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Abstract. Linear discriminant analysis (LDA) is one of the most popular parametric
classification methods in machine learning and data mining tasks. Although it performs
well in many applications, LDA is impractical for high-dimensional data sets which are
now routinely generated everywhere in modern society. A primary reason for the ineffi-
ciency of LDA for high-dimensional data is that the sample covariance matrix is no longer
a good estimator of the actual covariance matrix when the dimension of feature vector p
is close to or even larger than the sample size n. Here, we propose to regularize LDA
classifier by employing a truly consistent estimator of the high-dimensional covariance
matrix. Using the theoretical tools from random matrix theory, the covariance matrices
in high-dimensions are estimated in a linear or nonlinear shrinkage manner depending
on the comparison between the dimension p and the sample size n. Besides improving the
flexibility, numerical simulations demonstrate that the regularized discriminant analysis
using random matrix theory yields higher accuracy than the existing competitors for a
wide variety of synthetic and real data sets.
Keywords: Linear discriminant analysis, High-dimensional data, Random matrix the-
ory, Classification, Covariance matrix

1. Introduction. Linear discriminant analysis is a well-established supervised learning
technique applicable in a variety of areas [1, 2, 3]. As a model-based classifier, it aims
to allocate a data point into one of the predefined classes on the basis of a number of
feature variables. Compared with other classification algorithms such as random forests
or support vector classifier, the model constructed in LDA is more interpretable and easy
to make predictions.

In the present era of “Big Data”, with the rapid development of information technol-
ogy, high-dimensional data sets are now generated and collected in almost all fields –
engineering, physics, education, e-commerce, genomics [4, 5, 6, 7], etc. The most direct
manifestation of high-dimensional data is that its dimension p is not fixed but becomes
large together with the sample size n, which is called “large n, large p” asymptotics.
Thus, high-dimensional data will transcend the boundary of classical multivariate statis-
tics where we implicitly assume that the dimension of feature vector p is fixed while the
sample size n tends to infinity. High-dimensional data bring great challenges to statisti-
cal learning techniques, including LDA. Linear discriminant classifier becomes inefficient
in high-dimensional settings. One important reason is that the sample covariance ma-
trix S in high dimensions is singular (noninvertible) or very close to being singular. It

DOI: 10.24507/ijicic.15.03.955

955



956 B. YE AND P. LIU

is no longer a good approximation to the population covariance matrix Σ in the high
dimensional asymptotics and leads to high misclassification error rates.
To cope with the singularity of sample covariance matrices, the procedure of ridge

regression or diagonal loading is proposed [8]. By artificially adding a positive diagonal
matrix to the singular sample covariance matrix, it converts a singular sample covari-
ance matrix into an invertible covariance. Similar modifications have been proposed by
Friedman to regularize the covariance estimation in LDA, which bring forth the popular
regularized discriminant analysis [9]. However, how to choose the optimal regularization
parameter is a long-standing research problem. By ignoring the correlations among some
features in small sample size, a diagonal linear discriminant analysis is proposed in [1]
which performs better on gene expression data than the other classifiers such as nearest-
neighbor classifier or decision trees. Ledoit and Wolf derived an asymptotic optimal
formula to estimate the regularization parameter and proposed a consistent estimator for
the precision matrix, i.e., the inverse of the covariance matrix [10]. However, the method
applies only to the situation where the dimension p is less than the sample size n. A novel
algorithm for RDA is presented for high-dimensional data in [11], which can estimate the
optimal regularization parameters from a large set of candidates efficiently. A maximum
uncertainty LDA-based method is proposed in [12]. It is based on a straightforward sta-
bilization of the within-class scatter matrix and has been applied to face recognition. In
[13], a new approach which uses a generalization of the Moore-Penrose pseudo inverse of
the sample covariance matrix is proposed to remove the problem of singularity and to
improve the quality of classification.
Random matrix theory as a powerful theoretical framework is believed to meet the chal-

lenges of high-dimensional data, since the “large p, large n” settings in high-dimensional
data analysis fall exactly into the realm of random matrix theory. Bun et al. used tools
from RMT to build consistent “rotationally invariant” estimators for large correlation
matrices when there is no prior information on the structure of the underlying process
[14]. RMT also provides a direct way to de-noise sample covariance matrix K by using
Marchenko-Pastur law. And the de-noised sample matrix can be used as an estimator for
the population covariance matrix Σ [15]. Motivated by these developments in random
matrix theory, we propose to regularize the linear discriminant classifier by optimally
shrinking the eigenvalues of the sample covariance matrix while keeping the eigenvectors
unchanged. An extensive simulation analysis is conducted to test the performance of our
algorithm in various high-dimensional settings. Experimental results show that our algo-
rithm is more flexible and obtains lower misclassification rates for a variety of data sets,
namely a handwritten digit data set and three microarray data sets.
The rest is organized as follows. Some preliminary results of LDA are introduced in Sec-

tion 2. Our regularized discriminant analysis based on random matrix theory is presented
in Section 3. In Section 4 and Section 5, our method is compared with other popular
classifiers for the synthetic data sets and some real world data sets. Some concluding
remarks are given in Section 6.

