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Abstract. The study of network traffic identification is not only important for the net-
work management, but also crucial to monitor network security issues. Currently, traffic
classification tasks including protocols identification, applications identification and traf-
fic characterization identification and so on have a good result. However, existing classi-
fication methods can hardly distinguish between encrypted and non-encrypted compressed
traffic. In this paper, we propose an entropy-based feature extraction algorithm for en-
crypted and non-encrypted compressed traffic classification, which uses the entropy of
fixed-length packet payload. For a fixed-length binary sequence from packet payload, the
algorithm uses a sliding window of 8-bit and slides through different bits to obtain differ-
ent sequences. Then it calculates the serial binary entropy of different sequences and an
entropy vector as feature vector of the original sequence is obtained. By this method, the
feature vectors of encrypted traffic and non-encrypted compressed traffic sequences are
used as input of the support vector machine or random forest for training and classifi-
cation. The experimental results show that the proposed feature extraction algorithm can
well distinguish between encrypted traffic and non-encrypted compressed traffic. When
the packet payload length is 1444 bytes, it can reach high classification accuracy (about
97.90%).
Keywords: Sliding window, Serial binary entropy, Encrypted traffic, Non-encrypted
compressed traffic

1. Introduction. Network traffic classification as a means to achieve traffic management
appears to be more important. Especially for Internet Service Providers (ISPs), knowing
the specific traffic types and proportions transmitted in their networks, they can take ap-
propriate management measures to provide better Quality of Services (QoS) for real-time
traffic, and to provide better service for users. Of course, with the growing importance of
network security issues, traffic classification is also increasingly important in protocol an-
alyzers for Internet traffic monitoring [1] and intrusion detection systems [2,3]. Currently,
traffic classification tasks include protocols identification [4], applications identification
[5] and traffic characterization identification [6] and so on.

Although the current researches of traffic identification have achieved good results,
existing encrypted traffic identification methods can hardly distinguish between encrypted
traffic and non-encrypted compressed traffic. In work of [7], authors use the entropy
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computing on consecutive bytes and frequencies of characters as features and a support
vector machine algorithm was used to classify traffic. However, classification over partial
file space cannot distinguish encrypted files from non-encrypted compressed files. Then an
additional heuristic to distinguish these categories using frequencies of four-bit characters
was proposed. In work of [8], authors give an advanced improvement classification method
for the work of [7]. A Monte Carlo simulation method used to estimate the error of π
value was proposed. The error of π value is used as an added feature, which can be used
to distinguish the local random traffic and the whole random traffic. However, when the
amount of encrypted traffic is small, the identification performance is poor. Moreover, no
explicit experimental results about the encrypted and non-encrypted compressed traffic
classification were given. In work of [9], authors give a research on the identification of
different encrypted and compressed algorithms. However, there is no discussion of the
distinction between encrypted and compressed data.
Considering the shortcomings of these methods to distinguish encrypted and non-

encrypted compressed traffic, we propose a classification method which uses the entropy of
fixed-length packet payload. It calculates the serial binary entropy of different sequences
and an entropy vector as feature vector of the original sequence is obtained. By this
method, the feature vectors of encrypted traffic and non-encrypted compressed traffic
sequences are used as input of the machine learning for training and classification. The
experimental results show that the proposed method can well distinguish between en-
crypted traffic and non-encrypted compressed traffic.
The main contributions of this paper are as follows.

• We propose an entropy-based feature extraction algorithm for encrypted and non-
encrypted compressed traffic classification to reduce the case where non-encrypted
compressed traffic is misidentified as encrypted traffic and improve the accuracy of
encrypted traffic identification.
• To better analyze the characteristics of encrypted and non-encrypted compressed
data, we propose a binary sequence sampling and recombination method based on
sliding window. For a fixed-length binary sequence from packet payload, it can
obtain 8 new binary sequences through sampling and recombination from the original
sequence. So, it can mine the characteristics of original data as much as possible.
• We design a method of calculating the consecutive binary subsequence entropy. It is
mainly to calculate the entropy value of binary sequence under different scales and
combinations. By this method, the entropy feature vector of original sequence is ob-
tained. So, the encrypted and non-encrypted compressed traffic can be distinguished
based on the entropy feature vectors.
• We carry out many experiments on the Support Vector Machine (SVM) and Ran-
dom Forest (RF) to evaluate the performance of the proposed feature extraction
algorithm. The sensitivity of this algorithm against different situations is studied.
In the best case, the proposal outperforms 4.9% the latest technique in terms of
classification accuracy. In the worst case, they are well matched in classification
accuracy.

