International Journal of Innovative
Computing, Information and Control ICIC International ©)2015 ISSN 1349-4198
Volume 11, Number 5, October 2015 pp. 1725-1738

DYNAMIC PERFORMANCE EVALUATION OF COMPUTING
SYSTEM BASED ON GENE EXPRESSION PROGRAMMING THEORY

JING You, WEI QIN, HUl FENG, RONG HUANG AND JINGLUN SHANGGUAN

Faculty of Information Science and Engineering
Changzhou University
Gehu Road, Wujin District, Changzhou 213164, P. R. China
{ youjing; ginwei; fenghui; huangrong; shangguan }@cczu.edu.cn

Received March 2015; revised July 2015

ABSTRACT. Software aging, with the growing software complexity, which can cause the
degradation of performance and even software failure, has never been able to be avoided.
In order to monitor the software aging of server, some researchers proposed different mod-
eling methods, such as linear regression and auto-regressive and moving average (ARMA)
model, to analyze and predict the performance. However, these models cannot express
the combined effects of a variety of resources on system performance. In this paper, a
dynamic modeling algorithm based on gene expression programming (GEP) theory is put
forward. The GEP model can monitor, evaluate and predict the system performance by
building the direct relationship between some performance index and multiple comput-
ing resources including the utilization of CPU and memory, I/O performance, network
transmission, etc. In addition, the new GEP model can be adjusted to trace the perfor-
mance trend and the running state of system by moving window strategy. Finally, three
experiments are designed and the results demonstrate that the GEP model can express
the overall trend with essential details, which will have higher precision and practicabil-
ity than those of traditional models when the trend of data has complex changes, and
the multi-stage GEP model can be established to analyze and predict the healthy state of
system during the process of aging.

Keywords: Performance evaluation, Gene expression programming, Dynamic monitor-
ing, Software aging, Performance model

1. Introduction. Recently, software aging has been usually used to describe a common
phenomenon, in which the computing system undergoes a performance degradation or
even a failure with time [1,2]. Rebooting the failure system was simple but it might be
expensive in terms of downtime, so a proactive technology called software rejuvenation was
studied by many researchers to ensure the high availability of the system [3-5]. In order
to choose the right rejuvenation strategy, different Markov models [2-5] were established
to determine an appropriate restart interval to improve the system availability. However,
for the unstable system, it is difficult to divide the system into different states, and other
methods to evaluate the performance of computing system should be developed.

Studies had shown that performance degradation often accompanies a loss of system
resources such as memory leaks and overflows, unreleased file locks, storage space fragmen-
tation, the error accumulation, lack of swap space and network bandwidth [2,6]. Conse-
quently, the performance of computing system can be evaluated by modeling the wastage
of all kinds of system resources during aging process. The dynamic performance evaluation
method proposed in the paper is used to solve the problem. Compared with the common
modeling methods, such as time series analysis methods [1,6], which were proposed to
analyze the changing trend of each kind of resource and predict the system performance,

1725

1726 J. YOU, W. QIN, H. FENG, R. HUANG AND J. SHANGGUAN

the new method can establish the direct relationship between system performance and
multiple resources utilization simultaneously.

If we trace the recession degree of the system performance, it always takes a long time,
several months or even years, to collect the effective data of the system resource wastage
[6,7]. At the same time, some accidental interference may appear during the process. In
addition, different server and complex running circumstances may cause imprecise data.
Hence, aging simulation is an effective way to get data and evaluate performance. In the
paper, a general simulation environment is built to collect the performance and resources
data.

The outline of our paper is as follows. Section 2 provides a survey of related work.
In Section 3, the corresponding relations between performance evaluation of computing
system and gene expression programming (GEP) algorithm are analyzed. In Section 4,
a new modeling method, dynamic gene expression programming method, is proposed to
determine the combined effects of a variety of resources and evaluate the performance
trend during aging process. Section 5 introduces the distributed simulation environment.
In Section 6, three experiments are designed to compare the effects of different modeling
methods and establish multi-stage GEP model of aging process. Finally, the conclusion
is given in Section 7.

