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Abstract. Brushless Direct Current (BLDC) motor speed control has been widely de-
veloped to obtain high performance in its operation. However, most of the controllers still
used conventional controllers that have some drawbacks whenever operated for the dif-
ferent BLDC motor. This paper proposes BLDC speed controller by implementing multi-
output Adaptive Neuro Fuzzy Inference System (ANFIS). ANFIS algorithm is able to
control the speed of the BLDC motor according to the desired reference value. The av-
erage of steady state error achieved using ANFIS is 0.1% and the rise time is 2.7437
s when the reference speed is 4000 rpm. ANFIS learning process uses hybrid Particle
Swarm Optimization (PSO) and Recursive Least Square Estimation (RLSE) methods
supervised by Fuzzy-PID. PSO and RLSE can train the multi-output ANFIS data very
well. The best training data is achieved when the value of λ is 1 with RMSE error of
0.05364. The execution time of ANFIS algorithm on microcontroller is 96 µs.
Keywords: Brushless direct current motor, Control system, Fuzzy logic, Adaptive neuro
fuzzy inference system, Particle swarm optimization, Recursive least square estimation,
Electric vehicle

1. Introduction. Brushless Direct Current (BLDC) motors have an important role in
Electric Vehicle (EV) development. BLDC motors are often used as the prime mover
of EVs since BLDC motors are the most efficient machine among other types of electric
machines [1,2]. Moreover, BLDC motor has high efficiency, high torque, wide speed range,
and low maintenance, since it has no brushes [3-5].

BLDC motors are similar to Direct Current (DC) motors with no brushes [5], consisting
of two main parts: electrical and mechanical parts. BLDC motors have three windings, of
which it has to be energized with a proper sequence. BLDC motors are usually equipped
with Hall Effect sensors to detect rotor position, to measure the speed, and to synchronize
the inverter, so that it can energize BLDC motor windings with the proper sequence.

BLDC motors should be controlled to get a desired value, such as speed, torque, and
position. In EV application, torque is an important parameter to obtain, so the power
needed to drive the vehicle is met. BLDC motor speed, however, also needs to be con-
trolled to get a desired acceleration or to minimize slip in a traction control. Speed control
of BLDC motor has been widely developed from using a conventional method, such as
Proportional, Integral, and Derivative (PID) controller, until using advanced methods,
such as fuzzy logic or neural network. PID controller is the simplest control method
with simple structure and easy to implement, but it can stand for a linear system only
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[7-10]. Fuzzy Logic Controller (FLC) is one of advanced control methods which is able to
overcome uncertainty and nonlinear parameters. Nevertheless, FLC is still not adaptive
and has no learning mechanism, so the difficulties come up in redesigning and adapting
when new rules are applied [11-15]. Neural Network (NN) is a control method which has
a learning mechanism and can overcome uncertainty and nonlinear parameters. In prac-
tice, however, NN needs more storage capacity, to store weights and neuron parameters.
Adaptive Neuro Fuzzy Inference System (ANFIS) is a fuzzy system which has a learning
mechanism, so it can overcome the drawbacks coming from both FLC and NN [16].
Gradient descent method is usually used for learning algorithm in NN or ANFIS. The

main limitation of back propagation with gradient descent is guaranteed to find local
optimum instead of global optimum value [17]. In this study, Particle Swarm Optimization
(PSO) is proposed for ANFIS learning algorithm. PSO is a technique to find a solution in
an optimum area through interactions of individual in a population. Many studies report
that PSO can overcome the drawback of getting stuck at local optimum value [18-20]. In
the proposed method, PSO is combined with Recursive Least Square Estimation (RLSE)
algorithm to train premise and consequent parameters of ANFIS.
Usually, to get the best performance of control system, a hybrid method is used, such