The rest of this paper is organized as follows. Section 2 summarizes the related work. In
Section 3, we explain the definition of entropy and the definition of serial binary entropy
is proposed in information theory. In Section 4, we give a detailed description of entropy-
based feature extraction algorithm proposed and establish an analytical framework based
on machine learning to evaluate the feature extraction algorithm performance. In Section
5, we explain the experimental process and analyze the experimental results. Finally,
Section 6 concludes the work and analyzes possible future studies.
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2. Related Work. When the Internet network technology firstly emerged, traffic in the
network was in plain text. Until now, the technology of non-encrypted traffic identifi-
cation has been very mature. The commercial products, such as Cisco Network Based
Application Recognition (NBAR), and Snort, mostly use the payload inspection tech-
nique on the traffic payload classification as input to map flows to application protocols
[10]. Herein, according to the principle and nature of the methods used in non-encrypted
traffic classification, we can categorize these approaches into four main categories as fol-
lows. (1) Port-based approach [11]. It extracts the port number which is assumed to be
associated with a particular application from the TCP/UDP headers of the packets. (2)
Payload inspection approach [12]. It uses rule matching (such as Regular Expressions) or
other methods to analyze the application layer payload of packets. (3) Behaviors-based
approach [13]. It builds an interaction graphs model from the perspective of application
level layer interaction behaviors among hosts and then analyze such interaction graphs
with graph theory techniques. (4) Machine learning approach [14-17]. Machine learn-
ing approaches, including traditional machine learning and deep learning, are currently
the most studied. With the widespread use of GPU and the development of specialized
Artificial Intelligence (AI) chips, machine learning methods have become very efficient.

With the increasing awareness of privacy protection, the proportion of encrypted net-
work traffic gradually increases. This change poses a challenge to currently used methods
for traffic measurement, for which the identification and analysis of network traffic [10]
become more difficult. However, in recent years, there have been some advances in the
study of encrypted traffic identification. According to the work of [18], we make an ap-
propriate induction and categorize the encrypted traffic identification methods into five
main categories as follows. (1) Payload detection [19,20]. In the work of [19], a new DPI
system that can inspect encrypted payload without decryption was proposed, thus solved
the user privacy issue, but it can only process HTTP Secure (HTTPS) traffic. In the work
of [20], stochastic fingerprints based on first-order homogeneous Markov chains for appli-
cation traffic flows conveyed in Secure Socket Layer/Transport Layer Security (SSL/TLS)
sessions were proposed. (2) Payload randomization and distribution [9,21]. According to
the characteristics of the network application traffic is not completely encrypted, and the
traffic can be identified by the randomness of the same characteristic fields carried by each
packet. (3) Machine learning methods [10,22]. In the work of [10], numerous machine
learning methods to identify encrypted traffic were summarized. These machine learning
methods do well in identification accuracy. In the work of [22], encrypted traffic was treat-
ed as images and sequences, using Convolutional Neural Network (CNN) as classifier and
works very well. (4) Behaviors-based approach [23]. In work of [23], a real-time identifi-
cation method of encrypted P2P traffic based on host behavior association was proposed.
However, only a few encrypted applications can actually benefit from this method. (5)
Hybrid approach [24]. By combining multiple algorithms, better identification accuracy
has been achieved. In work of [24], a method for encrypted traffic identification combined
with signature and statistical analysis was proposed, and the experimental results show
that the method can identify more than 99% of SSL/TLS traffic.

Table 1 gives a summary of traffic classification methods. It can be seen from the table
that different methods are specific to the different traffic characteristics. At the same
time, the classification accuracy of each method has certain differences, and the machine
learning method has the characteristics of real-time and high accuracy, which has been
widely studied.
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Table 1. The summary of traffic classification methods

Methods Inspection content Encryption or not
Classification accuracy
(High>Medium>Low)

Port-based Port number Non-encryption Past high, but now low

Payload inspection Payload Both
High (Encryption
only for HTTPS)

Behaviors Host behaviors Both Medium

Machine learning
Flow statistics

features
Both High

Payload randomization
and distribution

Partial payload Encryption Medium

Hybrid approach Many features Encryption High

3. Classification Using Entropy Vector. The information entropy method can ef-
fectively distinguish the low entropy data from the high entropy data. Therefore, using
information entropy is possible to identify high entropy encrypted traffic. However, non-
encrypted compressed traffic also has high entropy value, so it is easy to misidentify
non-encrypted compressed traffic as encrypted traffic. In this paper, we make use of an
entropy vector, which is made up of different dimensions entropy, as classification feature.
First of all, definitions of entropy and the serial binary entropy vector which we defined
are explained clearly in this part.