2. Related Work. Software rejuvenation is a proactive technique [3,8] based on reboot
systematically which can prevent unexpected or unplanned outages due to software aging.
This method has also been applied to software system in a wireless sensor network [9] and a
server virtualized system [5,10] besides traditional service systems [2,6]. How to determine
an appropriate restart time depends on the running state of system. For a stable system,
many models such as Petri nets and Markov were proposed to model the states of system
and find the restart interval and threshold. Huang et al. [3] proposed a continuous-time
Markov chain model and Dohi et al. [11,12] proposed a semi-Markov model to calculate
the optimal software rejuvenation schedule. Zhao et al. [13] also applied semi-Markov
model and non-parametric method to optimize the trigger interval. However, for unstable
systems, we need to monitor and release system resources in real time so as to keep system
performance. Based on the previous methods, the latest research by Santos et al. [14]
explored the best restart time through searching the code autonomously via multi-agent.
Before software rejuvenation, the system resource data should be collected and analyzed
whether the system is stable or unstable. Garg et al. [1] proposed a methodology for
detection and estimation of aging in the UNIX operating system. They developed a
distributed monitoring tool based on SNMP to collect operating system resource usage
and system activity data at regular intervals from networked UNIX workstations. Sysmon
[15] was built to monitor the web server’s environment including the resources of operating
system and Apache’s daemon processes, such as physical and shared memory usage. All
the data were collected from several files in the Linux/proc directory. Supermon [16] used
remote state agreement of SunRPC to collect data from different computing nodes. The
protocol was based on the symbols expression so that the nodes could communicate with
each other in a heterogeneous environment, but the data collected could only stay in the
central database, which did not meet the scalability. Dproc [17] was a system monitor
tool based on Linux kernel. It supported a custom monitoring and the information could
be filtered for reducing communication load. With reference to the above methods, an
adaptive resource monitor was designed by our team based on Linux platform [18]. It
could collect the specified resources data and adjust automatically the sampling interval.
And then these data could be stored and analyzed using a suitable modeling method.

DYNAMIC PERFORMANCE EVALUATION OF COMPUTING SYSTEM 1727

The difficulty of data collection is the reproduction of aging process, for which the
system has to run for a long time and try to avoid non-aging failures. Garg et al. [1] col-
lected the data every fifteen minutes and the data acquisition work lasted approximately
53 days. In their further studies, the same experimental setup and monitoring tools were
used [8,19]. Others reported experiments utilized in software aging studies covered 600
hours [20], 2160 hours [21], and 6480 hours [22]. During the period, the system often
suffered unexpected outage rather than software aging. Many software aging experiments
found in the literature were terminated before the observation of system failures for aging.
In Garg’s experiment, only three machines did not experience any outage, and the other
four machines suffered unexpected outage. In order to gather the effective resources data
that can reflect the recession rule of specific systems as soon as possible, it is necessary to
design a reasonable simulation system to simulate the loads and the running circumstance
of servers. In our simulation system, “aging factor” put forward by Matias et al. [23]
can be used together with the degradation test method to accelerate software aging and
control the aging effects at the experimental level.

After data collection, we need to analyze and model the resources data for determining
the running state of system and restart time. Generally, the unary linear regression model
was used to estimate the entirety trend of single resource. Moreover, the multiple-linear
regression model was intended to estimate the different resources on system performances
changes. However, Shereshevsky et al. [24] criticized the linear models and they thought
that the approach was not adequate if a large increase in the confidence intervals was
observed in periods or the studied variables showed a non-linear behavior. Grottke et
al. [25] proposed ARMA model to portray software recession and the consumption of
resources because it could describe the details of resources’ changes. Another study of
software aging in an Apache web server was presented and it also used time series ARMA
models to identify, characterize, and estimate the aging effects [26]. State space model
was also used to model the change rule of system resources [27]. All these methods men-
tioned above can model the resource separately to analyze the influence factors, but it
was difficult to predict the system performance that was affected by a variety of resources
simultaneously, which is the reason that the dynamic GEP model is proposed in the pa-
per. GEP method has been used to analyze the complicated relationship among multiple
factors in different fields such as stock investment [28] and electricity demand [29].

3. Performance Evaluation of Computing System and GEP Algorithm. The
majority of computing system may be affected by a variety of resources, so a new method
is needed to make an effective evaluation of computing system performance. Its modeling
results can be used to predict the performance recession of computing system and deter-
mine the restart interval or threshold value. The method should take various influence
factors into account simultaneously and then build a direct relationship between system
performance and influence factors. GEP model just meets the demands. GEP uses iso-
metric linear symbol as genetic coding to analyze the combined effect of multiple factors
on a particular element. The corresponding relations between performance evaluation of
computing system and GEP algorithm are shown in Table 1.

Table 1 shows that the influence factors of system performance are expressed as the end
symbol set in GEP theory, and the fitting operations applied to these factors are expressed
as the function symbol set. A series of end symbols and function symbols constitutes one
action rule of computing system, which is expressed as a gene in biological system. Each
chromosome consists of one or more genes, that is, various rules can exert a comprehensive
influence on computing system. A chromosome can be converted to an expression tree,
and the mathematical model representing the performance of computing system can be

1728 J. YOU, W. QIN, H. FENG, R. HUANG AND J. SHANGGUAN

TABLE 1. Correspondence between performance evaluation of computing
systems and gene expression programming algorithm

Performance Evaluation of Computing System Gene Expression Programming Algorithm

Computing System Biological System

Computing System Performance Biological System Health Degree
Rules Combination Population

Rules Search Genetic Operators
One/Multiple Rules Gene/Chromosome
Mathematical Model Expression Tree

Influence Factors End Symbol Set

Fitting Operations Function Symbol Set

Model Accuracy Fitness

obtained by inorder traversing the expression tree. Multiple genetic operators are designed
in GEP algorithm to search the rules of computing system according to the chromosome’s
fitness. The higher fitness a chromosome has, the higher accuracy its mathematical model
has. In order to ensure the legitimacy of expression trees, namely to ensure the availability
of model, each gene must be composed of head and tail, and they have to meet some
formation rules. Not all parts of the gene will be manifested in the expression tree.
However, the part of gene which is not manifested equally involved in the subsequent
operation of genetic operator, and it may eventually produce the highest fitness. This
kind of evolution mode also can ensure global rules search.

