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Abstract. For discrete-time linear stochastic systems with unknown disturbances, we
consider the optimal filter with disturbance decoupling property and the equation (i.e.,
Riccati equation) which is satisfied by the covariance matrices of the estimation errors of
the filter. In this paper, we assume that the stochastic processes have constant coefficients.
We then prove convergence of the Riccati equation and derive a simple equation (called the
algebraic Riccati equation (ARE)) which is the limit of the Riccati equation under some
conditions similar to those for the Kalman filter. Moreover, we also prove asymptotic
stability of the systems whose optimal gains are determined by the ARE.
Keywords: Stochastic systems, Optimal filter, Unknown inputs, Riccati equation

1. Introduction. For discrete-time linear stochastic systems with unknown disturbanc-
es, we consider the optimal filter with disturbance decoupling property. If modeled sys-
tems made by engineers are very accurate representations of real systems, we do not
need to consider systems with unknown inputs. However, most of modeled systems are
not free from modeling errors in practice, and we should often consider systems with
unknown inputs.

In this paper, we are concerned with the optimal filtering problem which investigates
the optimal estimate x̂t of state xt at time t with minimum variance based on the ob-
servation Yt of the outputs {y0, y1, . . . , yt}, i.e., Yt = σ{ys, s = 0, 1, . . . , t} (the smallest
σ-field generated by {y0, y1, . . . , yt} (see, e.g., [17], Chapter 4)). The problem of investi-
gating optimal (or sub-optimal) filters for systems with noise and modelling uncertainty
(including unknown disturbances and modelling errors) did not attract enough research
attention up to 1980’s. This is partly due to a lack of techniques for designing optimal
(minimum estimation error variance) filters with disturbance decoupling property for sys-
tems with both noise and unknown disturbances. However, in 1990’s, remarkable progress
has been made in designing optimal filters for stochastic systems with unknown distur-
bances. Darouach et al. [7, 8] proposed optimal observers with unknown input decoupling
property by transforming a standard (time-invariant) system with unknown inputs into
a descriptor (singular) system without unknown inputs. Chang and Hsu [4] also studied
optimal observers with unknown input decoupling property for time-invariant systems.
Hou and Müller [10] investigated the unknown input decoupled filtering for descriptor
(singular) sytems with unknown inputs. They utilized some transformations to make the
original systems with unknown inputs into descriptor (singular) systems without unknown
inputs. In 1996, Chen and Patton [5] proposed ODDO (Optimal Disturbance Decoupling
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Observer) for time varying systems with both noise and unknown disturbances. Their
ODDO is more straightforward than other works given above and was easily implemented
to robust fault diagnosis problem for jet engine systems. Hou and Patton [12] derived a
new optimal filtering formula for a linear discrete-time stochastic system with unknown
inputs which is slightly different from the stochastic system in this paper. They derived
a filtering formula by a new observer design method (innovations filtering technique) in
[11] for deterministic continuous-time system with unknown inputs. This paper is close-
ly related to the paper by Chen and Patton [5] and is a continuation of the proceeding
papers [26, 27] where the recursive procedure ODDO was modified by the author and his
colleagues as the optimal filter with disturbance decoupling property. Later, this optimal
filter was utilized to derive the optimal smoothers with disturbance decoupling property
in [23, 24]. Moreover, these unknown input decoupled filtering techniques were applied
to some specific problems (see, e.g., [3, 18]).
In this paper, we consider the optimal filter with disturbance decoupling property for

linear stochastic systems with unknown inputs and fundamental properties of the equa-
tion (i.e., Riccati equation) which is satisfied by the covariance matrices of the estimation
errors of the filter. This is the first paper to the author’s knowledge which is mainly
concerned with fundamental properties (e.g., boundedness, monotone convergence and
asymptotic stability) of the Riccati equation for the optimal filter with disturbance de-
coupling property). In Section 2, we review preliminary results and give new formulas
which play important roles in Section 3. In Section 3, assuming that the stochastic pro-
cesses have constant coefficients, we prove convergence of the Riccati equation and derive
a simple equation (called the algebraic Riccati equation (ARE)) which is the limit of the
Riccati equation under some conditions similar to those for the Kalman filter. Moreover,
we also prove asymptotic stability of the systems whose optimal gains are determined by
the ARE. Finally, in Section 4, we apply the optimal filter proposed in Section 2 to an
illustrative example and present the numerical experiments which show that our optimal
filter gives better state estimation compared to the standard Kalman filter for the systems
with unknown inputs.

2. Preliminaries. Consider the following discrete-time linear stochastic system for t =
0, 1, 2, . . .:

xt+1 = Atxt +Btut + Etdt + Stζt, (1)

yt = Ctxt + ηt, (2)

where

xt ∈ Rn the state vector,

yt ∈ Rm the output vector,

ut ∈ Rr the known input vector,

dt ∈ Rq the unknown input vector.