3.1. Definitions of entropy. According to the information theory, entropy is a measure
of data disorder or data randomness. Assuming that a sequence of n elements is S
(S = {x1, x2, . . . , xn}), the entropy of the sequence S is defined as −

∑n
i=1 p(xi) log p(xi),

where p(xi) denotes the frequency of element xi in set S. In this paper, we use the
standardized entropy, defined as H/ log(n), where H denotes the entropy of the sequence
S and the normalized factor is the logarithm of n to the base 2. Note that all logarithms
in this paper are to the base 2 and for the convenience of calculation, herein 0 log 0 = 0 is
defined. The minimum entropy value is 0 if all elements in the sequence S are the same,
and the maximum entropy value is 1 if all elements are distinct in the sequence S.

3.2. Definitions of serial binary entropy. The randomness of a sequence is measured
by overlooking the conditional probability of elements and entropy is calculated by as-
suming the elements are independent [9]. Hence, for a file or a packet payload, we firstly
read fixed-length binary stream as a binary sample sequence. Each element in the bi-
nary sample sequence is 0 or 1. Then the binary sample sequence is divided into lots of
fixed-length binary subsequences. All the fixed-length binary subsequences form a set
S. Each fixed-length binary subsequence is treated as an element xi in set S, so we can
calculate the serial binary entropy of the binary sample sequence. For a more general
application, we assume that the length of fixed-length binary subsequence is l, and then
we can obtain arbitrary kl (k = 1, 2, . . . , n) fixed-length binary subsequence from the
given binary sample sequence as an element and calculate the serial binary entropy of
given binary sample sequence over all possible k values. In order to better understand the
calculation process of serial binary entropy, a simple example is given. We let the bina-
ry sample sequence S (S = ‘011101010110101111011001’) be the target binary sequence
under analysis. For instance, we assume that l = 3, and the new sequences of S are
Sk=1 = ⟨011, 101, 010, 110, 101, 111, 011, 001⟩, Sk=2 = ⟨011101, 010110, 101111, 011001⟩
and so on. In the example, the total number of items in Sk=1 ism1 = 2+2+1+1+1+1 = 8
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and in Sk=2 is m2 = 1 + 1 + 1 + 1 = 4. Then the serial binary entropy of Sk=1 is
H1 = −2× (2/8) log(2/8)− 4× (1/8) log(1/8) = 2.5 and the serial binary entropy of Sk=2

is H2 = −4× (1/4) log(1/4) = 2. They would often be turned into standardized entropy,
and the final results of standardized entropy are 2.5/ log 8 = 0.8333 and 2/ log 4 = 1.

A formula to calculate the serial binary entropy process above was derived as the
following. We assume that the binary sequence length is L and the length of fixed-length
binary subsequence is l. Then, we define Sk to denote the set in the case of all possible
k values, and Hk to denote the serial binary entropy of the binary sequence over the set
Sk. And we can calculate Hk in Formula (1).

Hk = −
|Sk|∑
i=1

(mik/⌊L/kl⌋) log(mik/⌊L/kl⌋)

= (1/⌊L/kl⌋)

[∑
i

logmik(⌊L/kl⌋)−
∑
i

mik logmik

]
= log(⌊L/kl⌋)− (1/⌊L/kl⌋)

∑
i

mik logmik

(1)

wheremik is the number of occurrences of the ith element in Sk, and it satisfies
∑|Sk|

i=1 mik =
⌊L/kl⌋.

In this paper, we can use Formula (1) to calculate an entropy vector for a given binary
sample sequence and the elements in the list of entropy vector are {H1, H2, . . . , Hk}, for
the classification, each Hk is treated as a feature of the binary sample sequence.