4. Dynamic GEP Model of Aging Process.
4.1. Traditional models.

4.1.1. Unary linear regression model. In order to estimate the general trend of single
resource, we can use the unary linear regression model which is simple and intuitive, and
also has been used in lots of fields. If the system runtime is as variable x and the usage
of resource is as variable Y, the model is Y = a + bz + &, ¢ ~ N(0,0?). The variables
a, b and o2 are not dependent on the unknown parameters of z. The variable b is called
regression coefficient. The expression shows that the variable Y consists of two parts:
one part a + bx is the linear function of x, and the other part is random error £ which is
uncontrolled.

4.1.2. ARMA model. ARMA (Auto Regressive and Moving Average, ARMA) model can
be shown by the formula X; = ¢1 X;_1+ 0o Xy o+ +0, Xy —016,_1 —bOsgy_o—+ - - —0,54_.
In the formula, p and ¢ are respectively the number of auto regressive ranks and moving
average ranks. 6 and ¢ are non-zero pending coefficients. ¢, is an independent error item.
X, is a stable, normal and zero-mean time sequences. ARMA model is the integration
formula of AR (p) and MA (¢). In the process of running the data model, we need to
calculate the coefficients of ACF and PACF, and then identify the model according to
the characteristics in Table 2, and finally establish the model configuration about the
gathered data.

TABLE 2. Identification of model characteristics

Model AR(p) MA(q) ARMA(p,q)
ACF trailing truncation trailing
PACF truncation trailing trailing

DYNAMIC PERFORMANCE EVALUATION OF COMPUTING SYSTEM 1729

4.2. GEP model based on user feeling. The quality of service refers to many aspects
including reliability, safety and continuity. However, users do not want to know the exact
value of all these indicators, their direct service experience for the system performance
is the response time of the requests which is affected by many factors. Therefore, a
mathematical model based on GEP theory [30], which is called GEP model, is proposed
to establish the relationship between response time and a variety of system resources and
evaluate the computing system performance.

4.2.1. Chromosome. Each chromosome contains one or more genes, and each gene has
two parts: the head and the tail. The head is composed of function symbols or end
symbols. The first position of a gene must be a function symbol, and the tail must be
made of end symbols. The length of head (h) must be first determined, the length of tail
is defined as ¢, and the relationship of them is as follows:

t=h(n—1)+1 (1)

The n in the formula is defined as the number of the function parameters with the most
variables. For example, we use the function symbols {+, —, %, /}, and the end symbols
{a,b,¢,d}. Now we have a chromosome A, +/ — abed| — + — aaba] — + — beaa, which
contains three genes. The length of each gene’s head is 3 and the length of its tail is 4.
Supposed the connector between genes is symbol +, the corresponding expression tree of
chromosome A is shown in Figure 1. Then we perform inorder traversal for the tree and
obtain the arithmetic expression ((a/b)+ (¢ —d))+ ((a+a) — (b—a)) + ((b+¢) — (a —a)),
and the result is a/b + 3a + 2¢ — d.

ab) © @@ @b)(a
FiGURE 1. Expression tree of chromosome A

In this paper, the adaptive performance monitoring tool developed in the previous
research is used to collect various parameters from the running computing system. Ac-
cording to preliminary analysis and empirical data, we determine the performance-related
parameters, which are defined as the end symbols. Thus, the identified chromosome will
reflect their combined effects on system performance.

4.2.2. Fwvolution operator and evaluation function. In the process of evolution of chromo-
somes, as long as the conditions that are mentioned above have been met, the offspring
chromosomes are still valid. GEP algorithm has the same general choice, mutation and
recombination as the genetic algorithm, but it also has some special operation such as
interpolation operation, root interpolation operation, and gene recombination operation.
We can check Ferreira’s book [30] for these operations.

1730 J. YOU, W. QIN, H. FENG, R. HUANG AND J. SHANGGUAN

Before evolution, the fitness value of each chromosome should be calculated, and the

formula is
!

foi =) (M —|Cyj = T)) (2)
§=0
fuv; is the fitness value of the chromosome, M is a constant variable, Cj; is the calculated
value of the i-th chromosome gene expression with the j sample value, T} is the actual
value of the j-th sample, and [is the number of samples.

4.2.3. Algorithm description. Algorithm is described as follows.

(1) Set the end symbols, function symbols, the fitness value of chromosomes, and the
maximum number of iterations.

(2) According to the set of function symbols and the end symbols, generate 50 chromo-
somes by random and then initialize them. Calculate the fitness value of each chromosome,
and stop the operation and output the chromosome as a result if the chromosome reaches
the required fitness.

