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ABSTRACT. In this paper, a four-neuron network with multiple discrete delays is inves-
tigated. Applying suitable variable transformation, we obtain the equivalent form of the
four-neuron network. Regarding the different time delays as parameters and analyzing
the corresponding characteristic equations, we derive some conditions which ensure the
local stability and the existence of Hopf bifurcation at the zero equilibrium of the system.
It is shown that different time delays have different effects on the stability and Hopf bi-
furcation behavior of the system. Some numerical simulations supporting the theoretical
analysis are carried out. Finally, main conclusions are given. Our results are new and
complement previously known results.

Keywords: Four-neuron network, Stability, Hopf bifurcation, Discrete delay, Periodic
solution

1. Introduction. During the past decade, the dynamics of neural network models with
delays or without delays has become a subject of intense research activity of mathematical
fields due to their theoretical and practical significance. It is well known that the Hopf
bifurcation phenomenon is a widespread phenomenon in the nature. Recently, many
excellent and interesting results on Hopf bifurcation of the neural network models have
been reported. For example, Xiao et al. [1] investigated the Hopf bifurcation of an (n+1)-
neuron bidirectional associative memory neural network model with delays. Song et al.
[2] focused on the stability and Hopf bifurcation in an unidirectional ring of n neurons
with distributed delays. Guo and Huang [3] addressed the Hopf bifurcating periodic orbits
in a ring of neurons with delays. Guo [4] made a detailed discussion on the equivariant
Hopf bifurcation for functional differential equations of mixed type. For more related
work, one can see [5-16]. Here we would like to point out that all the work mentioned
above investigated the stability and Hopf bifurcation by choosing the single time delay or
the sum of multiple time delays as bifurcation parameter. Further, they considered the
stability, direction and period of Hopf bifurcation by applying normal form theory and
center manifold argument. A natural problem is that in many cases, different time delays
exist in networks and what different time delays have effect on the dynamical behavior of
neural networks. This plays a key role in the design of neural networks. We feel regret
that all the work mentioned above does not consider the effect of different time delay on
the stability and local Hopf bifurcation behavior of neural network. We think that it is
important to analyze the effect of different time delay on the dynamics of neural networks.
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Motivated by the analysis above, in this paper, we will deal with the stability and local
Hopf bifurcation of the following four-neuron network with multiple discrete delays

1 (t) = —ayuy (t) + cra falua(t — )] + crsfslus(t — 1)),

UQ(t) = —GQUQ(t) + CQlfl[Ul(t — 7'2)] + CQ4fﬁ[U4(t — Tg)], (1)
Us(t) = —azus(t) + csa folua(t — 73)],
U4(t) = —a4u4(t) + C43f3[U3(t — T4)],

du(t)

where (t) = =7, u;(t) represents the state of the ith neuron at time ¢, a; > 0 is
the internal decay rate, c;; is the connection weight, f; is the neuron transfer function,
fx(0) = 0, fr € C', 73 is the non-negative transmission time dealy, and 4,j = 1,2, 3, 4;
k=1,2,3,4,5,6. We believe that the investigation on the effect of time delay on the
dynamical behavior will be an important supplement to the previous publications.

This paper is organized as follows. In Section 2, the stability of the equilibrium and
the existence of Hopf bifurcation at the equilibrium are studied. In Section 3, numerical
simulations are carried out to illustrate the validity of the main results. Some main
conclusions are drawn in Section 4.

2. Stability of Equilibrium and Local Hopf Bifurcation.

2.1. The analysis of the characteristic equation. In this subsection, we will discuss
the roots of the characteristic equation. It is easy to see that system (1) has a unique
equilibrium F(0, 0,0, 0). Since system (1) contains four different time delays, it is difficult
to study the dynamical behavior of the model. Hence, we employ a set of four new state
variable so that system (1) can be expressed as a set of nonlinear differential equations
with three distinct time delays. For simplicity, we introduce the following set of new state
variables

l'l(t) = Ul(t — T9 — T3 — 7'4),

l‘g(t) = Ug(t — T3 — 7'4),

l‘g(t) = U3(t — 7'4), (2)
l‘4(t) = U4(t)

and let
7'1—|—7'2—|—7'3+T4 = S1,

7'1—|—7'2—|—7'3:82, (3)
7'2—|—7'3—|—T4:T.

Then system (1) can be rewritten as the equivalent form

1(t) = —a121(t) + crafalea(t — )] + ez fs[zs(t — s1)],

To(t) = —agxa(t) + o1 fi[x1(t)] + coafo]ra(t — $2)], 0
t3(t) = —azxs(t) + c32fa[wa(t)],

T4(t) = —agxy(t) + caz f3[x3(2)].

