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Abstract. Light-emitting diode (LED) lenses, one kind of optical components, are pop-
ular and widely used in digital cameras, cell phones, and CD-ROMs. Nevertheless, a
LED lens with a textured and uneven surface is more difficult to detect the visual defects
than electronic components by current computer vision systems. This research propos-
es a wavelet packet transformation (WPT) based partial least squares (PLS) approach,
called WPLS, to detect visual defects of LED lenses with structural textures. Three
steps are developed to finish the process of defect detection. We first convert a spatial
domain image to the WPT domain and extract the wavelet features of the sub-band im-
ages. Subsequently, the proposed PLS method is applied to multivariate transform and
data reduction with wavelet features to obtaining latent images. Last, the latent images
are fitted by a regression model to produce a predicted image and then subtract with the
original image to get the residual image where the visual defects have been separated.
Therefore, the intricate flaws on textured and uneven surfaces are precisely identified by
the suggested scheme. The experimental results show that the proposed approach detect-
s surface flaws more precisely than the conventional methods. Moreover, regarding the
performance comparisons of the wavelet packet based multivariate techniques in defect
detection of the textured LED lenses, the proposed WPLS method outperforms the other
techniques, the WPT based principal component analysis (WPCA) method and the WPT
based back propagation network (WBPN) model.
Keywords: Industrial inspection, LED lens, Computer vision system, Wavelet packet
transform, Partial least squares, Multivariate techniques

1. Introduction. A lens is an optical device with perfect or approximate axial symmetry
which transmits and refracts light, converging or diverging the beam. Lenses are typically
made of glass or transparent plastic. Optical lenses are transparent components made from
optical-quality materials and curved to converge or diverge transmitted rays from an
object. These rays then form a real or virtual image of the object. There are many types
of optical lenses. Optical lenses are widely used in cell phone, notebooks, automotive,
digital camera, LED, etc.

A light-emitting diode (LED) is a semiconductor device that emits visible light when an
electric current passes through the semiconductor chip. Compared with incandescent and
fluorescent illuminating devices, LEDs have lower power requirement, higher efficiency,
and longer lifetime. Typical applications of LED components include indicator lights,
LCD panel backlighting, fiber optic data transmission, etc. The functions of LED lenses
include focusing, beauty, and protection to avoid the waste of light and light pollution.
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An LED without the assistance of lens focus function cannot project light to far distance.
Therefore, LED lenses are invented to improve the light scattering problems of LEDs and
they are widely applied to hand flashlights and traffic lights applications. Appearance
differences among the clear lenses, diffused lenses, and textured lenses of LEDs are various
designs for providing the lighting energy distribution in the areas of interest and reducing
the uncomfortable glare effect for the general illumination applications. Figure 1 shows
regular LEDs with clear lens, diffused lens, and textured lens. The structure of textured
LED lenses with coarse and uneven surfaces is significantly different from those of the
clear lenses and diffused lenses.

Figure 1. LED lenses with clear, diffused, and textured surfaces

To meet consumer and industry needs, LED products are being made in smaller sizes,
which increase difficulties of product inspection. Lens inspection requires special physical
conditions, particularly in terms of lighting. In the real working situation, each inspected
lens is brought into the inspector’s field of vision. The lenses are round and textured and
the visual defects to be inspected could be located on the external surfaces of the lenses or
inside. The textured lens has the appearance of periodic small circles in spatial domain
image which is more complicated than those of the clear lens and diffused lens. It is
more difficult to accurately detect visual defects embedded in the complicated structural
textures. The majority of defects are not only very small but also they are extremely
diverse and can assume various forms. Figure 2 shows a normal textured LED lens and
two lenses with various shapes and low contrast of visual defects on uneven surfaces.