as, Fuzzy-PID or NN PID, since PID control is widely used in industry due to its best per-
formance and simplicity. It, however, can be difficult in practice to tune the parameters.
In the study, ANFIS-PID based on a hybrid PSO-RLSE algorithm is proposed for the
designed control system to control a BLDC motor speed. It stimulates to develop tuning
method of PID parameters in order to be incorporated to a hardware implementation [16].
The output of ANFIS is designed for three output values which are used for tuning PID
parameters adaptively. ANFIS multioutput structure is proposed to minimize a needed
memory of parameters which will be stored in a hardware system.
The paper is organized as follows. Section 2 describes the mathematical model of BLDC

motor. Section 3 explains about fuzzy design and the proposed method. Section 4 shows
the simulation result, both ANFIS training and BLDC motor speed control results. The
conclusion would be described in Section 5.

2. Mathematical Model of BLDC Motor. BLDC motor consists of two components:
electrical and mechanical. In principle, the electrical parts of BLDC motor are similar
to DC motor but with three phase windings. Permanent magnets are as components to
generate the magnetic field on the rotor side of a BLDC motor. Figure 1 shows modeling
of BLDC motor fed mechanical load [21-25].

Figure 1. Electrical and mechanical components of BLDC motor

From Figure 1, the equation of three phase windings in the electrical side of BLDC
motor can be expressed as:

va(t) = Raia(t) + La
dia
dt

(t) + ea(t) (1)
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vb(t) = Rbib(t) + Lb
dib
dt

(t) + eb(t) (2)

vc(t) = Rcic(t) + Lc
dic
dt

(t) + ec(t) (3)

where:
va(t), vb(t), vc(t) = instantaneous voltage of each phase.
ia(t), ib(t), ic(t) = instantaneous current of each phase.
ea(t), eb(t), ec(t) = instantaneous Back-Electromotive Force (BEMF) of each phase.
Ra, Rb, Rc = stator winding resistance of each phase.
La, Lb, Lc = stator winding inductance of each phase.
In fact, in every sequence of energizing windings of BLDC motor, there are only t-

wo windings which are energized. According to the condition, by considering that the
resistances and inductances are constant and equal, so, it can be expressed as:

vab = R(ia − ib) + L
d(ia − ib)

dt
+ (ea − eb) (4)

vbc = R(ib − ic) + L
d(ib − ic)

dt
+ (eb − ec) (5)

vca = R(ic − ia) + L
d(ic − ia)

dt
+ (ec − ea) (6)

where, the magnitude of vab, vbc, and vca equals supply voltage used on the system (Vdc).
On the other hand, the mechanical component is expressed as:

Tem(t) = J
dωm(t)

dt
+Bωm(t) + TL(t) (7)

where,
Tem(t) = total electromotive torque
ωm(t) = rotor angular velocity
B = viscous friction
J = moment of inertia
TL(t) = load torque
According to the equation of BLDC motor, then it is modeled and simulated. The speed

of BLDCmotor is controlled using Adaptive Neuro Fuzzy Inference System (ANFIS) based
on Particle Swarm Optimization (PSO) and Recursive Least Square Estimation (RLSE)
as forward and backward learning method.

3. Adaptive Neuro Fuzzy Inference System Based Speed Controller. Adaptive
Neuro Fuzzy Inference System, or usually abbreviated as ANFIS, is a fuzzy inference
system structure which has a learning mechanism as owned by neural network structure.
ANFIS has been proven to overcome the nonlinearities in a system, as fuzzy does. Fuzzy
rule used in ANFIS is a Takagi-Sugeno model which uses “if-then” rule method. For
example, there are two inputs x and y, and an output f , so the rules can be defined as:

Rule 1: If x is A1 and y is B1 then f1 = p1x+ q1x+ r1
Rule 2: If x is A2 and y is B2 then f2 = p2x+ q2x+ r2

A1, A2 and B1, B2 are the membership functions of each input x and y (premise), while
p1, q1, r1 and p2, q2, r2 are the linear parameters (consequent) of Takagi-Sugeno fuzzy
inference model. Figure 2 shows a reasoning mechanism and architecture of general AN-
FIS.
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Figure 2. General ANFIS structure

• Layer 1

Each of the ith node in this layer is the result of a function as shown as:

O1
i = µAi

(x) (8)

x is an input to node i. Ai is a linguistic variable related to the node, while µAi
is a

membership function of Ai. µAi
(x) is usually chosen as a Gaussian or Bell-shape function

which is shown in Equations (9) and (10) respectively.