Suppose that ζt and ηt are independent zero mean white noise sequences with covariance
matrices I (the identity matrix) and Rt. Let At, Ct and Et be known matrices with
appropriate dimensions.
In [27], we considered the optimal estimate x̂t+1 of the state xt+1 which was proposed

by Chen and Patton [5, 6] with the following structure:

zt+1 = Ft+1 zt + Tt+1Btut +Kt+1yt, (3)

x̂t+1 = zt+1 +Ht+1yt+1, (4)
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for t = 0, 1, 2, . . .. Here, x̂0 is chosen to be z0 for a fixed z0. Denote the state estimation
error and its covariance matrix respectively by et and Pt. Namely, we use the notations
et = xt − x̂t and Pt = E{et etT} for t = 0, 1, 2, . . .. Here, E denotes expectation and T
denotes transposition of a matrix. We assume in this paper that random variables e0,
{ηt}, {ζt} are independent. As in [5, 6, 27], we consider state estimate (3) and (4) with
the matrices Ft+1, Tt+1, Ht+1 and Kt+1 of the forms:

Kt+1 = K1
t+1 +K2

t+1, (5)

Et = Ht+1Ct+1Et, (6)

Tt+1 = I −Ht+1Ct+1, (7)

Ft+1 = At −Ht+1Ct+1At −K1
t+1Ct, (8)

K2
t+1 = Ft+1Ht. (9)

The next lemma on Equality (6) was obtained and used by Chen and Patton [5, 6].
Before stating it, we assume that Ek is a full column rank matrix. Notice that this
assumption is not an essential restriction.

Lemma 2.1. Equality (6) holds if and only if

rank (Ct+1Et) = rank (Et) . (10)

When this condition holds true, matrix Ht+1 which satisfies (6) must have the form

Ht+1 = Et

{
(Ct+1Et)

T (Ct+1Et)
}−1

(Ct+1Et)
T . (11)

Hence, we have

Ct+1Ht+1 = Ct+1Et

{
(Ct+1Et)

T (Ct+1Et)
}−1

(Ct+1Et)
T (12)

which is a non-negative definite symmetric matrix.

When the matrix K1
t+1 has the form

K1
t+1 = A1

t+1

(
PtCt

T −HtRt

) (
CtPtCt

T +Rt

)−1
, (13)

A1
t+1 = At −Ht+1Ct+1At, (14)

we obtained the following result (Theorem 2.7 in [27]) on the optimal filtering algorithm
under the next condition which is supposed throughout the paper.

Condition A. The matrices CtHt and Rt are commutative, i.e.,

CtHtRt = RtCtHt, (15)

Proposition 2.1. The optimal gain matrix K1
t+1 which makes the variance of the state

estimation error et+1 minimum is determined by (13). Hence, we obtain the optimal
filtering algorithm:

x̂t+1 = A1
t+1 {x̂t +Gt (yt − Ctx̂t)}+Ht+1yt+1 + Tt+1Btut, (16)

Pt+1 = A1
t+1MtA

1
t+1

T
+ Tt+1StSt

TTt+1
T +Ht+1Rt+1Ht+1

T , (17)

where

Gt =
(
PtCt

T −HtRt

) (
CtPtCt

T +Rt

)−1
, (18)

and

Mt = Pt −Gt

(
CtPt −RtHt

T
)
. (19)

Here, we note that H0 = O and that Equation (17) is called the Riccati equation.
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Remark 2.1. If the matrix Rt has the form

Rt = rtI

with some positive number rt for each t = 1, 2, . . ., then it is obvious to see that condition
(15) holds.

Here, we remark that the standard Kalman filter is a special case of the optimal filter
proposed in this section (see, e.g., Theorem 5.2 (page 90) in [17]).

Proposition 2.2. Suppose that Et ≡ O holds for all t (i.e., the unknown input term is
zero). Then, Lemma 2.1 cannot be applied directly. However, we can choose Ht ≡ O for
all t in this case, and the optimal filter given in Proposition 2.1 reduces to the standard
Kalman filter.

The optimal filter proposed in Proposition 2.1 is applied to an illustrative example in
Section 4 to show its effectiveness. The numerical experiments there indicate that our
optimal filter gives better state estimation compared to the standard Kalman filter for
the system with unknown inputs. In the next section, we consider the case where all
coefficient matrices of the system (1)-(2) are independent of time. In this case, we expect
convergence of the matrices {Pt} in Proposition 2.1. In fact, we can prove its convergence
under some reasonable conditions in Section 3. As a preparation, we need to rewrite the
Riccati equation (17) since it is somewhat complicated.
First, we note that some matrices are projection matrices which will play important

roles later and can be proved by simple computations (see [23] also).

Lemma 2.2. Matrices Ct
THt

T and Tt
T = I−Ct

THt
T are projection matrices which have

the following properties:(
Ct

THt
T
) (
Ct

THt
T
)
= Ct

THt
T , (20)(

I − Ct
THt

T
) (
I − Ct

THt
T
)
= I − Ct

THt
T , (21)

Ct
THt

T
(
I − Ct

THt
T
)
= O, (22)

and moreover

Ht
T
(
I − Ct

THt
T
)
= O. (23)

Second, by using the equalities in Lemma 2.2, we can prove the following equalities.