The linear system of (4) at E(0,0,0,0) takes the form:

1(t) = —a121(t) + anafzs(t — 7)) + arzlzs(t — s1)],

To(t) = —agxa(t) + agi[x1(t)] + ag|za(t — $9)], )
t3(t) = —azx3(t) + asz[wa(t)],

T4(t) = —agzy(t) + ayz[xs(t)],



STABILITY AND BIFURCATION OF A FOUR-NEURON NETWORK 1617

where e = Cl4f:1(0), a3 = 013f5;(0), Q21 = Czlf{(o), (24 — C24f(;(0), azg = C32f5(0),
asz = c43f3(0).
The associated characteristic equation of (5) is given by

A+ ay 0 —az3e ™M —qpue M
—a921 A+ a9 0 —a24€7/\82 .
det 0 —032 )\ _|_ a3 0 - 07
0 0 —Q43 A+ ay
which leads to
M DAY 4 b A? 4 b3\ + by + bse T A+ (b + br)e 2 4 (bgA +bg)e ' =0,  (6)
where
b1 = a1 + as + a3z + aq4, by = a1as + a1a3 + a1a4 + asas + asay + asay,
by = ajasas + ajasas + ajasay + asasay, by = ajasasay, by = as1a32a14a43,
bg = —a4a32a43, b7 = —a1024a32043, bg = a21a13a32, by = asas aizass.
Let

AN, 51,59, 7) = Mbi N340 A2 +bg A+by+bse ™+ (g A+br)e 2524 (g A+bg)e ™1 = 0. (7)

In order to investigate the roots of (7) with three time delays, we will begin with the
analysis when there is no delay. When s; = 0,55 = 0 and 7 = 0 in system (7), we get

A(X,0,0,0) = A* + by A% + by A2 + (bs + bg + bg) X\ + by -+ bs + by + by = 0. (8)

In view of the Rorth-Hurwitz criterion, all the roots of (8) have negative real parts if the
following conditions hold.

Blzb1>0, BQZble—bg—bG—b8>0,
By = (b3+bﬁ+bs)B2—b%(b4+b5+b7+b9) > 0, (9)
B4:(b4+b5+b7+bg)83>0.

In the sequel, we will find the conditions for non-existence of stability switching. The
following lemma (see [21]) is helpful.

Lemma 2.1. [21] A set necessary and sufficient condition for the trivial solution (0,0,0,0)
of system (5) to be asymptotically stable for s; > 0, so > 0 and T > 0 is the following:
(i) The real parts of all the roots of A(A,0,0,0) =0 are negative;

(ii) For any real s;1 > 0, so > 0 and 7 > 0, the following holds: A(X, s1, s2,T) # 0, where

i =+/—1.
Let A = tiw be a pair of purely imaginary roots of (7). For w = 0, then
A(0, 51, 82,T) = by + bs + by + by # 0. (10)
For w # 0, then

A(iw, 51, 59, T) =w* 4+ biw?i — byw? + bywi + by + bse ™7

+ (bgwi + br)e ™% + (bgwi + by)e ™ = 0.
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Separating the real and imaginary parts of (11), we have
(w? — bow? + by) = —bs cos(wT) + whg cos (w32 + g) — d7 cos(wss)
+wbg cos (wsl + g) — by cos(ws1), (12)
(biw? — byw) = —bs sin(wT) + whg sin (C(JSQ + g) — by sin(wss)
+whbg sin (wsl + g) — by sin(wsy). (13)
It follows from (12) and (13) that
w® + (b — 2b9)w® + (b5 — 2b1b3 + 2bs)w”
+(b5 — 2bby — b — b3)w® + (b — b — b — b7)
=2 |:_Wb5b6 cos (w82 + g — w7'> + bsby cos(wsy — wT)

—wbsbg cos (wsl + g — w7'> + bsbg cos(ws; — wT)
+w?bgbs cos(ws — wsy) — whgbg cos (w82 + g — w81>
— wb7bg cos (wsl + g — w32> + brbg cos(wsy — wSQ)] . (14)

It follows from (14) that
wS + (b? - 2[)2)0)6 + (b% - 2b1b3 + 2b4)w4
+(b3 — 2boby — b — b3 )w? + (b — b2 — b3 — b3)
< 2[|bsbr| + [bsb| 4 |brbo| + w?|bebs|
—|w|(|bsbs| + [bsbs| + [bebg| + |b7bs])]- (15)
Then from (14) and (15), we have
w8 + (b% — 2[)2) (,L)G + (b% — 2()1[)3 + 2b4) w4 + [bg — 2b2b4 — (bg + b8)2] w2
+2w (bsbg + bsbs + bbg + brbs) + [bf — (bs + by + bg)*] > 0. (16)

Let
( 91:b%—262>0,

0, = b2 — 2b,bs + 2by > 0,

{ 05 = b2 — 2byby — (bs + bg)?, (17)
04 = bybg + bsbg + bgbg + b7bg,

[ 05 = b2 — (bs + by + by)?.