4. Classification Architecture Based on Machine Learning. Distinguishing be-
tween encrypted and non-encrypted compressed traffic is a binary classification problem.
The Support Vector Machine (SVM) and Random Forest (RF) work well in the binary
classification problem. Therefore, in this part, we firstly propose an entropy-based fea-
ture extraction algorithm for binary sequences based on the serial binary entropy which
is defined in Section 3.2. Then based on the feature extraction algorithm proposed, we
propose encrypted and non-encrypted compressed traffic classification architecture com-
bined with SVM and RF. We will describe the entropy-based feature extraction algorithm
proposed and the identification process architecture for the encrypted and non-encrypted
compressed traffic in detail.

4.1. Feature extraction algorithm. In this part, we will describe the complete feature
extraction algorithm based on the serial binary entropy for a given binary sequence. We
also give a specific example to make the proposed feature extraction algorithm easier to
follow.

Algorithm 1 describes the complete feature extraction algorithm for encrypted and non-
encrypted compressed traffic sequences. The complete algorithm process can be completed
in three phases. The first stage is to initialize the relevant variables and get a fixed-byte-
length binary sample sequence. In the second stage, new binary sequences are obtained
by sliding the window with a fixed-size and an initialized step. In the third stage, the
serial binary entropy is calculated according to a sliding window with fixed-size and step
for the sequences obtained in the second stage. Finally, a 8 × 4 feature matrix F of the
given binary sequence can be obtained through Algorithm 1. The specific operation of
stages 2 and 3 will be introduced in Algorithm 2 and Algorithm 3.

Algorithm 2 describes how to use a sliding window to transform a given binary sequence
into a new binary sequence. In Algorithm 2, the sliding window size is set to 8, which
is a byte size. The step size of sliding window is the parameter M . Then we move the
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Algorithm 1. Feature extraction algorithm
1: Input a fixed-length binary sample sequence Q (e.g., Q = ⟨10100101 . . . 1101101⟩)
2: Set the sliding window size sets D (D = {4, 8, 16, 24}) and initialize step M (M = 0)
3: for M = 1 to 8 do
4: NewSeq = GetNewSeq(Q,M)
5: for d in D do
6: if d = 4 then
7: k = 0
8: else
9: k = d/8
10: end if
11: Hk = GetEntropy(NewSeq, d)
12: Add Hk to Feature Matrix F
13: end for
14: end for

Algorithm 2. GetNewSeq(Q,M)
1: Input a binary sequence Q and step length M
2: Initialize sliding window size D (D = 8)
3: L←Get the length of Q
4: for i = 1 to ⌊(L−D +M)/M⌋ do
5: subSeq(i) = Sliding Window(Q)
6: Sliding window moves step M
7: Add subSeq(i) to NewSeq list
8: end for
9: return NewSeq

Algorithm 3. GetEntropy(NewSeq, d)
1: Input a binary sequence NewSeq and the sliding window size d
2: Initialize sliding window step M = d
3: L←Get the length of NewSeq
4: for i = 1 to ⌊L/M⌋ do
5: subSeq(i) = Sliding Window(NewSeq)
6: end for
7: Calculate H in Formula (1) for subSeq
8: return H

sliding window according to the step size M , and merge all the 8-bit binary sequences
obtained by the sliding window into a new binary sequence. Algorithm 3 describes how
to obtain the entropy feature of the new sequence obtained by Algorithm 2 according to
the method of calculating the serial binary entropy explained in Section 3.2.
Figure 1 shows a specific example of extracting feature calculation process based on

entropy-based feature extraction algorithm. Assuming that a fixed-length binary sam-
ple sequence which is the input Q in Algorithm 1 is ⟨000011000001011110000000001011
010011100000001100⟩. Herein, we give two cases with sliding steps of 7 and 8 which are
the value of parameter M in Algorithm 1. As shown in Figure 1, in the case of window
size being 8 bits (parameter D in Algorithm 2) and step length being 7 (parameter M in
Algorithm 1), the fixed-length binary sample sequence Q is converted to a new sequence
⟨000011000000101111100000000001011101001111000000⟩ by using Algorithm 2 in Algo-
rithm 1. When the sliding step is 8 (parameter M in Algorithm 1), the fixed-length binary
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Figure 1. A specific example for entropy-based feature extraction algorithm