2. Preliminaries to Linear Discriminant Analysis. For classification problems, lin-
ear discriminant analysis is a supervised learning method, where one or more new data
points (observations) are classified into one of the predefined classes (groups) based on
the observed features (variables). LDA is based on the assumption that every probability
density within the k-th class is following a multivariate Gaussian distribution Np(µk,Σk),
i.e., the p-dimensional joint probability density function for the k-th class can be modelled
as:
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fk(x) =
1

(2π)p/2|Σk|1/2
e−

1
2
(x−µk)Σ

−1
k (x−µk)

T

, k = 1, 2, . . . , K (1)

where µk and Σk are the mean vector and the covariance matrix for class k, respectively.
It is assumed further in LDA that the variables for each class share the same covariance
matrix, Σk = Σ, k = 1, . . . , K. For a new observed data vector x ∈ R1×p, the posterior
probability P (G = k|x) that x belongs to class k can be obtained by using Bayes’ rule

P (G = k|x) = fk(x)πk∑K
l=1 fl(x)πl

(2)

where πk is the prior probability of class k. The optimal classification is obtained by
selecting the class k which maximizes the class posteriors P (G = k|x),

Ĝ(x) = argmaxk P (G = k|x) (3)

Another equivalent, yet simple, description of the decision rule in Equation (3) is

Ĝ(x) = argmaxk δk(x) = argmaxk

{
xΣ−1µT

k − 1

2
µkΣ

−1µT
k + log πk

}
(4)

In practice, the mean vector µk, the covariance matrix Σ and the prior probability πk

in Equation (4) are estimated using the training data matrix X ∈ Rn×p which consists of
n labelled observations of the p-dimensional feature vectors. In particular, the covariance
matrix Σ can be set equal to the overall sample covariance K = 1

n−1
(X −X)T(X −X)

with X denoting the sample mean. The sample covariance matrix K converges almost
surely to Σ in the case where p ≪ n. However, K is not a good estimator of Σ in the
high-dimensional cases, which will result in poor classification performance of LDA. In the
following section, two regularization methods will be proposed to improve the performance
of LDA.

3. Random Matrix Regularized Linear Discriminant Analysis. Technology ad-
vances nowadays have made data collection easier and faster, resulting in data sets with
many observations and high dimensions. High-dimensional data sets are characterized by
a large quantity of variables p relative to the sample size n. To deal with high-dimensional
data sets in machine learning, the process of dimension reduction is usually introduced
to reduce the number of variables. In many cases, however, the number of variables after
dimension reduction is still quite large. Thus, regularization is needed to maintain their
performance as usual.

It has been well known for a long time that, in high-dimensional situations, the sample
covariance matrix K is not a good estimator of the covariance Σ. In the cases where p is
close to, or even larger than n, the sample covariance matrixK will become ill-conditioned
or even singular. So the precision matrix Σ−1 in Equation (4) is badly estimated and
results in inefficient classifications. In this section, we propose to regularize the linear
discriminant analysis by using a consistent estimator of the covariance Σ from random
matrix theory.

3.1. Estimation of the covariance based on random matrix theory. Random
matrix theory is concerned with the study of the diverse properties of matrices (most
notably, statistics of matrix eigenvalues) with entries drawn randomly from various prob-
ability distributions traditionally referred to as the random matrix ensembles [16]. It has
found an extraordinary variety of physical, mathematical and engineering applications,
including quantum chaos, complex networks, number theory and wireless communications
[17, 18]. Using the mathematical apparatus of random matrix theory, universal statistical
properties of a variety of physical systems could be compared and classified [19].
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More specifically, to estimate the covariance matrix in high dimensions, a ridge-type
shrinkage estimation of a large dimensional precision matrix has been derived based on
the asymptotic results from random matrix theory [20]. In [21], Bai et al. have developed
a strongly consistent estimator based on the method of moments. Similarly, an approach
based on the idea of dimensionality reduction through an ensemble of isotropically ran-
dom unitary matrices is proposed in [22]. And closed form analytical expressions for the
covariance matrix and its inverse in terms of the eigen-decomposition are derived. Howev-
er, the way to find the optimal loading parameter is not explained in detail. In addition,
the algorithms are often computationally intensive, especially in high dimensions.
By considering the number of variables p relative to the sample size n in the high-

dimensional setting, two different methods from random matrix theory, namely, the ro-
tational invariant estimation method and the eigenvalues clipping method, are employed
to estimate the covariance.