Lemma 2.3. For t = 0, 1, 2, . . ., we have

GtRtHt
T = O and HtRtGt

T = O. (24)

Proof: For t = 0, the equalities obviously hold. For t ≥ 1, we note that Pt has the
form

Pt = TtΓtTt
T +HtRtHt

T (25)

with some matrix Γt in view of (17). Due to Lemma 3.5 and Remark 3.7 in [27], we have

GtRtHt
T =

(
PtCt

T −HtRt

) (
CtPtCt

T +Rt

)−1
RtHt

T

=
(
PtCt

T −HtRt

)
×

{
Ht

TCt
T
(
CtPtCt

T +Rt

)−1

+
(
I −Ht

TCt
T
) (
CtPtCt

T +Rt

)−1
}
RtHt

T

=
(
PtCt

THt
T −HtRtHt

T
)
Ct

T
(
CtPtCt

T +Rt

)−1
RtHt

T
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+
(
PtCt

T −HtRt

) (
CtPtCt

T +Rt

)−1 (
I −Ht

TCt
T
)
RtHt

T . (26)

Noting that

PtCt
THt

T −HtRtHt
T = TtΓtTt

TCt
THt

T +HtRtHt
TCt

THt
T −HtRtHt

T = O

holds due to (22), (23) and (25) and that(
I −Ht

TCt
T
)
RtHt

T = Rt

(
I −Ht

TCt
T
)
Ht

T = O

holds due to (23), we have that the right hand side of (26) is equal to O. By taking matrix
transposition, we can obtain the second equality from the first one.

Then, we can obtain the following simplified form of the Riccati equation (17).

Proposition 2.3. For t = 0, 1, 2, . . ., we have

Mt = (I −GtCt)Pt (I −GtCt)
T +GtRtGt

T (27)

and the Riccati equation

Pt+1 = A1
t+1MtA

1
t+1

T
+ Tt+1StSt

TTt+1
T +Ht+1Rt+1Ht+1

T

= A1
t+1 (I −GtCt)Pt (I −GtCt)

T A1
t+1

T
+ A1

t+1GtRtGt
TA1

t+1
T

+Tt+1StSt
TTt+1

T +Ht+1Rt+1Ht+1
T . (28)

Proof: We have

(I −GtCt)Pt (I −GtCt)
T +GtRtGt

T

= Pt −GtCtPt − PtCt
TGt

T +GtCtPtCt
TGt

T +GtRtGt
T

= Pt −Gt

(
PtCt

T −HtRt

)T −
(
PtCt

T −HtRt

)
Gt

T +Gt

(
CtPtCt

T +Rt

)
Gt

T

−GtRtHt
T −HtRtGt

T

= Pt −
(
PtCt

T −HtRt

) (
CtPtCt

T +Rt

)−1 (
CtPt −RtHt

T
)
−GtRtHt

T −HtRtGt
T

= Mt −GtRtHt
T −HtRtGt

T . (29)

It then follows from Lemma 2.3 that Equality (28) holds.

3. Stochastic Systems with Constant Coefficients. In this section, we consider the
case where all coefficient matrices of the system (1)-(2) are independent of time. In this
case, we can prove that the sequence of matrices {Pt} in Proposition 2.1 converges to a
matrix P̄ as t→ ∞. Then, by solving the matrix equation of P̄ derived from the Riccati
equation (17), we can easily obtain the optimal filter by using P̄ without solving (17) one
by one. The following proofs in this section were inspired by those for the Kalman filter
by Hewer [9] and Katayama [17].

From now on, we consider the following discrete-time linear stochastic system with
constant coefficients for t = 0, 1, 2, . . .:

xt+1 = Axt +Bu+ Ed+ Sζt, (30)

yt = Cxt + ηt. (31)

Namely, the matrices At, Bt, Ct, Et, St, Rt and the vectors ut and dt do not depend on t
and so the suffix t is dropped. We also drop the suffix t from Ht, Tt and A

1
t . ζt and ηt are

supposed to be independent zero mean white noise sequences with covariance matrices I
(the identity matrix) and R. However, Pt, Kt, Ft, Gt and Mt still depend on t.
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In order to prove convergence of the sequence {Pt}, we need some lemmas. For a real
number α (with 0 ≤ α ≤ 1) and a symmetric matrix U , we set

Φ(U) = A1
{
U −

(
UCT − αHR

) (
CUCT +R

)−1 (
CU − αRHT

)} (
A1

)T
+TSSTT T +HRHT . (32)

Then, it is easy to observe that the sequence {Pt} defined by (17) satisfies P1 = Φ(P0)
with α = 0 and Pt+1 = Φ(Pt) with α = 1 for t ≥ 1. We can prove monotonicity of {Pt}
as follows.