Then (16) takes the form
4 04 ’ 92
W+ 0w+ Ot + 05 (w+—) +(0;—==) >0. (18)
05 05
Thus, we can conclude that a set of sufficient conditions for the non-existence of a real
number w satisfying A(iw, s1, s2, 7) # 0 are given by
92
93 > 0, 95 > —4 (19)
03

According to the analysis above, we have the following theorem.
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Theorem 2.1. If the following inequalities
bg > 2b2b4 + (b6 + b8)2, (20)

[b2 — 2byby — (bs + bg)?] [b2 — (bs + by + bg)?] > (bsbs + bsbg + bbg + brbs)”, (21)
then the stability switching of system (5) does not exist.

2.2. Stability and Hopf bifurcation for three cases. In this subsection, we discuss
the local asymptotic stability of the zero equilibrium of system (1) and the existence of
local Hopf bifurcation near the zero equilibrium.

Case a. When s; =0, s, = 0in (7), then 7 = 0. Thus, (7) becomes (8). It is easy to
obtain the following result.

Lemma 2.2. Assuming that B; > 0 (i = 2,3,4), then all roots of (8) have negative real
parts. That is, the trivial equilibrium of (4) is asymptotically stable for s; > 0, sy > 0
and T > 0.

Case b. When s, =0, then s; =7 = 74, and then we get
AN, 51,0,7) = A 4 0y A3 4+ 0o A2 4 (bg + be) A + (by + br) + [bs A + (bs + bg)]e™ = 0. (22)

In this case, 7 can be regarded as a parameter.
Let A = £iv (v > 0) be a pair of purely imaginary roots of (22), then

A(iv, 51,0, 7) = v* —bv*i — byv? + (b3 + b )vi + (by +br) + [bgvi+ (bs +bg) e ™7 = 0. (23)

Separating the real and imaginary parts of (23), we get

{ (bs + bg) cos vT + bgusinvT = —v* + byv? — by — by, (24)
bgv cos uT — (bs + bg)vsinvT = (bz + bg)v — byv3.
Eliminating 7 from (24) leads to
V8 + 108 4 vt + g0 4 g =0, (25)
where
H1 = b% — 2bs,
o = 2(by + br) + b3 — 201 (bg + bg), (26)
ps = (b— 3+ bg)? — 2by(by +b—T) — b2,
g = by + b2 — (bs + bo)?.
Differentiating A with respect to 7 in (22), we have
() e A (bg A + bs + by) (27)

T AN £ 3D AZ + 2bo\ + by + bg + [(DgA + by + Do) + bgle AT

From the analysis above, we have the following results.

Theorem 2.2. The following assertions hold true if all the roots of (8) have negative real
parts.

(1) If (25) has no positive root, then the trivial equilibrium of (4) is asymptotically stable
for an arbitrary delay 7.

(ii) If (25) has at least one positive and simple root and Re[\ (7.)] > 0, then the trivial
equilibrium of (4) is asymptotically stable for T € [0,71.) and (4) undergoes a branch of
periodic solutions bifurcating from the trivial equilibrium at ..
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Case c¢. When s; > 0, s > 0 and 7 > 0 in system (4). Let A = +io (0 > 0) be the
pair of purely imaginary roots of (6). Then