sample sequence Q does not change by using Algorithm 2 in Algorithm 1. According to
the parameter d calculated by the parameter D in Algorithm 1, the sequence obtained in
each case can be split into four different-length subsequence sets by using Algorithm 3. At
the end of Algorithm 3, the serial binary entropy of the four subsequence sets in each case
is calculated. Herein, we only illustrate the serial binary entropy calculation of the subse-
quence set ⟨0000, 1100, 0001, 0111, 1000, 0000, 0010, 1101, 0011, 1000, 0000, 1100⟩. The to-
tal number of items in this subsequence set ism = 3+2+1+1+2+1+1+1 = 12, and the se-
rial binary entropy isH = −(3/12) log(3/12)−2×(2/12) log(2/12)−5×(1/12) log(1/12) =
2.8554. The final result of standardized entropy is H0 = 2.8554/ log(12) = 0.7965. The
serial binary entropy calculation process for the remaining subsequence set is similar to
this subsequence set. Finally, all Hk are combined to form feature vectors.

4.2. Classification architecture based on machine learning. Support Vector Ma-
chine (SVM) was first proposed by Cortes and Vapnik in 1995. It exhibits many unique
advantages in solving small sample, nonlinear and high dimensional pattern recognition.
Random forest refers to a classifier that uses multiple trees to train and classify samples.
It is unexcelled in accuracy among current algorithms and runs efficiently on large data
bases. In this paper, we will use SVM and RF to classify the data into two categories:
encrypted data and non-encrypted compressed data. The feature space of the data is a
8×4 matrix used as input of the SVM and RF. The output is −1 and 1, which respectively
represent encrypted data and non-encrypted compressed data. The entire identification
process architecture is shown in Figure 2.

As shown in Figure 2, the training dataset can be categorized into two cases: the file
dataset and the real packet payload dataset. The differences and links between these two
datasets will be discussed in detail by the experiment in Section 5. At the pre-processing
phase, Packet Capture (PCAP) files or common files are processed and user selects the
sequence length according to actual needs. The longer the sequence is, the higher the
classification accuracy is, but it also means higher time consumption. Then the processed
sequence is used as input of the entropy-based feature extraction algorithm to obtain the
feature vector. Finally, the feature vector is input into the corresponding trained machine
learning model SVM or RF to obtain the classification category.
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Figure 2. Classification architecture for encrypted and non-encrypted
compressed data based on SVM and RF

5. Experiment and Result. To demonstrate the advantage of the proposed feature
extraction algorithm based on the serial binary entropy for SVM and RF, we compare it
with the feature extraction algorithm in [7,9] which is representative in encrypted traffic
identification. For a given sequence, the feature vector of the sequence is obtained by
computing the consecutive byte entropy of the sequence [7]. For the sake of description,
we will abbreviate the consecutive byte entropy based feature extraction algorithm as
CBE and abbreviate the proposed feature extraction algorithm based on the serial binary
entropy as SBE.

5.1. Description of dataset. The datasets used in the experiment include the file
dataset and the real packet payload dataset. The detailed description of each dataset
is as follows.

• Dataset1: We collected a pool of four classes of the file dataset that are more
commonly used: 102MBytes image files (including JPG, GIF, PNG), 100MBytes
text files (including TEXT, TXT, PDF), 105MBtyes audio files (including MP3,
APE, WAV), and 101Mbytes video files (including AVI, MP4, MPG).
• Dataset2: The real packet payload dataset is captured from Internet traffic. The
collection of non-encrypted compressed traffic is captured through the FTP protocol
data transmission between two servers. In order that the non-encrypted compressed
traffic is more representative, the data transmitted by the FTP protocol is a mixture
of data using multiple compression methods (such as .tar, .zip, and .7z).
• Dataset3: The collection of encrypted traffic is from CTU-Normal and ISCX. The
encrypted traffic includes HTTPS, VPN and TOR.

5.2. Experimental setup and evaluation metrics. The experimental platform is
DELL R720 server which is equipped with CentOS release 73 operate system. The CPU is
a 16-cores XeonE5620 2.40GHz, and the memory is 16GB. In all experiments, it is found
that the parameter variation of RF has little effect on the classification result. Finally, for
convenience of processing, all parameters are considered comprehensively and RF param-
eters are n estimators = 130 and min samples split = 120. In this paper, four evaluation
metrics were used: accuracy (A), precision (P), recall (R), f1 value (F1). Accuracy was
used to evaluate the overall performance of a classifier. Precision, recall and f1 value were
used to evaluate performance of every class of traffic.