Lemma 3.1. If the matrices Q1 and Q2 are both non-negative definite and symmetric
with Q2 ≥ Q1, then Φ(Q2) ≥ Φ(Q1).

Proof: To prove this lemma, we use the formula on the matrix-valued function V (s)

d

ds
V −1(s) = −V −1(s)

[
d

ds
V (s)

]
V −1(s).

Denoting U(s) = Q1 + s(Q2 −Q1), we have

Φ(Q2)− Φ(Q1) =

∫ 1

0

d

ds
Φ(U(s))ds

= A1

[∫ 1

0

{
d

ds
U(s)−

(
d

ds
U(s)

)
CT

(
CUCT +R

)−1 (
CU − αRHT

)
+
(
UCT − αHR

) (
CUCT +R

)−1
C

(
d

ds
U(s)

)
CT

(
CUCT +R

)−1

×
(
CU − αRHT

)
−
(
UCT − αHR

) (
CUCT +R

)−1
C

(
d

ds
U(s)

)}
ds

] (
A1

)T
= A1

[∫ 1

0

{
(Q2 −Q1)− (Q2 −Q1)C

T
(
CUCT +R

)−1 (
CU − αRHT

)
+
(
UCT − αHR

) (
CUCT +R

)−1
C (Q2 −Q1)C

T
(
CUCT +R

)−1

×
(
CU − αRHT

)
−
(
UCT − αHR

) (
CUCT +R

)−1
C (Q2 −Q1)

}
ds

] (
A1

)T
= A1

[∫ 1

0

{(
I −

(
UCT − αHR

) (
CUCT +R

)−1
C
)
(Q2 −Q1)

×
(
I − CT

(
CUCT +R

)−1 (
CU − αRHT

))}
ds

] (
A1

)T
= A1

[∫ 1

0

W (s) (Q2 −Q1)W (s)Tds

] (
A1

)T ≥ 0,

where

W (s) = I −
(
U(s)CT − αHR

) (
CU(s)CT +R

)−1
C.

Let us choose P0 = O. Then, we have P1 = Φ(P0) = TSSTT T +HRHT ≥ O. It then
follows from Lemma 3.1 that P2 = Φ(P1) ≥ Φ(P0) = P1. Thus, we have the monotonicity

P0(= O) ≤ P1 ≤ P2 ≤ P3 ≤ · · · (33)

We now give two definitions to discuss convergence of the sequence of matrices {Pt}.
(A1, S) is said to be stabilizable iff there is a matrix L such that A1+SL is asymptotically
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stable. (C,A1) is said to be detectable iff there is a matrix L such that A1 + LC is
asymptotically stable.

Lemma 3.2. If (C,A1) is detectable, then the sequence of matrices {Pt} is bounded for
any initial matrix P0 ≥ O.

Proof: Since (C,A1) is detectable, there exists a matrix L ∈ Rn × Rm such that
Ǎ := A1−LC is asymptotically stable. Instead of the dynamical system (16), we consider
the following filter by substituting L into A1Gt

x̌t+1 =
(
A1 − LC

)
x̌t + Lyt +Hyt+1 + TBu

=
(
A1 − LC

)
x̌t + L (Cxt + ηt) +H (Cxt+1 + ηt+1) + TBu

= (A−HCA− LC) x̌t + LCxt + Lηt +HC (Axt + Ed+ Sζt) +Hηt+1 + TBu

with x̌0 = x̄0. Hence, we have

xt+1 − x̌t+1 = (A−HCA− LC) (xt − x̌t) + (I −HC)Ed+ (I −HC)Sζt

+(I −HC − T )Bu− Lηt −Hηt+1

= (A−HCA− LC) (xt − x̌t) + TSζt − Lηt −Hηt+1.

Using the notations ět := xt − x̌t, P̌t := E
{
ětě

T
t

}
, we have

P̌t+1 = ǍP̌tǍ
T + LRLT +HRHT + TSSTT T + ǍHRLT + LRHT ǍT (34)

with P̌0 = Σ0 due to Lemma 1.1 in [26]. It then follows from P̌0 = Σ0 = P0 that

P̌t = ǍtΣ0

(
ǍT

)t
+

t−1∑
k=0

Ǎk
(
LRLT +HRHT + TSSTT T + ǍHRLT

+LRHT ǍT
) (
ǍT

)k
. (35)

Since P̌t is identical to Pt (the optimal covariance matrix) when we choose L = A1Gt, we
note that Pt ≤ P̌t. Due to asymptotic stability of Ǎ, the right hand side of (35) converges
as t→ ∞. Hence, we have

P̌t ≤ Σ0 +
∞∑
k=0

Ǎk
(
LRLT +HRHT + TSSTT T + ǍHRLT + LRHT ǍT

) (
ǍT

)k
<∞

and boundedness of {Pt}.
In view of (33) and Lemma 3.2, we can obtain the following convergence results of the

sequence {Pt}.