A(io, 51,89, T7) = 0" — b10° — byo? + b3oi + by + bse ™77

. i . i (28)
+ (bgoi + br)e 7% + (bgoi + bg)e 71 = 0,
Separating the real and imaginary parts of (28), we get
ot — byo? + by + bs cos(oT) + beo sin(osy)
+b7 cos(0s2) + bgosin(asy) + bg cos(asy) = 0, (20)
bso — b0 — bs cos(oT) + bgo cos(ass)
—by sin(ose) + bgo cos(osy) — by cos(osy) = 0.
Then
( (b1b8 — b9)0'4 + (beQ - b3b8)0'2 — b4b9
CoSOs) = R
5+ bgo
(b7b8 — bﬁbg)O' Sin(O'Sg) — (b7b9 + biSUZ) COS(O’SQ)
T b2 + bio?
5 T U§
B bsbg cos 0T — bsbgo sin(oT)
b2 + b3o? ’ (30)
. (blbg — b9)0'4 + (b2b9 - b3b8)0'2 — b4b9
sinos; = 55
bs + bgo
X (b7b8 — bﬁbg)O' Sin(O'Sg) — (b7b9 + biSUZ) COS(O’SQ)
b2 + bio?
_bsbycosoT — bsbso sin(oT)
\ bg + 1%0'2
Eliminating s; from (30), together with (29), we have
G(O’, S9, T) = 0'8 + (b1 - 2b2)0’6 + 2b2 SiH(O’SQ)O'5 + [bg + 2b4 - 2b1b3 + 2b7 COS(O’SQ)
+2bs cos(a7) — 2b1bg cos(asy)]o" + [2b1b; sin(osq) — 2dadg sin(oss)
+2b1b5 SiH(O’SQ)]O'3 + [bg + bg - bg - 2b2b4 + 2b3b6 COS(O’SQ)
—2b2b7 COS(O’SQ) — 2b2b5 COS(O'T)]O'2 + [2b4b6 SiH(O'SQ) - 2b3b7 Sin(O'Sg)
—2bsbs sin(oT) + 2bsbg sin(osq) cos(oT) — 2bsbg sin(o7) cos(os2)|o
+[b3 — b2 + b2 — by + 2b4by cos(asy) + 2bsbs cos(oT)
+2b5b7 sin(osy) sin(o1) 4 2bsb7 cos(osy) cos(oT)] = 0. (31)

If (31) has a number of positive and simple root o;, then (7) has the following set of
critical time delays determined from (30)

sij= 2L im0 =012, (32)
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where o; € [0,27) and p; satisfies

( COS 0; = (brbs — bo)oj + (baby — bsbs)oy — bubg
Z 0} + b7
(brbs — bebg)oi sin(o;s2) — (b7b9 + bgbgo?) cos(o;s9)
+ 2
bs + bgo}

b5b9 COS 0;T — b5b80'i Sin(O’iT)
b3 + bio? ’

\ . (b1b8 — bg)O’Z4 + (b2b9 - b3b8)ai2 — b4b9 (33)
e B + b2
(b7b8 — bﬁbg)O'i SiH(O'SQ) (b7b9 + biSU )COS(O'ZSQ)
+ b2 b2 2
9 89
_ bsby cos ;7 — bsbgo; sin(o;7)
( B2 + b2o? '
Denote

s1e = min{sy;;}, i=1,2,...; 7=0,1,2,.... (34)

and let o, be the positive and simple root of (31) when s; = s;.. Differentiating A with
respect to s; in (7), we have
) bgAZ + by \
A
(81) Aerst — (bg)\ + b9)81 + bg
where A = 43 + 36\ + 2by\ + by — Thse ™ — s55(bgA + by)e %2 + bge=*%2. According to

the analysis above and Hopf bifurcation theory for functional differential equations [22],
we have the following results.

(35)

Theorem 2.3. The following assertions hold true if all the roots of (8) have negative real
parts.

(1) If (31) has no positive root, then the trivial equilibrium of (4) is asymptotically stable
for an arbitrary delay 7.

(ii) If (31) has at least one positive and simple root and Re[\ (s1)] > 0 is satisfied, then
the trivial equilibrium of (4) is asymptotically stable for s; € [0, s1.) and (4) undergoes a
Hopf bifurcation at s; = si.. In other word, a small amplitude periodic solution of (4)
bifurcating from the trivial equilibrium near si. occurs.

3. Numerical Examples. In this section, we present some numerical results of system
(1) to verify the analytical predictions obtained in the previous section. Let us consider
the following special case of system (1).

i1 (t) = —2uy (t) + 2 tanh[ug(t — )] + 2 tanh[us (t — 1)),

U (t) = —2uso(t) + 1.4 tanh[uy (t — 72)] + tanh[uy(t — )],
Us(t) = —2u3(t) — 1.2 tanh[us(t — 73)], (36)
Uy (t) = —0.8uy(t) + 2 tanh[ug(t — 74)].

By (2) and (3), system (36) can be rewritten as the equivalent form
i1 (t) = —2x1(t) 4+ 2tanh[z,(t — 7)] + 2 tanh[zs(t — s1)],
To(t) = —2mo(t) + 1.4 tanh|x; (¢)] + tanh[z,(t — s2)], o

(t) )
13(t) = —2x3(t) — 1.2 tanh[xo(¢)],
(t) = —0.8x4(t) + 2 tanh[z3(t)].