A =
TP + TN

TP + FP + FN + TN
, P =

TP

TP + FP
, R =

TP

TP + FN
, F1 =

2PR

P +R
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where TP is the number of instances correctly classified as X, TN is the number of
instances correctly classified as Not-X, FP is the number of instances incorrectly classified
as X, and FN is the number of instances incorrectly classified as Not-X.

5.3. Same content attribute. Dataset1 was used in this section. We obtain encrypted
files named Dataset1-ENC and non-encrypted compressed files named Dataset1-GZ, which
are generated by files transformation from Dataset1 using the AES encryption algorithms
and GZ compression method. The original Dataset1-ENC and Dataset1-GZ are processed
with 1024 bytes as a sample. Then the sample number of Dataset enc and the sample
number of Dataset gz are obtained as shown in Table 2. Finally, the sample number of
training set and the sample number of test set are obtained by uniform sampling from
Dataset enc and Dataset gz. Sampling is to reduce the number of samples and increase
the training efficiency. The preprocessed results of the Dataset1 are shown in Table 2. We
carry out a grid search on parameter space, and achieve the best classification accuracy
with Radial Basis Function (RBF) kernel by γ = 2, and C = 32768 when we use SVM
[7].

Figure 3 shows the accuracy of two feature extraction algorithms combined with SVM
and RF when the content attributes of encrypted and non-encrypted compressed files are
Audio, Image, Text or Video. As we can see from Figure 3, the accuracy of the proposed
feature extraction algorithm SBE is better than the feature extraction algorithm CBE in
[7,9]. When using the proposed feature extraction algorithm SBE, the classification accu-
racy of encrypted image files and non-encrypted compressed image files can reach about
72%. However, the classification accuracy of encrypted audio files and non-encrypted
compressed audio files is the worst and only reaches more than 65%. Thus, it can be con-
cluded that the classification accuracy of encrypted files and non-encrypted compressed
files is very relevant to their content attributes.

Table 2. The number of samples that are obtained after Dataset1 processing

Type Audio Image Text Video
Dataset enc 108469 104862 103077 103930
Dataset gz 104698 102302 48873 96283
Training set 18947 18415 17850 18749
Test set 2368 2301 2231 2342

Figure 3. The accuracy of two feature extraction algorithms combined
with SVM and RF on different contents
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Figure 4 shows the precision, recall and F1 value of two feature extraction algorithms
combined with SVM and RF when the content attributes of encrypted and non-encrypted
compressed files are Audio, Image, Text or Video. As shown in Figure 4, the proposed
feature extraction algorithm SBE is also better than the feature extraction algorithm CBE
in [7,9] in precision, recall and F1 value. From Figure 4, the classification precision of
the encrypted files is low, and the recall is high. However, the classification result of the
non-encrypted compressed files is just the opposite. This phenomenon indicates that some
non-encrypted compressed files are incorrectly identified as encrypted files. Especially in
the classification experiment of encrypted audio files and non-encrypted compressed audio
files, the recall of non-encrypted compressed audio files is only about 40%.

(a) The non-encrypted compressed and encrypted
audio files classification

(b) The non-encrypted compressed and encrypted
image files classification

(c) The non-encrypted compressed and encrypted
text files classification

(d) The non-encrypted compressed and encrypted
video files classification

Figure 4. The precision, recall and F1 value of two feature extraction
algorithms combined with SVM and RF on different contents

5.4. Different content attributes. In Section 5.3, we studied the classification perfor-
mance of the proposed algorithm SBE under the condition of encrypted and non-encrypted
compressed content attribute being the same. However, this situation is unlikely to occur
in real life. In this section, we study the classification performance of the proposed feature
extraction algorithm SBE in the case where the encrypted and non-encrypted compressed
content attributes are different. The dataset used in this experiment is still Dataset enc
and Dataset gz in Section 5.3. By exchanging encrypted and non-encrypted compressed
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files samples of audio, image, text, and video, 12 sets of experimental dataset are final-
ly obtained. The sample number of training set and the sample number of test set are
also obtained by uniform sampling from Dataset enc and Dataset gz. The two classes of
samples in each dataset each account for approximately 50%. The preprocessed results of
the Dataset enc and Dataset gz are shown in Table 3. We also carry out a grid search on
parameter space, and achieve the best classification accuracy with Radial Basis Function
(RBF) kernel by γ = 2, and C = 32768 when we use SVM.