Figure 2. A normal textured LED lens and two lenses with various low
contrast defects

Currently, the most common detection method for visual defects on LED lenses is
human visual inspection. Human visual inspection is tedious, time-consuming and highly
dependent on the inspectors’ experiences, conditions, or moods. Erroneous judgments
are easily made because of inspectors’ subjectivity and eye fatigues. Difficulties exist
in correctly inspecting intricate flaws by machine vision systems because when product
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images are being captured, the area of an intricate flaw could expand, shrink or even
disappear due to uneven illumination of the environment, texture structures and uneven
surfaces of the products, and so on. Since the textured LED lens has the appearance of
repeated small circles, those apparent textures make the flaw detection task harder when
visual flaws are inlaid on the uneven surfaces of structural textures. We thereby propose a
wavelet packet transformation (WPT) based partial least squares (PLS) approach, called
WPLS, to conquer these problems of automated surface flaw inspection of LED lenses.

The WPT has the advantages of being fine enough to extract necessary information from
the decomposed components and representing generalization of multi-resolution decom-
position. The PLS regression is a modern method that integrates features from principal
component analysis and multiple regression. Such advantages of WPT and PLS make
WPLS approach suitable and favorable for our study of visual flaw detection of textured
LED lenses with uneven surfaces.

The rest of the paper is organized as follows. First, we review the literature on optical
techniques of computer vision for flaw detection. Second, we explain the proposed im-
age models for inspecting surface flaws on textured LED lenses. Third, we conduct the
experiments and evaluate the performance of the proposed models with known methods.
Fourth, we present the conclusion and the future work.

2. Literature Review. Automated inspection of surface flaws has become a crucial
mission for industries who exert to upgrade product quality and manufacturing efficiency
[1,2]. Flaw inspection technologies are ordinarily classified into spatial domain and fre-
quency domain approaches. In spatial domain techniques, Lin and Hsieh [3] developed
a novel vision system based on slight deviation control techniques to detect surface vari-
ations on curved mirrors of vehicles. Adamo et al. [4] proposed a low-cost inspection
system based on the Canny edge detection for online defects assessment in satin glass.
In frequency domain technologies, Liu et al. [5] presented the watershed transform based
methods to segment the possible defective regions and extract features of bottle wall by
rules. Lin and Ho [6] suggested a global approach that applies discrete cosine transform-
based enhancement for the automatic inspection of pinhole defects in randomly textured
surfaces of capacitor chips of passive components. Li and Tsai [7] introduced a wavelet-
based discriminant measure for defect inspection in multi-crystalline solar wafer images
with inhomogeneous texture.

Some studies investigated the flaw inspection of LED related products. Lin and Jiang
[8] developed a machine vision system that applies block discrete cosine transform and
grey relational analysis for the automated visual inspection of tiny flaws occurring in
the domed surfaces of LED epoxy-packing. Chiu and Lin [9] applied block discrete cosine
transform, Hotelling’s T-squared statistic, and grey clustering technique for the automated
detection of surface flaws on LEDs with clear lenses. As to inspecting defects of lenses,
Rebsamen et al. [10] described quality control procedures in the optical industry from
a work analysis of optical lens inspection to a training program. Mart́ınez et al. [11]
developed a vision sensor planning system for automated inspection of headlamp lenses.
This system integrated a vision sensor model and the customer requirements described
by a fuzzy approach to achieve an optimal set of viewpoints by genetic algorithm. Bazin
et al. [12] presented an optical technique for industrial inspection of ophthalmic contact
lenses in a time constrained production line environment. Perng et al. [13] suggested a
new inspection system that uses machine vision to detect optical defects in quasi-contact
lenses.