Theorem 3.1. Suppose that (C,A1) is detectable and that P0 = O. Then, the solution
Pt of (17) converges to the non-negative definite matrix P̄ as t → ∞ and P̄ satisfies the
equation

P̄ = A1
{
P̄ −

(
P̄CT −HR

) (
CP̄CT +R

)−1 (
CP̄ −RHT

)} (
A1

)T
+TSSTT T +HRHT (36)

which is called algebraic Riccati equation (ARE). Moreover, using the definitions

Ḡ :=
(
P̄CT −HR

) (
CP̄CT +R

)−1
, (37)

M̄ := P̄ − Ḡ
(
CP̄ −RHT

)
, (38)

we also have
Gt −→ Ḡ, Mt −→ M̄ (as t −→ ∞)

where Gt and Mt are defined in Proposition 2.1.
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Proof: Since {Pt} is bounded above, there exists a positive definite matrix W such
that the inequalities

0 ≤ vTPtv ≤ vTWv

hold for any n-vector v. Let us choose v = [0 . . . 0 1 0 . . . 0]T with 1 being placed at the
ith component. Setting Pt =

(
pij

(t)
)
, we have

vTPtv = pii
(t) −→ pii (as t −→ ∞)

for some non-negative number pii since the sequence pii
(t) is a non-negative monotonic

non-decreasing and bounded sequence. Next, choosing v = [0 · · · 0 1 0 · · · 0 1 0 · · · 0]T
with two 1’s being placed at the ith and jth components, we have

vTPtv = pii
(t) + pij

(t) + pji
(t) + pjj

(t) = pii
(t) + 2pij

(t) + pjj
(t) −→ q (as t −→ ∞)

for some non-negative number q. Noticing that pii
(t) → pii, we have

pij
(t) −→ 1

2
(q − pii − pjj) (as t −→ ∞)

Thus, we have Pt → P̄ for some non-negative and symmetric matrix P̄ since Pt is non-
negative and symmetric. The rest of the conclusions immediately follow from this.

Remark 3.1. In view of Lemma 2.3 and Proposition 2.3, we have the following forms of
ARE:

P̄ = A1
{(
I − ḠC

)
P̄
(
I − ḠC

)T
+ ḠRḠT + ḠRHT +HRḠT

}(
A1

)T
+TSSTT T +HRHT , (39)

P̄ = A1
{(
I − ḠC

)
P̄
(
I − ḠC

)T
+ ḠRḠT

}(
A1

)T
+ TSSTT T +HRHT . (40)

We now turn to discuss some basic properties of the solutions of ARE. In order to show
its uniqueness, we need the following simple formula which can be shown by a simple
computation.

Lemma 3.3. Using the notation ψ defined by

ψ(P,G) = (I −GC)P (I −GC)T +GRGT +GRHT +HRGT ,

we have

ψ
(
P (1), G(1)

)
− ψ

(
P (2), G(2)

)
=

(
I −G(1)C

) (
P (1) − P (2)

) (
I −G(1)C

)T
+
(
G(1) −G(2)

) (
CP (2)CT +R

) (
G(1) −G(2)

)T
, (41)

where G(i) =
(
P (i)CT −HR

) (
CP (i)CT +R

)−1
.

For a solution P of ARE, we put G =
(
PCT −HR

) (
CPCT +R

)−1
and call P a

stabilizing solution of ARE if Ã := A1(I −GC) is asymptotically stable.

Theorem 3.2. Suppose that (A1, S) is stabilizable and (C,A1) is detectable. Then, there
exists a unique non-negative definite solution P of ARE (i.e., Equation (36)). Moreover,
P is a stabilizing solution of ARE.

Proof: Existence of a non-negative definite solution of ARE has been shown in Theo-
rem 3.1 (i.e., P̄ in that theorem). From now on, we use the notation P instead of P̄ . We
similarly use the notations G and M respectively instead of Ḡ and M̄ .
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We now prove asymptotic stability of the matrix Ã := A1(I − GC) in a similar way
to the case of the Kalman filter. Suppose that A1(I −GC) is not asymptotically stable.
Then, there exist v ∈ Cn and λ ∈ C(|λ| ≥ 1) such that

(I −GC)T
(
A1

)T
v = λv (42)

Since P is a solution of ARE, we have

P = A1
{
(I −GC)P (I −GC)T +GRGT

} (
A1

)T
+ TSSTT T +HRHT . (43)

By virtue of (42) and (43), the equality(
1− |λ|2

)
v∗Pv = v∗A1GRGT

(
A1

)T
v + v∗TSSTT Tv + v∗HRHTv (44)

holds. Here, v∗ denotes the complex conjugate of the transpose of the vector v. In view
of |λ| ≥ 1 and R > O, we have

v∗A1G = 0, v∗TS = 0 and v∗H = 0.

Notice that the last two equalities imply

ST v̄ = ST
(
T T v̄ + CTHT v̄

)
= 0,

where v̄ is the complex conjugate of v. From these equalities and (42), we have

v∗A1 = λv∗, v∗S = 0, |λ| ≥ 1.