Table 3. The number of samples that are obtained after Dataset enc and
Dataset gz processing

Training set Test set
Audio enc vs Image gz 18735 2341
Audio enc vs Text gz 18329 2291
Audio enc vs Video gz 19151 2393
Audio gz vs Image enc 18627 2328
Audio gz vs Text enc 18468 2308
Audio gz vs Video enc 18545 2317
Image enc vs Text gz 18009 2251
Image enc vs Video gz 18831 2353
Image gz vs Text enc 18256 2281
Image gz vs Video enc 18333 2290
Text enc vs Video gz 18672 2333
Text gz vs Video enc 17927 2240

Figure 5 shows the performances of two feature extraction algorithms combined with
SVM and RF when the content attributes of encrypted and non-encrypted compressed
files are different. According to the classification results of all the situations, whether the
content attributes of the encrypted and non-encrypted compressed files are the same or
not has a slight impact on the classification accuracy. As shown in Figure 5, the proposed
feature extraction algorithm SBE is still better than the feature extraction algorithm CBE
in [7,9]. When the content attributes of encrypted and non-encrypted compressed files are
different, the identification accuracy is also about 60% to 75%. From Figures 5(d), 5(e),
and 5(f), when the content attribute of one class is the non-encrypted compressed audio
file, the classification accuracy is relatively low, which is only 60% or so. And the lowest
recall, which is only more than 40%, also indicates that the non-encrypted compressed
audio files are difficult to identify. It is consistent with the difficulty of identifying the
non-encrypted compressed audio files in Section 5.3. Contrast to the low classification
accuracy of non-encrypted compressed audio files, the classification accuracy of other
content attribute files is basically over 70%. Of course, the difference in content attribute
does not change the phenomenon that some non-encrypted compressed files are mistakenly
identified as encrypted files.

5.5. Real traffic. The experiments in Sections 5.3 and 5.4 both validate the feasibility
of the proposed classification algorithm SBE on the datasets obtained by encrypting
and compressing files. However, the real network traffic is not the same as the ideally
constructed dataset. In this section, we will use the real network traffic Dataset2 and
Dataset3 to verify the effectiveness of the proposed classification algorithm SBE. Herein,
the raw packets are processed to obtain the TCP or UDP flow. A flow is defined as all
packets that have the same 5-tuple, i.e., source IP, source port, destination IP, destination
port and transport protocol. By sampling method, only first n bytes (n = 900, 1024, 1156,
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(a) Audio enc vs Image gz (b) Audio enc vs Text gz (c) Audio enc vs Video gz

(d) Audio gz vs Image enc (e) Audio gz vs Text enc (f) Audio gz vs Video enc

(g) Image enc vs Text gz (h) Image enc vs Video gz (i) Image gz vs Text enc

(j) Image gz vs Video enc (k) Text enc vs Video gz (l) Text gz vs Video enc

Figure 5. The performances of two feature extraction algorithms on SVM
and RF for different content attributes of encrypted and non-encrypted
compressed files

1296, 1444 in this paper) of each packet payload in flow are used. If packet payload size is
larger than n bytes, it is trimmed to n bytes. If packet payload size is shorter than n bytes,
the 0 is added in the end to complement it to n bytes. The sample number of training
set and the sample number of test set are obtained by sampling as shown in Table 4. The
training and test sets include two classes: encrypted traffic samples and non-encrypted
compressed traffic samples. We carry out a grid search on parameter space, and achieve
the best classification accuracy with Radial Basis Function (RBF) kernel by γ = 50, and
C = 1000 when we use SVM.
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Table 4. The sample number of training set and test set for encrypted
traffic and non-encrypted compressed traffic

Length (Bytes) 900 1024 1156 1296 1444
Training set 26698 26698 26698 26698 26698
Test set 3337 3337 3337 3337 3337

(a) The performances of SBE and CBE on SVM
and RF without application protocol header

(b) The performances of SBE and CBE on SVM
and RF with application protocol header

Figure 6. The performances of two feature extraction algorithms for en-
crypted traffic and non-encrypted compressed traffic with application pro-
tocol header or not