(3) Implement the single-point recombination, two-point recombination, gene recombi-
nation operation, interpolation operation, root interpolation operation and gene interpo-
lation operation according to predefined rates.

(4) Calculate the fitness value of each chromosome, and stop operation and output the
chromosome as a result if the chromosome reaches the required fitness.

(5) Sort all chromosomes by their fitness, and then choose the top 50 chromosomes as
a new population to produce the next generation.

(6) Stop and output the chromosome with maximum fitness as a result if it reaches the
maximum number of iterations; otherwise jump to step (3) and continue running.

4.3. Multi-stage dynamic GEP model. Due to software aging, the performance vari-
ation rule is different in different running stages. Therefore, a dynamic model with moving
window is put forward to make continuous monitoring and dynamic evaluation of the per-
formance. The method sets the single window of time domain as AT, and then builds
the GEP model for all kinds of resources of three windows. The last model is applied
to predict the data of next window, and then the forecast accuracy is analyzed to decide
whether the model is corrected for the next window.

In the algorithm, F; is the initial population, and P represents the last population at
the end of the model search. k is the number of iterations and the initial value is 0, and
kmax is the maximum value of iterations. w is the counter of windows and its initial
value is 0, and W is the maximum value of counter. The chromosome fitness is calculated
according to Formula (2).

Predefine F'v as the threshold of fitness and Fv = nMI, n is model accuracy and
generally greater than or equal to 80%. Algorithm is described as follows.

(1) Generate n chromosomes by random and then initialize the population if £ = 0 and
w = 0.

(2) Decode chromosome and calculate the fitness value for the window of w+1 ~ w+3.

(3) If fv; > Fv or k > kmax, the current round of model search and the iteration is
ended. Set w = w + 3, record current chromosomes, output the value of w, max(fv;),
chromosomes and mathematical model, and then jump to step (7).

(4) Implement the single-point recombination, two-point recombination, gene recombi-
nation operation, interpolation operation, root interpolation operation, gene interpolation
operation.

(5) Set k = k + 1, decode chromosome, and calculate the fitness value for the window
of w+1~w+ 3.

DYNAMIC PERFORMANCE EVALUATION OF COMPUTING SYSTEM 1731

(6) Sort chromosomes by their fitness and set top n better chromosome as the new
population, which are used to produce the next generation, and jump to step (3).

(7) Calculate the fitness value of the forecast window (w + 1) according to the mathe-
matical model if w < W.

(8) If fv > Fuv/3, set w = w + 1, continue the cycle of the model to predict the value,
and then jump to step (7).

(9) Set current population as initial population, that is Py = P, k =0 and w = w — 2,
then jump to step (2) to start a new round of model search and correct the original model.

5. Simulation Environment Based on Linux Platform. The experimental simu-
lation environment is shown in Figure 2. The whole environment is divided into three
parts: server simulation environment, load simulation environment and system resources
monitoring environment.

[— — — - Jmeter-Based Point-to-Point Test Structure = =— —

- .
ﬂ Simulation Cloud Platform \

. 1

' ,

Virus
PaaS Scanning|
Service

| Jmeter-Based

| Dristributed <
&

' Test 0\&\

structure | g

Data
Resources

VM4 VM3 VM6

Server | Servend

ESXi ESXi M /

Diara Analysis and

N N - i System Resources Monitor|
Rejuvenation Decision

FIGURE 2. Aging simulation environment

The right part with the solid box is simulation environment of server based on cloud
platform. Some common cloud computing applications are built based on VMware ESXi,
such as web services, database services, and virus scanning service. Among them, two
virtual machines provide web services, and they will be tested and monitored as an en-
terprise application system under cloud mode. One virtual machine provides web service
by configuring Apache and Tomcat based on Linux platform. Apache takes charge of
the static web-page of web services and only deals with simple browsing. Tomcat takes
charge of the dynamic web-page and deals with interactive and database operation tasks.
The other virtual machine can provide different web services by configuring IIS based on
Windows platform.

The left part with the dashed box is JMeter load simulation environment. This en-
vironment adopts two kinds of test structure. One is a distributed structure and the
other is a point-to-point structure. The distributed structure needs to configure several
PC machines in LAN. One of them is used as controller, and the others are used as load
generators. The controller controls the load generators to send HTTP requests to the
server, and then the response results are sent back to the controller. The controller can

1732 J. YOU, W. QIN, H. FENG, R. HUANG AND J. SHANGGUAN

perceive the performance changes of servers, modify the parameter setting of the load
generators and regulate the system load. The point-to-point structure is simple, as shown
in black dotted line. It only needs a machine as a load generator to send a large number of
requests to the server. Take the Web server based Linux as example. If we only visit static
web-pages, the workload of server is light, so the distributed test structure is demanded
to generate heavy loads for changing the performance of server and the quality of service
in an appropriate range. If we visit dynamic web-pages, the workload of server is heavy,
so point-to-point test structure is enough to generate heavy loads and ensure that the
server is able to run smoothly without downtime.

