems, the update-loss problem and the thread task design problem. The results
on various types of data show that the proposed algorithm can be well suited for the
massively parallel GPU architecture.
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