This means that (A1, S) is not stabilizable. This contradicts our assumption. Thus, Ã :=
A1(I −GC) is asymptotically stable.

Next, we prove uniqueness of the solutions of ARE. Let P (1) and P (2) be two non-
negative definite solutions of ARE. Then, the equality

P (i) = A1ψ
(
P (i), G(i)

) (
A1

)T
+ TSSTT T +HRHT

holds, where G(i) =
(
P (i)CT −HR

) (
CP (i)CT +R

)−1
, i = 1, 2. It then follows from

Lemma 3.3 that the equality

P (1) − P (2) = A1
{
ψ
(
P (1), G(1)

)
− ψ

(
P (2), G(2)

)} (
A1

)T
= A1

(
I −G(1)C

) (
P (1) − P (2)

) (
I −G(1)C

)T (
A1

)T
+A1

(
G(1) −G(2)

) (
CP (2)CT +R

) (
G(1) −G(2)

)T (
A1

)T
holds. Since asymptotic stability of Ã = A1

(
I −G(1)C

)
follows from the first part of

Proof, we have the equality

P (1) − P (2) =
∞∑
k=0

ÃkA1
(
G(1) −G(2)

) (
CP (2)CT +R

) (
G(1) −G(2)

)T (
A1

)T (
ÃT

)k

Thus, we have P (1) − P (2) ≥ O. Since we can exchange the indexes 1 and 2 and Ǎ =
A1

(
I −G(2)C

)
is asymptotically stable, we have P (2) − P (1) ≥ O also. Hence, we have

P (1) − P (2) = O. Namely, the solution of ARE is unique.
In the next theorem, we prove the convergence results of the sequence {Pt} for any

P0(≥ O) instead of P0 = O in Theorem 3.1.

Theorem 3.3. Suppose that (A1, S) is stabilizable and (C,A1) is detectable. Then, for
any P0 ≥ 0, the sequence {Pt} given by (17) converges to P (the solution of ARE (i.e.,
Equation (36)). Moreover, P is a unique non-negative definite stabilizing solution of ARE.
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Proof: Let {Pt} be the solution of the Riccati equation (17) with P0 = O. Then, due

to Theorem 3.1 and Theorem 3.2, we have that lim
t→∞

Pt = P . We denote by P̃t the solution

of the Riccati equation (17) with any P0 satisfying P0 ≥ O. Namely, we suppose that P̃0

is an arbitrary non-negative definite matrix (see Remark 3.2). We will prove lim
t→∞

P̃t = P .

Since Pt and P̃t are solutions of the Riccati equation (17), we have by Lemma 3.3

P̃t+1 − Pt+1 = A1
{
ψ
(
P̃t, G̃t

)
− ψ(Pt, Gt)

}(
A1

)T

= A1
(
I − G̃tC

)(
P̃t − Pt

)(
I − G̃tC

)T(
A1

)T

+A1
(
G̃t −Gt

) (
CPtC

T +R
) (
G̃t −Gt

)T(
A1

)T

, (45)

where G̃t =
(
P̃tC

T −HR
)(
CP̃tC

T +R
)−1

.

Notice that P̃0 ≥ O (= the initial matrix of {Pt}). Suppose that P1 ≤ P̃1, · · · , Pt ≤ P̃t.

Then, (45) implies that Pt+1 ≤ P̃t+1. Thus, we obtain

Pt ≤ P̃t, t = 0, 1, . . . . (46)

Since
{
P̃t

}
is monotone non-decreasing (Lemma 3.1) and bounded (Lemma 3.2), we have

P̃t → P̃ (as t→ ∞), where P̃ is a solution of the ARE (36).

Next, we choose L = A1G̃ = A1
(
P̃CT − HR

)(
CP̃CT + R

)−1

as the asymptotically

stable filter in Lemma 3.2. Defining the matrix Ã by Ã := A1
(
I − G̃C

)
, the error

covariance matrix P̂ by this filter can be written as

P̂t = ÃtP̃0

(
ÃT

)t

+
t−1∑
k=0

Ãk

{
A1G̃RG̃T

(
A1

)T

+ ÃHRG̃T
(
A1

)T

+ A1G̃RHT ÃT

+TSSTT T +HRHT

}(
ÃT

)k

.

= ÃtP̃0

(
ÃT

)t

+
t−1∑
k=0

Ãk

{
A1G̃RG̃T

(
A1

)T

+ TSSTT T +HRHT

}(
ÃT

)k

. (47)

Since this gain A1G̃ does not minimize the error covariance matrix, we have Pt ≤ P̂t.

Notice that Ã is asymptotically stable due to Theorem 3.2. By letting t→ ∞, we have

lim
t→∞

P̂t =
∞∑
k=0

Ãk
{
A1G̃RG̃T

(
A1

)T
+ TSSTT T +HRHT

}(
ÃT

)k
,

where the right hand side is a solution of the ARE (39). Thus, from (46), we obtain

P = lim
t→∞

Pt ≤ lim
t→∞

P̃t ≤ lim
t→∞

P̂t = P.