From the above review of literature, it is evident that many of the lens related works
focus on the distortion detection of optical lenses. Therefore, most of the current studies
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pay attention to inspections of LED lenses with clear surfaces, mirror lenses, and glass
lenses. They do not inspect flaws with the attributes of small blemishes on textured LED
lenses with uneven surfaces. Consequently, we present a new approach combining wavelet
packet transform and partial least squares techniques for flaw inspection on the textured
and uneven surfaces of LED lenses.
The wavelet transform allows a time-frequency decomposition of the input signal, but

the degree of frequency resolution in the wavelet transform is classically contemplated
too coarse for empirical time-frequency analysis [14,15]. The wavelet packet transform
provides a computationally efficient alternative with sufficient frequency resolution. In the
WPT, the filtering operations are also applied to the detailed coefficients. The result is
that wavelet packets provide a sub-band filtering of the input signal into progressively finer
equal-width intervals [16]. Kim and Kang [17] used wavelet packet frame and Gaussian
mixture model to do texture classification and segmentation. Lee et al. [18] proposed
a feature-based adaptive wavelet packet method to inspect surface defect on cold rolled
strips.
The partial least squares technique was initially proposed by Wold [19]. It is a statistical

multivariate method that finds a regression model by projecting the predicted variables
and the observable variables to a new space [20,21]. The PLS finds the latent variables
from data sets by capturing the largest variance in the data and achieves the maximum
correlation between the predictor variables and response variables [22]. Aznar et al. [23]
developed PLS regression models to predict the aged red wine aroma properties from
aroma chemical composition. Naganathan et al. [24] implemented a PLS analysis of
near-infrared hyperspectral images for beef tenderness prediction. Li et al. [25] applied
PLS method to inspection and grading of surface defects of fruits in computer vision fields.
Therefore, the PLS method has been successfully applied in diverse fields including process
modeling, fault detection, process monitoring and it deals with noisy and highly correlated
data, etc., in recent years [26].

3. Proposed WPLS Approach. This study proposes a wavelet packet transformation
based partial least squares (WPLS) approach to detect surface defects of textured LED
lenses. Five steps are developed to finish the process of flaw detection. Firstly, image
preprocessing is executed to remove background region and produce a fused image by
integrating the LED lens region with a controlled background to decrease the obstruction
of the original background. Secondly, the fused spatial domain image is converted to
WPT domain and the wavelet features of the sub-band images are extracted. Thirdly,
the suggested PLS method is applied to multivariate transform and data reduction with
wavelets features to obtaining latent images. There is as much information in the latent
components compared with those in the original features. Fourthly, the latent images are
fitted by a regression model to produce a predicted image. Fifthly, the predicted image
subtracts with the original image to get the residual image where the surface defects
have been separated. Therefore, the visual defects on the uneven surfaces of textured
LED lenses can be accurately identified and located by the proposed approach. Figure
3 describes the flow chart of the proposed approach. Figure 4 depicts the data concept
diagram of the WPLS approach.

3.1. Image preprocessing procedure. Image preprocessing is first executed to divide
two kinds of texture regions where surface defects may happen. ROI (region of interest)
is a rectangular block that includes the object(s) to be investigated. The adoption of ROI
avoids uninterested regions from obstructing neighborhood computations or frequency
analyses. When an image having uninterested regions is transformed into the frequency
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Figure 3. Flow chart of the WPLS approach

Figure 4. Data concept diagram of the WPLS approach

Figure 5. The procedure of producing a fused image for the LED lens

domain, the uninterested region (e.g., the background) can notably obstruct the frequency
analysis of the object of interest. Therefore, after we capture the image of the target lens
and background, we produce a mask to depict the ROI, the region of the target lens. Then,
we acquire a fused image by integrating the target region with a controlled background to
decrease the obstruction of an uninterested region (the original background). This fused
image will then be applied as the input for further wavelet packet transformation.

Figure 5 shows the procedure of producing a fused image for the LED lens. Figure
5(a) is the captured image and Figure 5(b) shows a segmented image with a cross exactly
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locating in the mass center of the target lens and the average gray level of the lens region is
computed. Figure 5(c) shows the ROI mask of the testing image which can determine the
exact region of the target lens. Figure 5(d) shows a fused image produced by integrating
the circular lens region into a background that is made up by replicating the average gray
level of the lens region in Figure 5(b). With such a controlled background, we not only
obtain a rectangular block for wavelet packet transform but also minimize the influence
of the non-lens region.