µAi
(x) = exp

{
−1

2

(
x− ci
ai

)2
}

(9)

µAi
(x) =

1

1 +

[(
x−ci
ai

)2
]bi (10)

where x is the input while ai, bi and ci are the premise parametes.

• Layer 2

Each node in this layer is a fixed node resulting in weight wi of a fuzzy rule. The output
of this node is resulted by multiplying all inputs to this node. This is shown as equation
below.

O2
i = wi = µAi

(x)× µBi
(y) (11)

• Layer 3

Each node in this layer is also a fixed node. The output of this node is a normalized value
of wi. This can be figured as:

O3
i = wi =

wi

w1 + w2

, i = 1, 2 (12)
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• Layer 4

This layer is the layer for the consequent parameters. Each node of this layer is an adaptive
node, where the parameters can be set using a learning mechanism. The output of this
layer is given as:

O4
i = wifi = wi(pix+ qiy + ri), i = 1, 2 (13)

wi is the output of layer 3, while {pi, qi, ri} are the consequent parameters.

• Layer 5

The last layer is the output of fuzzy system. The output of this layer is obtained by
summing all the inputs towards this node.

O5
i =

∑
i
wifi =

∑
i wifi∑
iwi

(14)

3.1. Proposed ANFIS multioutput design for BLDC speed controller. In the
study, ANFIS multioutput is proposed. The output of ANFIS controller is designed to
set PID parameters which would be used to compensate the speed error. If it is using
a conventional ANFIS structure, it needs three ANFIS structures to obtain the PID
parameters, since the total PID parameters needed are three. Therefore, to minimize the
memory and time consuming, ANFIS multioutput is presented. It only needs an ANFIS
structure which can result in multiple output at once. Figure 3 shows the proposed ANFIS
multioutput structure.

Figure 3. Proposed ANFIS multioutput structure
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The proposed ANFIS multioutput contains two inputs, error and delta error speed,
represented as x and y respectively. On the output side, there are three output values,
fkp, fki, and fkd. Those outputs define the PID parameters used as speed controller of
BLDC motor. The output of PID controller is designed to obtain a torque reference since
an electric vehicle has to provide an appropriate torque so that the vehicle can run as the
speed reference. The scheme of torque referenced for the vehicle is designed in such a way
as a direct torque controller. The full diagram of the control scheme is shown in Figure
4.

Figure 4. BLDC speed controller based on direct torque control

3.2. Proposed ANFIS multioutput training method. The proposed ANFIS multi-
output is trained using Particle Swarm Optimization (PSO) algorithm for premise param-
eters and Recursive Least Square Estimation (RLSE) for consequent parameters. PSO is
an evolutionary algorithm which is inspired through individual interactions in a popula-
tion. The algorithm is firstly presented by J. Kennedy in 1997 [18].
Particles in PSO are stated in a D-dimensional space to track and obtain an optimum

particular value. Every particle contains information about position and velocity repre-
sented as Xi = (Xi1, Xi2, Xi3, . . . , XiD) and vi = (vi1, vi2, vi3, . . . , viD) respectively. Every
group of particles has the best particle called pbest . The value of pbest is recorded and
represented as Pi = (pi1, pi2, pi3, . . . , piD). Among pbest values, then, it is chosen the best
value called gbest . The velocity and position of each particle are updated in every iteration
using Equations (15) and (16).