Hence, we have proved lim
t→∞

P̃t = P .

Remark 3.2. In view of Lemma 3.1, we suppose that P0 in Theorem 3.3 (and P̃0 in its

proof) need to satisfy 0 ≤ P0 ≤ P (and 0 ≤ P̃0 ≤ P ).
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4. Numerical Simulation. We applied the optimal filtering algorithm given in Section 2
and the (standard) Kalman filter to a simple example and compared the results. We
consider the discrete-time model of a simplified longitudinal flight control system given
in Chen and Patton [5]:

xt+1 = Atxt +Btut + Etdt + Stζt, (48)

yt = Ctxt + ηt, (49)

where the state variables x are normal velocity ηy, pitch angle δz and pitch rate ωz, i.e.,

x = [ηy, ωz, δz]
T . And the control input ut is elevator control signal. Here, the system

matrices are

At =

 0.9944 −0.1203 −0.4302
0.0017 0.9902 −0.0747

0 0.8187 0

 ,
Bt =

 0.4252
−0.0082
0.1813

 , E =

 1 0
0 1
0 0

 ,
and Ct = I3×3. The matrices related to the noise sequences are: St = diag{0.1, 0.1, 0.01}
and Rt = 0.12I3×3. In this case, we can easily observe that (A1, S) is stabilizable and
(C,A1) is detectable. The term Etdt is used to represent the parameter perturbation in
matrices At and Bt:

Et = ∆Atxt +∆Btut = E

{[
∆a11 ∆a12 ∆a13
∆a21 ∆a22 ∆a23

]
xt +

[
∆b1
∆b2

]
ut

}
,

where ∆aij and ∆bi (i = 1, 2; j = 1, 2, 3) are perturbations in aerodynamic and control
coefficients. We consider these terms as unknown disturbances which should be decoupled
from the state estimation using the method given in Section 2. In the simulation, the
aerodynamic coefficients are perturbed by ±50%, i.e., ∆aij = −0.5aij and ∆bi = 0.5bi.

The stochastic system (48)-(49) is obviously detectable and stabilizable. The initial

state of system (48) is given by x(0) = [0, 0, 0]T , and the known input is given by u(t) ≡ 10.

We set x̂0 = [0, 0, 0]T and P0 = 0.12I3×3.
The simulation results by the standard Kalman filter (not disturbance decoupled) for

1 ≤ t ≤ 100 are shown in Figure 1. While 1(a) depicts the trajectory of stochastic system
(48), the trajectory of the state estimate x̂t by the Kalman filter is shown in 1(b) and the
absolute value of the estimation error x̂t − xt is shown in 1(c).

The simulation results by the optimal filter with disturbance decoupling property given
in Section 2 are shown in Figure 2. While 2(a) depicts the trajectory of stochastic system
(48), the trajectory of the state estimate x̂t by the optimal filter in Section 2 is shown in
2(b) and the absolute value of the estimation error x̂t − xt is shown in 2(c).

It can be seen from Figures 1 and 2 that the optimal filter proposed in Section 2 works
better than the standard Kalman filter for the simple stochastic system with unknown
inputs given above.

5. Conclusion. In this paper, we considered discrete-time linear stochastic systems with
unknown inputs (or disturbances) and discussed the optimal filter with disturbance decou-
pling property and fundamental properties of the equation (i.e., Riccati equation) which
the covariance matrices of the estimation errors of the filter satisfy. Assuming that the
stochastic processes have constant coefficients, we proved convergence of the Riccati equa-
tion and derived a simple equation (called the algebraic Riccati equation (ARE)) which
is the limit of the Riccati equation. Moreover, we also proved asymptotic stability of the
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systems whose optimal gains are determined by the ARE. Finally, one of the interesting
future research directions will be to find out the rate of the convergence Pt → P̄ as t→ ∞.
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Figure 1. Simulation result via Kalman filter
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Figure 2. Simulation result via the filter in Section 2



ANALYSIS OF THE RICCATI EQUATION OF THE OPTIMAL FILTER 823

Acknowledgments. The author wishes to thank Hisae Tanikawa for her encouragement
and support. He also wishes to express gratitude to Professor Takashi Saito and Professor
Hideo Araki for kind advice, and to the associate editor and the anonymous referees for
valuable comments which have improved the earlier version of the paper.

REFERENCES

[1] B. D. O. Anderson and J. B. Moore, Optimal Filtering, Prentice-Hall, Englewood Cliffs, NJ, 1979.
[2] A. E. Jr. Bryson and Y. C. Ho, Applied Optimal Control, Blaisdell Publishing Company, Waltham,

Massachusetts, 1969.
[3] F. Caliskan, H. Mukai, N. Katz and A. Tanikawa, Game estimators for air combat games with

unknown enemy inputs, Proc. of American Control Conference, Denver, Colorado, pp.5381-5387,
2003.