T4(t
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Obviously, system (37) has a unique positive equilibrium F(0, 0,0, 0). It is easy to see that
a; = 2, g = 2, as = 2, ay, = 08, Cia = 2, Ci3 = 2, Co1 = 14, Coqy = 1, C3o = —12, Cy3 = 2.
Then a4 = 2, a3 = 2, a1 = 14, o4 = 1, 3o = —12, g3 = 2, b1 == 68, b2 == 168,
by = 17.6, by = 6.4, by = —6.72, b = 2.2, by = —4.8, bg = —3.36, by = —6.72. Thus, we
can easily check that (20), (21) and B; > 0 (i = 1,2,3,4). Thus, we can conclude that
the trivial equilibrium of (37) is asymptotically stable for s; > 0, s5 > 0, 7 > 0 and the
stability switching of system (37) does not exist which is shown in Figure 1.

Let s = 0 and by Matlab 7.0 software, we can know that (25) has two positive and
simple roots and 7, ~ 2.018 and Re[\ (7,)] &~ 0.7045 > 0, then the trivial equilibrium of
(37) is asymptotically stable for 7 € [0,2.018) and (37) undergoes a branch of periodic
solutions bifurcating from the trivial equilibrium at 7, &~ 2.018 which can be shown in
Figure 2 and Figure 3.

Let so = 0.92, 7 = 1.02 and by Matlab 7.0 software, we can know that (25) has two
positive and simple roots and 7. &~ 2.018 and Re[)\ (s1.)] ~ 1.0921 > 0, then the trivial
equilibrium of (37) is asymptotically stable for 7 € [0,1.12) and (37) undergoes a branch
of periodic solutions bifurcating from the trivial equilibrium at s;. & 1.12 which can be
shown in Figure 4 and Figure 5.

Remark 3.1. All the numerical simulations are carried out by means of MATLAB soft-
ware 7.0. With the aid of the Hopf bifurcation theory, we show that the different time
delays have different effects on the dynamical behavior. It is shown that when we choose a
certain time delay as bifurcation parameter, the system is asymptotically stable for some
range of time delays and when the time delay crosses some critical values, then the system
becomes unstable and a Hopf bifurcation will appear. This plays an important role in the
design of neural networks. To the best of our knowledge, there are few papers that focus on
the effect of time delay on stability and Hopf bifurcation of neural networks with multiple
delays. From the viewpoint, we can conclude that our results are new and complement
some previously known results such as [1-16].

4. Conclusions. In this paper, we have investigated local stability of the zero equi-
librium E(0,0,0,0) and local Hopf bifurcation in a four-neuron network with multiple
discrete delays. We have showed that under some suitable conditions, the zero equilib-
rium £(0,0,0,0) of system (1) is asymptotically stable for s; > 0, s, > 0 and 7 > 0. If
some conditions hold true, then the stability switching of system (1) does not exist. Fix-
ing so = 0 and regarding the time delay 7 as bifurcation parameter, we find that the zero
equilibrium E(0,0,0,0) of system (1) is asymptotically stable for 7 € [0, 7.), as the delay
T increases, the equilibrium loses its stability and a sequence of Hopf bifurcations occur
at the zero equilibrium FE(0,0,0,0); in other words, a family of periodic orbits bifurcate
from the zero equilibrium E(0,0,0,0). We have also shown that if s, > 0, 7 > 0, then
the zero equilibrium E(0,0,0,0) of system (1) is asymptotically stable for s; € [0, s1.),
as the delay s; increases, the equilibrium loses its stability and a sequence of Hopf bifur-
cations occur at the zero equilibrium FE(0,0,0,0). Studies show that the different time
delays have different effects on the stability and Hopf bifurcation behavior of four-neuron
network with multiple discrete delays.
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presentation.
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the initial value (0.5,2.4,0.5,0.2).
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FIGURE 4. Dynamic behavior of system (37). Computer simulations of the
asymptotically stable positive equilibrium to system (37) with sy = 0.92,
7 =1.02 and s; = 0.7 < s1, &~ 1.12 and the initial value (0.5, 2.4,0.5,0.2).
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FIGURE 5. Dynamic behavior of system (37). Computer simulations of
periodic solutions to system (37) with sy = 0.92, 7 = 1.02 and s; = 3.7 >
$1c &~ 1.12 and the initial value (0.5,2.4,0.5,0.2).
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