vn+1
i = wvni + c1r

n
1i

(
pnbesti − xn

i

)
+ c2r

n
2i (g

n
best − xn

i ) (15)

xn+1
i = xn

i + vn+1
i (16)

xn
i and vni refer to position and velocity of a particle. w is an inertia weight which can

improve the performance of PSO itself, c1 and c2 are positive constants. In every iteration,
it needs random value between 0 and 1 represented as rand(). The best position of particles
defines the best parameters to be used in ANFIS system and it is obtained depending on
a pre-defined fitness function. The fitness function is presented as root mean square error
of the output ANFIS compared to training data given.

fitness = F (x̄i) = min


√√√√ 1

N

N∑
n=1

(ydn − youtn)
2

 (17)

The training data set used in the study is collected from a Fuzzy-PID controller. AN-
FIS is trained offline using MATLAB m-file code developed through this study. The full
algorithm is explained below.
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1) In the study, grid partition clustering method is used to initialize the particles’ position
of PSO.

2) In MATLAB library, it only generates for a single output. Therefore, it needs to modify
rule base by adding the output parameters of ANFIS structure.

3) Update the consequent parameters using Recursive Least Square Estimation (RLSE)
algorithm. These parameters are firstly set, once before PSO algorithm is run. More
about RLSE will be explained on the following sub-chapter below (3.3).

4) Evaluate the ANFIS performance for each particle’s position based on the fitness func-
tion. The fitness function is the average of root mean square error of each output
performance.

fitness = F (x̄i) = min

 1

K

K∑
k=1

√√√√ 1

N

N∑
n=1

(ydn − youtn)
2
k

 (18)

Root Mean Square Error (RMSE) is generally used to evaluate the performance of
ANFIS. Since ANFIS has three outputs, the performance evaluation is by calculating
the average of RMSE of each output. The best performance is reached when ANFIS
obtains the most minimum value of RMSE. The position of particles on PSO algo-
rithm represents as premise parameters of ANFIS. The performance of each particle is
evaluated using the value of RMSE.

5) Compare the evaluation results and find the individual with the best fitness value. If
F (x̄i) < pbesti , then

pbesti = F (x̄i) x̄pbesti
= x̄i

The evaluation of each particle is to find the best performance as obtained by fit-
ness function in step 4). The best fitness value is defined as pbesti . According to this
performance value, the best position of particle is obtained as x̄pbesti

.

6) Compare the best individual with all pbest value to find the best of the best particle,
gbest . If pbesti < gbest, then

gbest = pbesti x̄gbest = x̄pbesti

From the best fitness value, then evaluate again to find best of the best value, which
is called as global best, gbest. According to the global best performance value, the best
position of particle is called x̄gbest .

7) Update the velocity of each particle using Equation (15).
8) Update the position of each particle using Equation (16).

Velocity and position of each particle are always updated in every iteration until the
iteration ends.

9) Loop from 4)-8) until the stop condition is obtained.
The process of finding the best position of particle is looped until the stop condition

is obtained. Stop condition could be that RMSE reaches a particular value as user
pre-defined or the number of iteration is reached.

3.3. Recursive Least Square Estimation (RLSE). RLSE algorithm is widely used
to estimate for linear problems [23]. Since the consequent parameters of ANFIS (pi, qi, ri)
are linear, RLSE is used in the study. The prediction equation of the linear regression is
written as:

ŷ(t) = φT (t)θ (19)
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φT (t) is a regression vector, while θ is a vector from unknown parameters. For the tth

data, the estimation using LSE is defined as:

θ̂(t) =

[
t∑

s=1

φ(s)φT (s)

]−1 t∑
s=1

φ(s)y(s) (20)

Equation (20) contains parameter which is needed to be inversed and it needs more
memory and time consuming. The solution is processing it recursively. Equation (20) is
changed into a recursive equation as:

θ̂(t) = θ̂(t− 1) + P (t)φ(t)
[
y(t)− φT (t)θ̂(t− 1)