3.1.1. The case of n ≥ p. As above, we denote the p× p population covariance matrix by
Σ. And the sample covariance matrix which is obtained from the training data matrix
X is denoted by K. In the case where the number of variables p is close to the sample
size n, the sample covariance matrix K is ill-conditioned or near singular.
To overcome the near singularity of K, the rotational invariant estimator is proposed,

which can be seen as an optimal nonlinear shrinkage procedure. Before we go into the
rotational invariant estimation procedure, we first shift the sample vectors in X to zero
mean, to eliminate the effect of different scales. By doing so, we are actually handling the
empirical correlation matrix C. It has been demonstrated in [14] that C and K share
identical statistically properties when n → ∞, p → ∞ up to a rank one perturbation. So
we shall work with K henceforth.
In the rotational invariant estimator, the spectral decomposition of Σ is

Σ =

p∑
i=1

µiviv
†
i (5)

where µi, i = 1, . . . , p, are the real eigenvalues of Σ and vi, i = 1, . . . , p are the corre-
sponding eigenvectors. Similarly, the sample covariance matrix K can be decomposed
as

K =

p∑
i=1

λiuiu
†
i (6)

with the eigenvalues λi and the corresponding eigenvectors ui of K. The rotational invari-
ant estimator is expected to find an estimator Ξ(K) of the population covariance matrix
Σ from K in a rotationally invariant way. More formally, the estimator Ξ(K) satisfies:

ΩΞ(K)Ω† = Ξ(ΩKΩ†) (7)

for any rotation matrix Ω. It has been shown that any rotational invariant estimator
Ξ(K) shares the same eigenbasis as K [23], that is,

Ξ(K) =

p∑
i=1

ξiuiu
†
i (8)

where the eigenvalues [ξi]i=1,...,p are the quantities that the rotational invariant estimator
wishes to estimate.
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Given the sample covariance K with the eigenvalues λi and the corresponding eigen-
vectors ui, i ∈ {1, . . . , p}, an optimal rotational invariant estimator is

Ξ̂(K) =

p∑
i=1

ξ̂(λi)uiu
†
i (9)

Here ξ̂(λi) can be found using the Marchenko-Pastur law in random matrix theory and
they are given by the following nonlinear mapping [24]

ξ̂(λi) =
λi∣∣∣∣1− q + qλi lim

z→λi−i0−
gK(z)

∣∣∣∣2 (10)

where gK(z) is the Stieltjes transform in random matrix theory and q = p
n
. The Stieltjes

transform gK(z) is useful to study the spectral properties of random matrices in high
dimensions. The resolvent of a real symmetric matrix Kp×p is defined as

GK(z) = (zIp −K)−1 (11)

with z = λ − iη lying in the lower half of the complex plane. Since gK(z) is usually not
explicitly solvable, it will be computed numerically. For any large but finite p and n, the
limiting Stieltjes transform gK(z) is replaced by its discrete form gpK(z). The normalized
trace of Equation (11) is defined as the Stieltjes transform

gpK(z) =
1

p
Tr[GK(z)] =

1

p

p∑
i=1

1

z − λi

(12)

here λi, i = 1, 2, . . . , p, are the eigenvalues of K. This leads to

ξ̂(λi) =
λi

|1− q + qzig
p
K(zi)|2

(13)

with zi set to be zi = λi − ip−1/2.
In order to correct the systematic underestimation of the small eigenvalues of K, we

need to rescale them by multiplying a factor shown below:

ξ̂(λi) = ξ̂(λi)×max

(
1,

|1− q + qzig
iw
K(zi)|2

λi/(1 + α(λi − 1))

)
(14)

where α = 1/(1 + 2qτ) with τ being a constant parameter which is assigned to 10 in
the numerical implementations and giwK(z) is the Stieltjes transform of an inverse-Wishart
matrix with some parameter τ , as follows:

giwK(z) =
z(1 + τ)− τ(1− q)±

√
(τ(1− q)− z(1 + τ))2 − z(z + 2qτ)(2τ + 1)

z(z + 2qτ)
(15)