The performance of computing system is often affected by many factors during running
time. These factors fall into three categories: one is the usage condition of operation
system resources, such as CPU utilization rate, memory utilization rate, and the size
of usable exchange space; another is the usage condition of network resource, such as
throughput, bandwidth, and frame loss rate; the third one is the usage condition of storage
resource, such as utilization rate of the queue, and input and output. This experiment is
based on plenty networks and storage resources. Therefore, we only need to monitor the
operation system resources.

The marquee part in the below is the system resources monitoring environment. In
order to minimize the resource consumption of the monitoring system itself, we configure
another machine as the resource monitor. The resource monitor is designed by our team
based on Linux [18]. It can achieve collection, storage, analysis and modeling of the
resources data. The communication between resources monitor and web server is set up by
socket, protocol. During the running process, the resources monitor picks up periodically
the resource usage information from the /proc virtual document system after configuring
collection time intervals and resource parameters, and then saves the collected data to
the document or database for following modeling. Furthermore, the monitor can adjust
the sampling intervals automatically based on the actual change of collected data.

In addition, the performance data also need to be collected. What the end users want
most is a safe service and timely response, so the response time of server can be used to
reflect software performance in this experiment. The response time covers the time that
starts from the client sending the request to the server and ends to the server returning the
response to the client. In general, the response time includes front-end and back-end. The
front-end is network latency, and back-end time is processing time of servers (for instance,
Web Server, Application Server, and Database Server dealing with the requests). Because
our experiment is carried out in local area network, the network latency can be ignored
and the response time in our experiment equals the back-end time. And then it can
be used to model the relationship between system performance and resources. In the
experiment, we record the current system time when we send the requests to the server
as T1 and the time when the server has finished processing the requests as T2, and then
we can get the system response time T = T2 — T1.

6. Experiment. In this section, three experiments are designed to test and verify the
effects of GEP model and dynamic modeling method.

6.1. Setting of experimental parameters. The environmental parameters of simula-
tion cloud platform are shown in Table 3.

The experiment parameters of load simulation environment are shown in Table 4. Maz-
Clients and MaxRequestPerChild are two significant parameters on the server side: the
former sets the number of max clients that can connect to the server simultaneously and
the latter sets the maximum number of requests for each sub-process can respond. If

DYNAMIC PERFORMANCE EVALUATION OF COMPUTING SYSTEM 1733

TABLE 3. Experimental environmental parameters

Test System Web S Resource
Control Agent1/2/3 D DEIVEL Monitor System
Operating windows 7 windows XP Cent0S 5.5 windows XP
System
Memory DDR2 4G DDR2 1G DDR2 1G DDR2 1G
Pentium(R) Intel (R) Intel(R)

Intel Core2 Duo

Processor Dual-Core CPU Celeron (R) CPU Xeon(R) CPU E4500602.20CGHz

E5300@2.60GHz E3200@2.4GHz E5405@2.00GHz

TABLE 4. Load simulation parameters

. . Collection Ramp-Up .
MazClients MaxRequestPerChild Resource Data Threads Period Cycle Times
1024 0 900 3000 0.2 Forever
1024 0 3519 5000 0.1 Forever

TABLE 5. Algorithm parameters

Interpolation Single Gene

Gene Variation /Root /Two-Point Recombination

" Number VT M K ! kmax Rates Interpolation Recombination /Translocation
Rates Rates Rates
50 4 5 35 25 min 10 0.94/0.96 900/300 100 0.1 0.1/0.2 0.3 0.02

MazRequestsPerChild is “0”, the child process will never end. The other parameters in
Table 4 are set at the client side, where the parameter Ramp-Up Period is set for avoiding
too heavy loads due to the simultaneous requests from lots of threads. All the threads
are not sent continually until the completion of data collection.

In resource monitor, we can customize the relevant parameters by an inspecting con-
troller, such as monitored nodes, collected resource types, and sample interval. In our
experiment, the collected resources data include CPU and memory information, based on
which we will calculate CPU and memory utilization of system.

The most parameters of GEP algorithm are shown in Table 5. In addition, GEP
model uses function symbol set > = {4, —, ,s,e}, in which s is sin function, and e
is exponential function. The termination symbol is {0, 1,2}, in which 0 indicates CPU
utilization rate, 1 indicates memory utilization rate, 2 indicates the sampling time, and
the response time is our target value.

6.2. Experiment one: comparison of GEP model and traditional models. GEP
algorithm is proposed to model comprehensive relation between response time and mul-
tiple factors. However, like traditional modeling methods, GEP method can also be used
for single resource. In this experiment the effect of GEP model will be compared with
those of traditional models.

This experiment uses the distributed test structure, and the parameters of experimental
environment are shown in Table 3. The load simulation parameters are shown in the first
row of Table 4. The algorithm parameters are shown in Table 5, and in this experiment
1 is 0.94 and the number of samples [is 900, so F'v equals 8460.

We gather the CPU and memory information and calculate their utilization, and then
we establish respectively linear regression model, ARMA model and GEP model for two
data sets. The modeling results are shown in Figure 3 and Figure 4. We can see that

1734 J. YOU, W. QIN, H. FENG, R. HUANG AND J. SHANGGUAN

0.9 T T T T T

08 - Measured Value ARMA Model .