Figure 6 shows the classification results of real encrypted traffic and non-encrypted
compressed traffic. Figure 6(a) shows the classification performance of using 1024-byte
packet payload without application protocol header information and Figure 6(b) shows
the classification result of using 1024-byte packet payload that contains the application
protocol header information. From Figures 6(a) and 6(b), it can be seen that the classifi-
cation performance of non-using application protocol header information is well matched
with that using application protocol header information. Even though the application
protocol header information is not encrypted, it does not help to improve the classifica-
tion accuracy. In follow-up experiments, for the convenience of data processing, the packet
payload will include the application protocol header information. As seen in Figure 6(a),
the recall of non-encrypted compressed traffic with using SBE is lower than that uses
CBE, but the precision is opposite. This explains that the SBE algorithm combined with
SVM or RF can more accurately identify non-encrypted compressed traffic and reduce the
probability that encrypted traffic is misidentified as non-encrypted compressed traffic. As
shown in Figure 6(b), when using the SBE-SVM algorithm, the precision of encrypted
traffic and the recall of non-encrypted compressed traffic are not as good as the CBE-SVM
algorithm. It demonstrates that when using the SBE-SVM algorithm, there will be some
non-encrypted compressed traffic that is misidentified as encrypted traffic. Apart from
this, the proposed feature extraction algorithm SBE has achieved better results than CBE
whether application protocol header information is used or not.

As shown in Figure 7, with the packet payload length used in the experiment gradually
increasing, the classification accuracy is continuously improving whether the feature ex-
traction algorithm is SBE or CBE. As seen in Figure 7, when the packet payload lengths
are 900, 1024, 1156 and 1296 bytes, the performance of the proposed feature extraction



858 Z. TANG, X. ZENG AND Y. SHENG

Figure 7. The performances of SBE and CBE for encrypted traffic and
non-encrypted compressed traffic classification with different payload
lengths

algorithm SBE is better than the CBE algorithm in [7,9]. In the best case, the proposal
outperforms 4.9% the CBE algorithm in terms of classification accuracy. In the worst
case, they are well-matched in classification accuracy when the packet payload length
is 1444 bytes. The longer the packet payload length is, the more information that can
be extracted. So that both SBE and CBE can perform better in classification accuracy.
When the packet payload length is 1444 bytes, the classification accuracy of SBE-RF and
SBE-SVM can reach 97.90%.

5.6. Analysis and discussion. The feature extraction algorithm CBE was firstly pro-
posed in [7]. Authors use CBE-SVM algorithm to classify and identify content attributes
of network traffic. Authors discuss and analyze the performance issues of the CBE in dis-
tinguishing encrypted from compressed traffic. In [9], authors used the feature extraction
algorithm CBE with CART and SVM, but did not optimize the algorithm. Encrypted
and non-encrypted compressed traffic classification problem is not studied. The latest
paper on the optimization of feature extraction algorithms CBE is [8]. A Monte Carlo
simulation method used to estimate the error of π value was proposed to supplement the
feature space in [7]. However, there is no experiment for distinguishing between encrypted
and non-encrypted compressed traffic in [8]. Given that the improved method in [8] is
not based on entropy, in order to make a more scientific and fair comparison, we chose
the feature extraction algorithm CBE in [7,9]. The CBE algorithm is more similar to the
proposed feature extraction algorithm. From the above experiments, we can find that the
proposed feature extraction algorithm SBE performs better than the feature extraction
algorithm CBE in [7,9] when the packet payload length is short. Moreover, the proposed
feature extraction algorithm has better performance regardless of whether it is combined
with SVM or RF. When the payload length increases, the more information is available
and the advantage of the proposed feature extraction algorithm is no longer outstanding.
However, it still is well-matched in classification accuracy compared with CBE.

6. Conclusions and Future Work. The identification of encrypted traffic as a chal-
lenging topic in traffic management and security detection has attracted the attention
of researchers. Since non-encrypted compressed data and encrypted data both have ran-
dom feature, distinguishing them becomes more difficult. A novel entropy-based feature
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extraction algorithm was proposed in this paper. For a fixed-length binary sequence, it
obtains new sequences through different sampling and combinations, so as to change the
randomness of the original sequence. The idea behind this is that encrypted data is highly
random, and therefore random feature should not change regardless of the different com-
binations. For the lossless compressed data, there is obvious deviation from randomness
in the randomness test [25]. Therefore, the recombination of compressed data will change
its randomness. Finally, the experiments for the SBE on the real traffic are verified. The
performance of the proposed entropy-based feature extraction algorithm SBE is better
than the CBE in [7,9].

In the future, on the basis of the proposed feature extraction algorithm, further im-
provements and optimizations will be made. It will hopefully reach a goal that is small
computing space and high classification accuracy. Then it can perform well in future
real-time network packet analysis system environment [26].
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