3.2. Wavelet packet transform. The inspection task of this study involves detect-
ing unconventional but unclearly flawed items, visual defects on the uneven surfaces of
textured LED lenses of optical components. Many of these unexpected blemishes are high-
ly small in size and cannot be described by definite measures, thus making automated
defect detection hard. With good time-frequency differentiation capability and flexible
time-frequency windows, wavelet transforms are now diffusely adopted for analysis of var-
ious signals in time and frequency domain concurrently [16]. In the wavelet decomposition
procedure, the general stage breaks the approximated coefficients into two parts. After
the dividing, we acquire a vector of approximated coefficients and a vector of detailed
coefficients and both of the vectors are at a coarser measure. The information missed
between two consecutive approximations is caught in the detailed coefficients. The next
stage includes dividing the new approximated coefficient vector; consecutive details are
never reexamined. In the relevant wavelet packet circumstance, each detailed coefficient
vector is also decomposed into two parts using the same procedure as in approximated
vector dividing.
Because of decomposition of only the approximated component at each level, the re-

sults of frequency resolution in higher level wavelet decompositions (e.g., A1 and D1) are
less advisable in a general wavelet analysis. It may lead to problems while employing
wavelet transform in some applications which the major information is located in higher
frequency components. The frequency resolution of the decomposition filter may not be
delicate enough to abstract essential information from the decomposed components of the
signal. The required frequency resolution can be accomplished by conducting a wavelet
packet transform to decompose a signal further. The wavelet packet transform is a gen-
eralization of wavelet decomposition that provides an abundant range of possibilities for
signal analysis. Figure 6 shows a wavelet packet decomposition tree at level 3.

Figure 6. Wavelet packet decomposition tree at level 3

One level of wavelet packet decomposition generates one smooth approximated sub-
image and three detailed sub-images that have delicate structures with horizontal, ver-
tical, and diagonal orientations. An image is decomposed by wavelet packet transform
into one approximated sub-image (A) and three detailed sub-images (D1, D2 and D3).
The proposed method extracts the four textural features of one level wavelet packet de-
composition to detect surface blemishes of textured LED lenses. The one level wavelet
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(a) (b)

Figure 7. A normal lens image after being processed (a) 1 level and (b)
2 levels of wavelet packet decompositions and the decomposed components
with their corresponding variable numbers

packet decomposition is used to precisely locate the pixels with the textural characteris-
tics. Multi-level wavelet decomposition generates coarser expression of the original image.
A large number of decomposition levels will result in the fusion effect for the flaws and
may cause localization error of the detected defect [7]. Figure 7 shows a normal lens image
after being processed 1 and 2 levels of wavelet packet decompositions and the decomposed
components with their corresponding variable numbers.

Since WPT has the advantages of being fine enough to extract necessary information
from the decomposed components and representing generalization of multi-resolution de-
composition, it provides better control of frequency resolution for the decomposition of
the signal [16]. Such advantages make WPT suitable and favorable for our study of visual
defect detection of textured LED lenses with uneven surfaces. To increase the computa-
tional efficiency of WPT, the block WPT is adopted that we divide an image into non-
overlapping image blocks of equal size which can be executed WPT individually instead
of taking one transform on an entire image.

3.3. Partial least squares method. PLS method is one of the primary multivariable s-
tatistical techniques to decrease the dimensionality of data, to discover the latent variables
from the data by catching the major variance among the data, and reaches the maximum
correlation between the predictor variables (X) and response variables (Y ) [21]. It is
used to discover the essential connections between two matrices (X and Y ), and in the
meanwhile a latent variable scheme to modelling the covariance structures in these two
spaces [22]. The PLS regression is a modern method that integrates features from princi-
pal component analysis and multiple regression. It is especially suitable when the matrix
of predictors has more variables than observations, and when there is multicollinearity
among predicator values [19]. Its goal is to predict a set of dependent variables from a
set of independent variables. This prediction is accomplished by abstracting from a set of
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orthogonal latent variables with better predictive ability. PLS method has been widely
applied in various disciplines such as chemistry [23,26], medicine [27], food [24,25,28], and
environmental science [29] where predictive linear modeling is necessary.
When the wavelet packet features of the sub-band images are extracted, the PLS tech-