GEP Model

0 100 200 300 400 500 600 700 800 300
Sampling Time (min)

Ficure 3. Comparison chart of three models on CPU utilization rate

o

o]

©
T

Measured Value ARMA Model

@ 2
=] @
~ @

2
@
@

Memory Utilization Rate (%)

0.65

| | | | | |
300 400 500 600 700 800 900

Sampling Time (min)

| |
0 100 200

FI1GURE 4. Comparison chart of three models on memory utilization rate

from the diagram, the linear regression model simulates the general trend of CPU and
memory utilization rate. This modeling method is quite simple but it does not express the
changing trend in detail, so the difference between the actual value and function value is
too large. The ARMA model and GEP model are concerned about the overall trend with
essential details, which will be very helpful for us to design reasonable control strategy.

6.3. Experiment two: comparison of two GEP models. In this experiment, we
will compare two GEP models, R(t) and R(Cpu, Mem,t). Model T (R(t)) shows the
direct relationship between response time (R) and sampling time (¢). And Model II
(R(Cpu, Mem,t)) takes the influence of CPU utilization (Cpu), memory utilization (Mem)
and sampling time (¢) to response time (R) into account simultaneously.

For Model I, the average evolution generation number of algorithm is 235.8 generations.
And then we select a good chromosome B which can get a high fitness value, —ss15102002x
s50 x 212222 — 22 — 2222212 % x/002e1212, whose expression tree is shown in Figure 5(a).
According to the expression tree, we set the utilization of CPU and memory as a constant
1, and then we can obtain the mathematical model R(t) = 0.0171478+0.0174524 sint+t/e.
The fitness of model I is 8546.911.

DYNAMIC PERFORMANCE EVALUATION OF COMPUTING SYSTEM 1735

/’\ //\
S @ o [L & adeds
LA S l
L R

(a) (b)

4.5
af Measured Yalue |
Y I T
)
g 3T R(CpuMemn,t))
= L N
i
[0
= |]
S 2
i
s e o 1
=
Ll 1
&
[IN=) 1
D -
-05

100 200 300 400 500 E00 700 800 900
Sampling Time {min)

FiGURE 6. Comparison chart of two GEP models

For Model 11, the average evolution number of algorithm is 18.2 generations. Likewise,
we select a good chromosome C, s —%2211010 — 11« 2020101/ % €21512222/s€2 x 011112,
whose expression tree is shown in Figure 5(b). According to the expression tree, we can
obtain the mathematical model R(Cpu, Mem,t) = e 4 —omt—. The fitness of
Model II is 8551.21.

Figure 6 shows us the comparison chart of two models for all samples. From the above
results and function curves, it can be seen that the results of two models are very similar
but the evolution speed of Model II is much faster than that of Model 1. Furthermore,
the accuracy of Model T is a bit less than that of Model II. The main reason is that
the response time may be affected by many factors, such as the system’s resources, and
network resources. CPU, Memory, and the sampling time are used simultaneously to
model R(Cpu, Mem,t), so the modeling speed will be improved, and the accuracy of the
model will also be enhanced.

6.4. Experiment three: multi-stage dynamic GEP model. To study the changing
trend of resource depletion and performance degradation during the process of software
aging, the virtual servers need to deal with continuously heavy load for a long time. In

1736 J. YOU, W. QIN, H. FENG, R. HUANG AND J. SHANGGUAN

this experiment, the point-to-point test structure and the test of dynamic JSP pages are
selected, so only one client called controller is needed to send the simulation load to the
server. The load parameters are shown in the second row of Table 4. The parameters of
algorithm are shown in Table 5, where the precision of algorithm 7 is 0.96, the number of
samples [is 300 and Fv = nMI = 2877.

The experiment collects 3519 group data, which takes 14.7 hours. Firstly, we select
the data in first three windows to model and obtain the chromosome / x s12 — 201225 x
52202122 % s 2221021 /sel * 012201 after 18 generations. After that through expression

tree the chromosome is transferred to the GEP model, m; = Sin?;ia) + sin(e€ x sin(c)) +
sin(c)*c*ec+s$(f,’,), whose fitness is 2920.6472. And then the model is tested and verified by

the data in the next window to determine whether the results meet the fitness. According
to the algorithm we build and check the model using moving window. This experiment
has 35 windows, and finally we obtain four different chromosomes, which express four
mathematical models. The results are shown in Table 6.