[4] S. Chang and P. Hsu, State estimation using general structured observers for linear systems with un-
known input, Proc. of the 2nd European Control Conference: ECC’93, Groningen, Holland, pp.1794-
1799, 1993.

[5] J. Chen and R. J. Patton, Optimal filtering and robust fault diagnosis of stochastic systems with
unknown disturbances, IEE Proc. of Control Theory Applications, vol.143, no.1, pp.31-36, 1996.

[6] J. Chen and R. J. Patton, Robust Model-Based Fault Diagnosis for Dynamic Systems, Kluwer Aca-
demic Publishers, Norwell, Massachusetts, 1999.

[7] M. Darouach, M. Zasadzinski and J. Y. Keller, State estimation for discrete systems with unknown
inputs using state estimation of singular systems, Proc. of American Control Conference, pp.3014-
3015, 1992.

[8] M. Darouach, M. Zasadzinski, O. A. Bassang and S. Nowakowski, Kalman filtering with unknown
inputs via optimal state estimation of singular systems, Int. J. Systems Science, vol.26, pp.2015-2028,
1995.

[9] G. A. Hewer, Analysis of a discrete matrix Riccati equation of linear control and Kalman filtering,
J. Math. Anal. Appl., vol.42, no.1, pp.226-236, 1973.

[10] M. Hou and P. C. Müller, Unknown input decoupled Kalman filter for time-varying systems, Proc.
of the 2nd European Control Conference: ECC’93, Groningen, Holland, pp.2266-2270, 1993.

[11] M. Hou and P. C. Müller, Disturbance decoupled observer design: A unified viewpoint, IEEE Trans.
Automatic Control, vol.39, no.6, pp.1338-1341, 1994.

[12] M. Hou and R. J. Patton, Optimal filtering for systems with unknown inputs, IEEE Trans. Automatic
Control, vol.43, no.3, pp.445-449, 1998.

[13] T. Kailath, A view of three decades of linear filtering theory, IEEE Trans. Inform. Theory, vol.20,
no.2, pp.146-181, 1974.

[14] T. Kailath, Lectures on Linear Least-Squares Estimation, Springer, 1976.
[15] R. E. Kalman, A new approach to linear filtering and prediction problems, Trans. ASME, J. Basic

Eng., vol.82D, no.1, pp.34-45, 1960.
[16] R. E. Kalman, New methods in Wiener filtering theory, Proc. of the 1st Symp. Eng. Appl. of Random

Function Theory and Probability, pp.270-388, 1963.
[17] T. Katayama, Applied Kalman Filtering, New Edition, Asakura-Shoten, Tokyo, Japan, 2000 (in

Japanese).
[18] Y. Li and M. Chen, Composite anti-disturbance control for singular stochastic Markovian jump

system, ICIC Express Letters, vol.12, no.4, pp.321-330, 2018.
[19] B. P. Molinari, The stabilizing solution of the discrete algebraic Riccati equation, IEEE Trans.

Automatic Control, vol.20, no.3, pp.396-399, 1975.
[20] R. J. Patton, P. M. Frank and R. N. Clark, Fault Diagnosis in Dynamic Systems: Theory and

Application, Prentice Hall, 1996.
[21] H. J. Payne and L. M. Silverman, On the discrete time algebraic Riccati equation, IEEE Trans.

Automatic Control, vol.18, no.3, pp.226-234, 1973.
[22] Y. Sawada and A. Tanikawa, Optimal filtering and robust fault diagnosis of stochastic systems

with unknown inputs and colored observation noises, Proc. of the 5th IASTED Conf. Decision and
Control, Tsukuba, Japan, pp.149-154, 2002.

[23] A. Tanikawa, On a smoother for discrete-time linear stochastic systems with unknown disturbances,
International Journal of Innovative Computing, Information and Control, vol.2, no.5, pp.907-916,
2006.



824 A. TANIKAWA

[24] A. Tanikawa, On new smoothing algorithms for discrete-time linear stochastic systems with unknown
disturbances, International Journal of Innovative Computing, Information and Control, vol.4, no.1,
pp.15-24, 2008.

[25] A. Tanikawa, Optimal filters with disturbance decoupling property for nonlinear stochastic systems
with unknown disturbances, Proc. of the 49th ISCIE Int. Symp. on Stochastic Systems Theory and
Its Appl., Hiroshima, Japan, pp.21-26, 2017.

[26] A. Tanikawa and H. Mukai, Minimum Variance State Estimators with Disturbance Decoupling Prop-
erty for Optimal Filtering Problems with Unknown Inputs, unpublished lecture note, 2006.

[27] A. Tanikawa and Y. Sawada, Minimum variance state estimators with disturbance decoupling prop-
erty for optimal filtering problems with unknown inputs, Proc. of the 35th ISCIE Int. Symp. on
Stochastic Systems Theory and Its Appl., Ube, Japan, pp.96-99, 2003.