nique is applied to multivariate transform and data reduction with wavelets features to
obtaining latent images. The latent components have much more information than those
in the original features. Subsequently, the latent images are fitted by a regression model
to produce a predicted image and then subtract with the original image to get the residual
image where the visual defects have been divided.
In the training process of the proposed PLS method, we use the intensity values of

normal images as the response variable. The procedure of PLS method is described as
the following steps.
Step 1. Take wavelet pack transform XJ

k (i, j) of a testing image Y (x, y) with J decom-
position levels and extract the wavelet feature vectors.
Step 2. Let h = 0 and Y (n, 1) = uh(n, 1)
Step 3. Let X(n, a) = Eh(n, a)
Step 4. Estimate the vector (w) of the h-th latent vector:

w′

h(a, 1) =
u′(n, 1) · E(n, a)

u′(n, 1) · u(n, 1)
, and normalize w′

h to obtain w′

norm(a, 1) =
w′

old(a, 1)

||w′

old(a, 1)||

Step 5. Calculate the h-th latent image (t):

th(n, 1) =
Eh(n, a) · w(a, 1)

w′(a, 1) · w(a, 1)

Step 6. Calculate the wavelet loading matrix (p) of the h-th latent image:

p′h(1, a) =
t′h(n, 1) · E(n, a)

t′h(n, 1) · th(n, 1)

Step 7. Calculate the regression coefficients (b) of the h-th latent image:

bh =
t′(n, 1) · u(n, 1)

t′(n, 1) · t(n, 1)

Step 8. Calculate the residuals of the h-th latent image described by the (h + 1)-th
latent image:

Eh+1(n, a) = Eh(n, a)− th(n, 1) · ph(1, a)

Step 9. Repeat Step 4 until h = a, then stop.
In the above equations, wh is a latent vector, th is a latent image, uh is a score vector of
dependent variable Y, p′h is a loading vector of variable Y, bh is a regression coefficient
vector, and Eh is a residual image in the h-th iteration. The latent image of the current
iteration is obtained from the residual estimate of the previous latent image. These latent
vectors are orthogonal each other. Figure 8 shows the matrix decomposition of the PLS
method.
The number of PLS dimensions is calculated by percentage of variance explained and

cross validation [20]. The cross-validation procedure determines the number of latent
variables for obtaining better ability of the model fitness. The index of prediction sum of
squares (PRESS) is used to evaluate the model fitness. It is expressed as,

PRESS =

W
∑

x=0

H
∑

y=0

[

Y (x, y)− Ŷ (x, y)
]2

, (1)
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where Y (x, y) is the testing image and Ŷ (x, y) is the fitted image. Figure 9 shows the
PLS fitted images with various numbers of latent vectors and the corresponding resulting
images of flaw detection. We find the fitted image with 4 latent vectors has a better flaw
detection result of the textured LED lens. Table 1 shows the PLS models with different
numbers of latent vectors and their corresponding PRESS indices. The PLS model with
4 latent vectors has the lowest PRESS index for the testing image and obtains a better
result of flaw detection.