TABLE 6. Modeling results of moving window during the process of soft-

ware aging
Window Fitness
Numbers Chromosome Model Value
_ bxc : c :
3 /%512 201225%52202122 m1 = grptey +sin(e” x sin(c)) 9020 6479
x5 % 22€21021/sel % 012201 +sin(c) * ¢ * e + s:;—(?,)
— — ms = sin(sin(sin(b * ¢))) + sin(c) — e°*
Lqy 55 % 1222222 — 52— 212202 M2 s(m(c)((bxc))) () 9093.733
/8525221220 — + + 22251000 +smeing T ¢~ sin(b)
_ N 5 . eb—c
Logp +*#212%0220se — 1222222 my = (cxb) + (¢* + a) +sin (&) 2885, 8176
xs — 10502012 % — % 0122112 +sin(b) * (a — sin(a)) + (a — b) * (c * €°)
ol.35 /€/20— 12220e/ — 2001120 g =) | e e 9008.9302

—e x 25122210 4+ x — 51222110 a

Figure 7 shows the comparison of actual response time and predictive response time.
The solid line in the figure is the predictive value of the system response time.

In the figure, it has been shown that the process of software aging can be divided into
multiple stages, which means that the dynamic GEP algorithm with moving window can
establish more reasonable multi-stage model with the optimal fitness value. The system
in a strong condition (1-11 windows) in the beginning enters into possible failure state
(12-20 windows). When the curve of the response time of the system becomes concave
function (21-35 windows), the system can be regarded as a quasi-failure state. At this
time, we can choose a suitable chance to perform the restart operation for recovering the
system’s performance and ensuring its availability before the system shuts down.

7. Conclusion. The software aging is a sustaining and pervasive phenomenon along
with the increase of running time of service system. This article researches a universal
method to simulate aging process of the server, gathers the resource data and models
the changing trend of performance. This new GEP algorithm can be used to model not
only simple relation between response time and single resource but complicated relation
between response time and multiple factors as well. Specially, it shows us higher precision
and practicability than traditional model because it can express the overall trend with
essential details. In order to model the aging process of service system, the dynamic GEP
algorithm with moving window is designed and multi-stage GEP model is established to
predict the change of performance and further the failure of system.

DYNAMIC PERFORMANCE EVALUATION OF COMPUTING SYSTEM 1737

System Response Time (s)

- | .y | | 1 |
0 500 1000 1500 2000 2500 3000 3500

Sampling Time (min)

FiGUure 7. Comparisons chart of actual response time and predictive re-
sponse time

There are some points needing to explain. First, the experiment is completed in LAN
environment, so the impact of network transmission may be ignored. If the servers and
clients run in WAN, the response time should include both the processing time of server
and the transmission delay of network. Second, the response time as the only performance
data in this paper is monitored and evaluated. If necessary, the system throughput which
is another important indicator can also be measured to evaluate the system performance.
Third, adjusting the value of 1 can help us to capture the state change of system. A real
computing system will show the decline of performance only when it runs continuously
for a long time. At this time the GEP model will have a greater change than before for
the change of running state of system. Therefore, if we want to capture the state change
quickly, we only need to reduce the value of 7, which means that the subtle changes of
performance are ignored. Finally, the resources monitor designed by the task group can
achieve customized and self-adapting collection of the resource data, so we can reduce
the amount of data collection and ensure the validity of data by opening the adaptive
acquisition function.

Acknowledgments. This work is partially supported by Natural Science Foundation of
Jiangsu Province (BK2009535) and Changzhou City Youth Talent Fund (CQ20100007).
The authors also gratefully acknowledge the helpful comments and suggestions of the
reviewers, which have improved the presentation.

REFERENCES

[1] S. Garg, A. van Moorsel, K. Vaidyanathan and K. S. Trivedi, A methodology for detection and
estimation of software aging, Proc. of the 9th International Symposium on Software Reliability En-
gineering, Paderborn, Germany, pp.283-292, 1998.

[2] V. Castelli, R. E. Harper, P. Heidelberger, S. W. Hunter, K. S. Trivedi, K. Vaidyanathan and W.
P. Zeggert, Proactive management of software aging, IBM Journal of Research and Development,
vol.45, no.2, pp.311-332, 2001.

[3] Y. Huang, C. Kintala, N. Kolettis and N. D. Fulton, Software rejuvenation: Analysis, module and
applications, Proc. of the 25th Symposium on Fault Tolerant Computer System, Pasadena, CA,
pp-381-390, 1995.

[4] W. Xie, Y. Hong and K. S. Trivedi, Software rejuvenation policies for cluster systems under varying
workload, Proc. of the 10th International Pacific Rim Dependable Computing Symposium, Papeete,
Tahiti, pp.122-129, 2004.

[5] F. Machida, D. S. Kim and K. S. Trivedi, Modeling and analysis of software rejuvenation in a server
virtualized system with live VM migration, Performance Evaluation, vol.70, no.3, pp-212-230, 2013.

1738

[6]

[10]
[11]
[12]
[13]
[14]
[15]
[16]

[17]

[18]
[19]
[20]
[21]
[22]

[23]

[24]

[25]
[26]

[27]

[28]

[29]

[30]

J. YOU, W. QIN, H. FENG, R. HUANG AND J. SHANGGUAN

L. Li, K. Vaidyanathan and K. S. Trivedi, An approach for estimation of software aging in a web
server, Intl. Symposium on Empirical Software Engineering, Nara, Japan, pp.91-100, 2002.