Together with Equations (9), (13) and (14), one obtains a complete procedure for the
optimal rotational invariant estimator of the covariance in high dimensions. It is rather
simple and works perfectly when the sample size n is larger than the number of variables
p.
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3.1.2. The case of n < p. In the case of n < p, the method of eigenvalues clipping is used
to correct the sample eigenvalues. This method is different from the rotational invariant
estimator and is an intuitive application of the Marchenko-Pastur law in random matrix
theory.
Consider an n×p random matrixR whose elements come from an independent standard

Gaussian distribution. The Marchenko-Pastur law describes the asymptotic behavior of
the eigenvalues of the p × p Wishart matrix W = RTR when both n and p tend to
infinity [24]. For q = p

n
∈ (0,∞), the largest eigenvalue λ+ of W converges in probability

to (1 +
√
q)2.

In the eigenvalues clipping method, all the eigenvalues beyond the largest expected
eigenvalue λ+ are interpreted as signal while the others are noise. To infer the covariance
matrix Σ from the sample covariance matrix K, we first decompose the matrix K and
keep eigenvectors unchanged. Then apply the following scheme to correct the eigenvalues

Ξclip =

p∑
i=1

ξiuiu
†
i , ξi =

{
λi, if λi ≥ (1 +

√
q)2

λ̄ otherwise
(16)

here λ̄ is set to be a constant such that the trace of Ξclip is equal to that of K [25]. This
eigenvalues clipping method for covariance estimation has also been found in a number
of applications such as gas identification and immunogen design [26, 27].

3.2. Random matrix regularized discriminant analysis (RMRDA) algorithm.
Combining the linear discriminant analysis with the consistent covariance estimator given
above, we have the regularized linear discriminant classifier based on random matrix
theory.
Following the descriptions in Section 2, we begin with the estimation of µk, πk andΣ for

each class on the basis of the training data Xtrain. However, Σ may be ill-conditioned or
even singular in the high-dimensional cases. There are two ways to address this problem.
The first one is to use rotationally invariant estimator to estimate Σ in the case where
n is close to p. And the second is the eigenvalue clipping method in the case where p is
larger than n. Then, for each test data in Xtest, we compute the decision function δk,
k = 1, 2, . . . , K with respect to each class. Finally, we choose the k-th class as the right
class with which the decision function in Equation (4) gets its maximum. Our algorithm
can be applied effectively not only to the situation where the dimension p is close to the
sample size n but also to the situation where p exceeds n.
The pseudocodes for our algorithm are shown in Algorithm 1.

4. Analysis of the Synthetic Data. In this section, we use the synthetic data to com-
pare the classification performance of our proposed method with other existing methods
including DLDA [1], MDMP [28] and smDLDA [29]. We will consider the simulated
data generated from three multivariate normal distributions: N (µ1,Σ), N (µ2,Σ) and
N (µ3,Σ). And the mean value of the 1st class is set to be µ1 = 0, while for µ2 its first
100 values are set to 0.5 and the rest are 0. For the 3rd class, its mean value is µ3 = −µ2.

4.1. Synthetic data models. A block diagonal covariance matrix is proposed in [30]
to mimic the real world data sets and is popularly used in the discriminant analysis
algorithm testing. The variables in this model are positively or negatively correlated
and the correlations decay as a function of the distance between any pair of variables.
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Algorithm 1 Random matrix regularized discriminant analysis (RMRDA)

Input: The training data Xtrain and the test data Xtest

Output: The average correct classification rate (ACCR)

1: Divide the labelled samples in Xtrain to K groups
2: for k = 1 : K do
3: Compute µk and πk in Equation (4)
4: end for
5: Compute the sample covariance matrix Σ in Equation (4)
6: if n ≥ p then
7: Estimate Σ using rotational invariant estimator in Subsection 3.1.1
8: else
9: Estimate Σ using eigenvalues clipping method in Subsection 3.1.2
10: end if
11: for each data vector x in Xtest do
12: for k = 1 : K do
13: Compute δk(x) in Equation (4)
14: end for
15: Classify x into the k-th class satisfying argmaxk δk(x)
16: end for
17: Compute the average correct classification rate
18: return

Similarly, we construct the covariance matrix as follows:

Σ =


Σρ 0 0 · · · 0
0 Σ−ρ 0 · · · 0
0 0 Σρ · · · 0
...

...
...

. . . 0
0 0 0 · · · Σ−ρ


p×p

(17)

with

Σρ =


1 ρ · · · ρ24

ρ 1 · · · ρ23

...
...