Figure 10 shows the whole process and the work-in-process results of the proposed
WPLS method for detecting surface defects on textured LED lenses. Figure 10(b) presents
the WPT domain images of the testing image Figure 10(a). Figure 10(c) is the latent
images with various numbers of latent vectors by PLS model. After the latent images

Figure 8. Matrix decomposition of PLS method

Figure 9. Fitted images with various numbers of latent vectors and the
corresponding resulting images

Table 1. PLS models with different numbers of latent vectors and their
PRESS indices

Number of
latent vectors

3 4 5 6 7 8

PRESS 149 118* 127 126 122 120



914 H.-D. LIN AND H.-L. CHEN

Figure 10. The proposed WPLS procedure of detecting visual defects on
textured LED lenses: (a) a testing image; (b) the WPT domain images; (c)
the latent images of PLS model; (d) the fitted image and residual image;
(e) resulting binary image

are fitted by a regression model to produce a fitted image and then subtract with the
original image to get the residual image, Figure 10(d) depicts the fitted image and residual
image. Figure 10(e) shows the resulting binary images that show the flaws in black by
the proposed detection method. The results reveal that the surface flaws on textured lens
are correctly separated in the binary image, regardless of LED lens with textured surface.

4. Implementation and Analyses. In this section, we implement the proposed ap-
proach and conduct experiments to evaluate its performance in detecting visual defects of
textured LED lenses. To strengthen the visibility of the visual defects, we make use of the
following equipment: a red ring lighting device, a USB 2.0 color CCD of ARTRAY com-
pany, a lens with 1 to 10 amplifications of changeable focal lengths, and a XYZ electronic
control table with a controller. Experiments are conducted on 320 real textured LED
lenses (including 220 normal lenses and 100 defective lenses) provided by a local manu-
facturing company of high quality LED lenses in Taiwan to evaluate the performance of
the proposed approach. Figure 11 demonstrates the configurations of the environment in
which we scan real textured LED lenses to be used as testing samples in the experiments.
Each image of the LED lens has a size of 512× 512 pixels and a gray level of 8 bits. The
surface flaw detection algorithm is edited in C language and executed on the 6th version
of the C++Builder complier on a personal computer (Pentium-4 2.8 GHz and 512 MB
DDRII 667Hz-RAM).
To numerically confirm the manifestation of the proposed method and other approach-

es, we compare the results of our experiments against those provided by professional
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(a) (b)

Figure 11. Environmental configurations of scanning a textured LED lens
sample: (a) hardware setup of experiments; (b) a textured LED sample is
placed under a CCD camera

inspectors. The performance evaluation indices, (1−α) and (1−β), are used to represent
correct detection judgments; the higher the two indices are, the more accurate the detec-
tion results are [30]. Statistical type I error α suggests the probability of producing false
alarms, i.e., detecting normal regions as defects. Statistical type II error β implies the
probability of producing missing alarms, which fail to alarm real defects. We divide the
area of normal region detected as defects by the area of actual normal region to obtain
type I error, and the area of undetected defects by the area of actual defects to obtain
type II error. The correct classification rate (CR) is defined as:

CR = (Ncc +Ndd)/Ntotal × 100% (2)

where Ncc is the pixel number of normal textures detected as normal areas, Ndd is the
pixel number of defects detected as defective regions, and Ntotal is the total pixel number
of a testing image.

4.1. Performance assessment of distinct detection techniques. Figure 12 shows
partial results of detecting surface flaws by the Otsu method [31], Iterative method [32],
Lin and Jiang method [8], Lin and Ho method [6], proposed method, and professional
inspector (ground truth), individually. The two spatial domain techniques, the Otsu
and Iterative methods, make lots of erroneous judgments (false alarms) on visual defect
detection. The three frequency domain techniques, the Lin and Jiang approach, the Lin
and Ho approach and the proposed method, detect most of the visual blemishes and make
less erroneous judgments. Therefore, the frequency domain approaches outperform the
spatial domain techniques in the surface defect detection of textured LED lenses.