K. Vaidyanathan and K. S. Trivedi, A comprehensive model for software rejuvenation, IEEE Trans-
actions on Dependable and Secure Computing, vol.2, no.2, pp.124-137, 2005.

K.S. Trivedi, K. Vaidyanathan and K. Goseva-Popstojanova, Modeling and analysis of software aging
and rejuvenation, Proc. of the IEEE Annual Simulation Symposium, Washington, DC, pp.270-279,
2000.

M. Woehrle, A. Meier and K. Langendoen, On the potential of software rejuvenation for long-running
sensor network deployments, Proc. of the 2010 ICSE Workshop on Software Engineering for Sensor
Network Applications, New York, NY, pp.44-48, 2010.

L. Moura Silva, J. Alonso, P. Silva and J. Torres, Using virtualization to improve software rejuve-
nation, IEEFE Transactions on Computers, vol.58, no.11, pp.1525-1538, 2009.

T. Dohi, K. Goseva-Popstojanova and K. S. Trivedi, Estimating software rejuvenation schedule in
high assurance systems, The Computer Journal, vol.44, no.6, pp.473-485, 2001.

T. Dohi, H. Suzuki and K. S. Trivedi, Comparing software rejuvenation policies under different
dependability measures, IFICE Transactions on Information and Systems, pp-2078-2085, 2004.

J. Zhao, Y. B. Wang, G. R. Ning and K. S. Trivedi, A comprehensive approach to optimal software
rejuvenation, Performance Evaluation, vol.70, no.11, pp.917-933, 2013.

H. Santos, J. F. Pimentel, V. T. D. Silva and L. Murta, Software rejuvenation via a multi-agent
approach, The Journal of Systems and Software, vol.104, no.6, pp.41-59, 2015.

R. Matias, P. A. Barbetta, K. S. Trivedi and P. J. F. Filho, Accelerated degradation tests applied
to software aging experiments, IEEFE Transactions on Reliability, vol.59, no.1, pp.102-114, 2010.

M. G. Sottile and R. G. Minnich, Supermon: A high speed clus termonitoring system, Proc. of IEEE
Int’l Conference on Cluster Computing, Chicago, pp.39-46, 2001.

S. Agarwala, C. Poellabauer, K. Jiantao and K. Schwan, Resource aware stream management with
the customizable Dproc distributed monitoring mechanisms, Proc. of the 12th IEEE International
Symposium on High Performance Distributed Computing, Washington, DC, 2003.

J. You, K. N. Xu and H. Y. Wang, Design of distributed and adaptive performance monitoring system
based on software rejuvenation, Journal of Computer Application, vol.30, no.6, pp.1642-1654, 2010.
K. Vaidyanathan and K. S. Trivedi, A measurement-based model for estimation of resource exhaus-
tion in operational software systems, Proc. of ISSRE 1999, Boca Raton, FL, pp.84-93, 1999.

M. Grottke, L. Li, K. Vaidyanathan and K. S. Trivedi, Analysis of software aging in a web server,
IEEE Transactions on Reliability, vol.55, no.3, pp.411-420, 2006.

W. B. Nelson, Accelerated Testing: Statistical Method, Test Plans, and Data Analysis, Wiley, New
Jersey, 2004.

A. Avritzer and E. J. Weyuker, Monitoring smoothly degrading systems for increased dependability,
Empirical Software Engineering, vol.2, no.1, pp.59-77, 1997.

R. Matias, K. S. Trivedi and P. R. M. Maciel, Using accelerated life tests to estimate time to software
aging failure, IEEFE the 21st International Symposium on Software Reliability Engineering, San Jose,
CA, pp.211-219, 2010.

M. Shereshevsky, B. Cukic, J. Crowel, V. Gandikota and Y. Liu, Software aging and multifractality
of memory resources, Proc. of International Conference on Dependable Systems and Networks, San
Francisco, CA, pp.721-730, 2003.

M. Grottke, L. Li, K. Vaidyanathan and K. S. Trivedi, Analysis of software aging in a web server,
IEEE Transactions on Reliability, vol.55, no.3, pp.411-420, 2006.

M. Grottke and K. S. Trivedi, Fighting bugs: Remove, retry, replicate, and rejuvenate, Computer,
vol.40, no.2, pp.107-109, 2007.

J. You, R. Shi, Y. Q. Sun and H. Y. Wang, The relationship research between usage of resource and
performance of computer system, WRI World Congress on Software Engineering, Xiamen, China,
pp.451-455, 2009.

C. H. Lee, C. B. Yang and H. H. Chen, Taiwan stock investment with gene expression programming,
Procedia Computer Science, vol.35, pp.137-146, 2014.

S. M. Mousavi, E. S. Mostafavi and F. Hosseinpour, Gene expression programming as a basis for
new generation of electricity demand prediction models, Computers & Industrial Engineering, vol.74,
pp-120-128, 2014.

C. Ferreira, Gene Ezpression Programming: Mathematical Modeling by an Artificial Intelligence,
Berlin, Springer-Verlag, 2006.