]
(21)

P (t) =
1

λ

[
P (t− 1)− P (t− 1)φ(t)φT (t)P (t− 1)

λ+ φT (t)P (t− 1)φ(t)

]
(22)

This method needs less memory and does not need a complex calculation, since it has
no longer an inverse matrix. For a new iteration, it only needs to update P matrix. λ is
a forgetting factor parameter affecting the tracking process of parameters. The value of
λ is between 0 and 1. The less the value of λ is, the faster the tracking process is, but the
more the sensitivity of noise occurs. In general, λ is chosen between 0.94-0.999.

4. Result and Analysis. The proposed ANFIS controller design is evaluated to control
a 5-kW BLDC motor used in an electric motorcycle developed in our institution and
modeled using MATLAB simulation. The parameters of BLDC motor are shown in Table
1.

Table 1. BLDC motor parameters

Parameters Value Unit
Rated power 5 kW
Rated voltage 100 volt
Rated speed 5000 rpm

R 0.04335 Ω
L 105.2665 µH
ke 18.935 volt/krpm
kt 0.180815 N·m/A
B 0.016158 N·m·s
J 0.059009 Kg·m2

Pole pairs 4 –

R and L are resistance and inductance of phase windings respectively. ke refers to BE-
MF constant which defines the voltage generated by the windings when motor is rotated.
kt is a torque constant which defines how much torque produced when current is supplied
to the motor. B is a friction constant, the friction between rotor and other mechanical
components. J is the total inertia of motor, measured when motor is coupled with gear
or belt connected to the wheels.

4.1. ANFIS training result. The training data set is collected through Fuzzy-PID
controller result. Input of error and ∆error has range between −500 and 500 and is
chosen as 20 data for each input. Therefore, through combination between error and
∆error, it would be 400 training data used to train ANFIS multioutput. Each input of
ANFIS has 2 membership functions: N (Negative) and P (Positive). Figure 5 shows the
initial membership function of ANFIS.
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Figure 5. Initial membership function of ANFIS multioutput

Figure 6. Final membership function of ANFIS multioutput after training
(λ = 1)

The first training is done by setting λ = 1, and then decreased from 0.99 to 0.94.
Figures 6 and 7 show the results of ANFIS training for λ = 1. According to the result, it
is obtained that for λ = 1, the convergence reached when RMSE at 0.05364.

4.2. Simulation BLDC speed controller with ANFIS. From the ANFIS training
results that have been obtained, further testing is performed on the speed control system
simulation. Comparison of speed response for each result is done with different forgetting
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Figure 7. ANFIS training performance using RMSE (λ = 1)

Figure 8. Speed response with ANFIS

factor (λ). The best results will be the parameters to be implemented on the hardware.
The results of the speed response with ANFIS control are shown in Figure 8. Based on
the test results, the best ANFIS model in testing the speed response is when λ = 1, with
a steady state error of 0.2% with a rise time of 2.7437 s.

4.2.1. Simulation with fixed speed reference and no loads. At the condition of fixed ref-
erence speed and no load, we will observe the current and torque characteristics in the
BLDC motor system to be tested. Speed is set at 1000 rpm. Simulation results for fixed
and no-load speed are shown in Figures 9-11. The speed error at steady state for ANFIS
controller is 0.10%, while 0.15% for Fuzzy-PID, so it can be said that the speed control
system using ANFIS has better response than Fuzzy-PID. With a fixed reference speed
of 1000 rpm, the start current is limited to 100 A and the steady state peak current
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Figure 9. Speed response with fixed reference under no load condition

Figure 10. Current waveform in phase a (Ia) at 1000 rpm

reaches 33.45 A with an rms value of 10.5 A. Steady state conditions are achieved at 0.5
s with a rise time of 0.415 s. DTC based speed control systems have large torque ripples.
The torque at the start motor is limited to 11.1 N·m. Figure 11 shows the estimated
torque comparison with actual torque. Based on the comparison that has been made, the
torque can be well estimated. However, at the starting condition, the estimated torque is
very bad. This is because during starting condition, BEMF voltage cannot be detected
properly, causing the estimation process does not work well.