Table 2 summarizes the detection results of our experiments. Two spatial domain
approaches and two frequency domain techniques are evaluated against the results by
professional inspectors. The average defect detection rates (1 − β) of all testing samples
by the five methods are, espectively, 92.00% (Otsu method), 98.50% (Iterative method),
69.30% (Lin and Jiang method), 47.10% (Lin and Ho method), and 93.49% (proposed
method). However, the two spatial domain methods have significantly higher false alarm
rates (α), 7.90% (Otsu method) and 15.60% (Iterative method). On the contrary, the
other two frequency domain approaches have rather lower false alarm rates, 0.08% (Lin
and Jiang method), 6.20% (Lin and Ho method) and 0.10% (proposed method). The
proposed method has higher correct classification rates (CR) than do the other methods
applied to defect detection of textured LED lens images. More specifically, the proposed
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Figure 12. Partial detection results of the Otsu method, manual Iterative
method, Lin and Jiang method, Lin and Ho method, proposed methods,
and inspector (ground truth)

Table 2. Summarized comparison table of visual defect detection of tex-
tured LED lenses for five different methods

H
H
H
H
H
H
H
HH

Spatial domain approaches Frequency domain approaches

Otsu method
Iterative
method

Lin and Jiang
method

Lin and Ho
method

Proposed
method

1− β (%) 92.00 98.50 69.30 47.10 93.49
α (%) 7.90 15.60 0.08 6.20 0.10
CR (%) 92.10 84.50 99.80 93.50 99.84
Time (s) 0.056 0.054 0.735 1.245 0.113

method not only has a higher detection rate than does the Lin and Jiang method but also
its false alarm rate is almost the same as that of the latter method applied to textured
LED lens images.
The average computation time for processing an image of 512×512 pixels is as follows:

0.056 seconds by the Otsu method, 0.054 seconds by the Iterative method, 0.735 seconds
by the Lin and Jiang method, 1.245 seconds by the Lin and Ho method, and 0.113 seconds
by the proposed method. The average processing time of the proposed method is more
than six times shorter than that of the Lin and Jiang method. The proposed method
overcomes the difficulties of detecting visual blemishes on LED lens images with textured
surfaces and excels in its ability of correctly discriminating visual blemishes from normal
regions.

4.2. Performance assessment of WPT based multivariate techniques. To eval-
uate the performance of the proposed wavelet packet transform based multivariate ap-
proach, experiments with different multivariate techniques are conducted. We compare
defect detection results of applying different multivariate methods and analyze their re-
ceiver operating characteristic (ROC) curves. The wavelet packet transform is applied to
conducting image processing for extracting texture features, because the merits of wavelet
packet transform include local image processing, simple calculations, high speed process-
ing and multiple image information. Then, we use three popular multivariate techniques,
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PLS, PCA (principal component analysis), and BPN (back propagation network), that
integrate multiple texture characteristics to synthesize multiple image features. After
image features are incorporated, the decision values are used to judge the existence of
defects. This wavelet packet based multivariate techniques are ideally suited for describ-
ing locally gradual changes in textured images of LED lenses. Figure 13 demonstrates
the partial detection results and erroneous judgements of a testing image by the WPCA,
WBPN, and WPLS methods. The suggested WPLS method not only accurately detects
most of the real defect regions but also makes less false flaw regions. Table 3 summarizes
a comparison table of visual defect detection of textured LED lenses for the three wavelet
packet based multivariate techniques in large sample experiments. The time in Table 3
does not include the time (37.4 ms) of processing the same procedure of WPT for the three
methods. The proposed WPLS method outperforms the other wavelet packet transform
based multivariate techniques in effectiveness indices (false alarm rate, defect detection
rate, correct classification rate) as well as efficiency indices (training time, testing time).