4.2.2. Simulation with varying speed reference and no loads. Simulation with varying
speed reference is done in order to know the response of control system which has been
designed to follow a given reference value. The speed reference is set from 0 to 3500 rpm.
Figure 12 shows the response of speed with changing speed reference.
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Figure 11. Comparison of estimated torque vs real torque

Figure 12. Speed response with varying reference

From Figure 12, it can be observed that ANFIS controller is able to follow the track
according to the given speed reference. If it is zoomed in detailed, the steady state error
of the ANFIS controller has a smaller value than Fuzzy-PID.
Current conditions and electromagnetic torque when the speed reference changes are

shown in Figures 13 and 14. It can be seen that based on the simulation, there is a
surge of current on the stator, when there is a change in speed, both in the condition of
increasing and decreasing speed. This is because at the time of the acceleration, greater
torque is required, so the voltage source Vdc enlarges the current supplied to the stator.
When the vehicle tries to change the speed below the normal speed, in this condition,
regenerative braking occurs, where the current stored on the stator winding, flows back
to the system, this is indicated by the torque of negative value as shown in Figure 14.
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Figure 13. Current Ia with varying speed

Figure 14. Electromagnetic torque with varying speed

4.2.3. Simulation with fixed speed reference and varying loads. In this case, simulations
with fixed speed reference with load changes at any given time, represent dynamically
load change in an electric vehicle. The load changes that occur in this simulation are
shown in Figure 15. Furthermore, the control system is tested whether it is able to restore
the condition of the system according to the given speed reference.

Figure 16 shows the speed response during load changes. At the 5 second, the system
is loaded at 5 N·m, and at 8 second the load is raised to 8 N·m. From both cases it is
seen that when the load is increased, the speed response decreases; however, the speed
decrease is still within the tolerance of the error value, with an error value of 0.1%. The
decrease in speed at the time of the load changes, does not change the value of the speed
significantly, this is because the control system designed, considering the value of speed,
also considers the torque required by the system. The current and the electromagnetic
torque under load change conditions, each phenomenon is shown by Figures 17 and 18.
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Figure 15. Load profile

Figure 16. Speed response with varying load

Based on the simulation results shown in Figures 17 and 18, when the load changes
occur, the system can directly respond to the need for torque well. This is seen in the
changes of the electromagnetic torque and current on the stator in the event of a load
change.

5. Conclusion. Hybrid PSO and RLSE methods can be used for training ANFIS multi-
output systems. From the results obtained in this study, by using Fuzzy-PID as a learning
supervisor, the ANFIS method based on PSO-RLSE is able to train the pattern that has
been determined with RMSE of 0.05364 with a value of λ = 1. The value of λ greatly
affects the learning process in ANFIS. The smaller value of λ will be able to make the
learning process not convergent.
The BLDC motor speed control system using ANFIS has been well designed. The results

show that the speed control system using ANFIS based on DTC (Direct Torque Control)
is able to maintain the speed value by considering the torque required by the system. The
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Figure 17. Current waveform in phase a (Ia)

Figure 18. Electromagnetic torque under varying load condition

average steady state error achieved using ANFIS is 0.1% with a rise time of 2.7437 s for
a reference speed of 4000 rpm. In the event of increasing in load, the speed performance
will decrease; however, this decrease value is not too significant and can still be tolerated
using the designed speed control system.

Based on the simulation, the control system using ANFIS is much better than Fuzzy-
PID. With the same performance, ANFIS has the advantage of fewer variables than Fuzzy-
PID, so that the execution process on the microcontroller becomes faster and requires
less storage memory. Thus, ANFIS can be implemented in a real-time system where the
execution process becomes a priority choice.
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