Computational complexity is the measure of resources necessary for executing an al-
gorithm in computer science. When the essence of the resources is not definitely given,
this is generally the time needed for executing the algorithm. The executing time can
also be expressed as the number of needed fundamental operations. To analyze the com-
putational complexity of the PLS method, some major parameters are needed to be set

Figure 13. Partial detection results and erroneous judgements by the W-
PCA, WBPN, and WPLS methods



918 H.-D. LIN AND H.-L. CHEN

Table 3. Summarized comparison table of visual defect detection of tex-
tured LED lenses for three WPT based multivariate techniques

XXXXXXXXXXXX
Methods

Indices
α (%) 1− β (%) CR (%)

Testing
time (ms)

Training
time (ms)

WPCA 0.220 88.18 99.66 81.09 283
WBPN 0.140 86.78 99.77 200 600,000
WPLS 0.102 93.49 99.84 75.6 237

Figure 14. ROC curves of the wavelet packet based PCA, BPN and PLS techniques

including the dimensions of latent variables, the maximum iterations when each dimension
is solved, the number of sample pairs in the training set, and the number of total cate-
gories [33]. The cross validation of the PLS method provides a simple and straightforward
stopping rule and makes it simple to compare the estimates of different methods [34]. The
PCA method, similar to PLS, projects the input data onto its principal components and
performs univariate regressions in these directions. However, the PCA method selects pro-
jection solely based on the input distribution and this easily leads to choosing inefficient
projections [35]. The BPN method is an iterative technique for learning the relationship
between an input and output. This algorithm has been successfully employed in many
real-world applications; however, it suffers from slow convergence problems [36]. The main
disadvantage of backpropagation is its excessive computational complexity.
For a given hypothesis testing, different decision thresholds lead to different pairs of false

alarm rate (α) and detection rate (1− β) that describe the performance of the statistical
test. An ROC curve plots pairs of the specificity (false alarm rate) and the sensitivity
(detection rate) as points when various decision thresholds are used. The plot depicts the
tradeoff between the sensitivity and specificity. The ROC curve provides a good standard
for comparison of detection methods: for a given false alarm probability, the method
providing the highest detection probability can be considered the best. Figure 14 shows
the ROC curves of the wavelet packet based PCA, BPN, and PLS methods by plotting
pairs of the false alarm rate and the detection rate of surface flaw defect detection. The
nearer the ROC curve of a test is to the upper-left corner (representing 100% detection
rate and 0% false alarm rate), the better the performance of the test is. Since the ROC
curve of the WPLS method is nearer to the upper-left corner than those of the WPCA
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Figure 15. Curves of classification rates (CR) v.s. false alarm rates (α)
of the wavelet packet based PCA, BPN and PLS techniques

and the WBPN methods, the WPLS method performs better than the WPCA and the
WBPN methods in appearance flaw detection of LED lenses with respect to both the false
alarm rate and the detection rate.

Figure 15 compares the three wavelet packet based techniques at various false alarm
rates, when the classification rates (CR), instead of the detection rates (1 − β), is the
subject of interest. All of the three techniques can achieve a CR value of more than
99.5%, when the false alarm rate approaches to 0.02. If we compare the performance at
the same false alarm rate, the WPLS method outperforms the WPCA and the WBPN
methods in overall situation.

5. Conclusions. Machine vision technologies improve product quality and production
productivity, and provide competitive advantages to industries that employ these tech-
niques. This study proposes a wavelet packet transformation based partial least squares
approach for the automatic inspection of visual defects on textured and uneven surfaces
of LED lenses. Real textured LED lenses are used as testing samples, and large-sample
experiments are conducted in a practical inspection environment to verify the perfor-
mance of the proposed approach. Experimental results show that the proposed method
achieves a high 93.49% probability of correctly discriminating visual defects from normal
regions and a low 0.10% probability of erroneously detecting normal regions as defects on
textured surfaces of LED lenses. Compared with other wavelet packet based multivariate
techniques, the proposed WPLS method has the advantages of higher detection rates,
lower false alarm rates, and shorter average processing time than those of the WPCA and
WBPN models. This research contributes a solution to a common visual defect detection
problem of textured LED lenses and offers a computer-aided surface defect inspection
system to meet the inspection and quality control request. Future research may extend
the proposed approach to determine the concentration levels of the surface flaws (e.g.,
very serious, serious, moderately serious, and minor) and employ the proposed techniques
to inspect transparent LED lenses with distinct surface flaws.
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