. . .
...

ρ24 ρ23 · · · 1


25×25

(18)

where the (i, j)th entry σij in the block matrix Σρ is:

σij = ρ|i−j|, 1 ≤ i, j ≤ 25 (19)

Obviously, the correlations between the variables become stronger gradually with the
increasing of ρ. To simulate various correlations between the variables and without loss
of generality, we will set ρ = 0.1, 0.3, 0.6 and 0.8.

4.2. Simulation results. In the numerical experiments, we use the covariance model in
Equation (17) with different values of ρ to generate the training data. And the number of
variables p is set to 1000. Each of the three classes contains the same number of training
samples nk. We also generate additional 1200 samples as test data set. The average correct
classification rate (ACCR) for each algorithm is obtained by averaging over 100 runs and
the standard deviation is also calculated.
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We compare the performance of our algorithm with several other competitors. The
average correct classification rates and their standard deviations for different settings are
shown in Tables 1 and 2. It can be seen from Table 2 that the LDA classifier performs
badly when n is less than p. It also can be seen from Tables 1 and 2 that our algorithm
works better than most of the competitors and is only worse than smDLDA in few cases.
When the correlations between the variables become stronger, our algorithm is superior
to other classifiers and the standard deviation stays very low.
To further demonstrate the performance of our regularized classifier, we consider the

case where ρ is fixed to 0.7 and the sample size n varies from 300 to 1,650 with step size
150. The results are shown in Figure 1. It shows that the average correct classification rate

Table 1. ACCR and standard deviation for different algorithms (n =
1200, p = 1000)

ρ = 0.1 ρ = 0.3 ρ = 0.6 ρ = 0.8
LDA 0.776(0.017) 0.790(0.015) 0.887(0.009) 0.972(0.005)
DLDA 0.979(0.009) 0.972(0.008) 0.934(0.022) 0.824(0.045)
MDMP 0.922(0.016) 0.896(0.040) 0.825(0.041) 0.705(0.076)
smDLDA 0.987(0.005) 0.978(0.003) 0.941(0.018) 0.837(0.045)
RMRDA 0.984(0.003) 0.978(0.004) 0.993(0.002) 0.999(0.001)

Table 2. ACCR and standard deviation for different algorithms (n = 900,
p = 1000)

ρ = 0.1 ρ = 0.3 ρ = 0.6 ρ = 0.8
LDA 0.361(0.075) 0.293(0.052) 0.312(0.072) 0.328(0.145)
DLDA 0.980(0.008) 0.974(0.011) 0.917(0.022) 0.823(0.051)
MDMP 0.876(0.044) 0.881(0.032) 0.784(0.059) 0.653(0.089)
smDLDA 0.985(0.008) 0.981(0.012) 0.933(0.027) 0.849(0.044)
RMRDA 0.979(0.005) 0.977(0.004) 0.944(0.007) 0.966(0.008)

n
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RMRDA

Figure 1. ACCR for the classifiers with different sample size n (p = 1000)
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Table 3. ACCR and standard deviation for RMRDA with unbalanced
data (n = 900)

Class size and dimension ρ = 0.1 ρ = 0.3 ρ = 0.6 ρ = 0.8
n1 = 200, n2 = 300
n3 = 400, p = 1000

0.969(0.007) 0.964(0.005) 0.933(0.007) 0.954(0.008)

n1 = 250, n2 = 300
n3 = 350, p = 1000

0.982(0.003) 0.970(0.0039) 0.943(0.007) 0.946(0.006)

Table 4. ACCR and standard deviation for RMRDA with unbalanced
data (n = 1200)

Class size and dimension ρ = 0.1 ρ = 0.3 ρ = 0.6 ρ = 0.8
n1 = 300, n2 = 400
n3 = 500, p = 1000

0.984(0.004) 0.977(0.004) 0.990(0.006) 0.999(0.001)

n1 = 350, n2 = 400
n3 = 450, p = 1000

0.985(0.003) 0.980(0.004) 0.990(0.004) 0.999(0.001)

for every classifier rises with the increase of n. Moreover, our algorithm always performs
better than other classifiers. In the case of n < p, the classification accuracy of LDA
is far below expectation. While in the case of n ≥ p, the classification accuracy of LDA
increases sharply and even exceeds that of DLDA, DMDP or smDLDA. The behaviors
of our algorithm on unbalanced data are also tested and given in Tables 3 and 4. Again,
relatively high classification accuracies for different settings are obtained.

5. Analysis of Real World Data Sets. To examine the performance of our methods in
real world applications, we will consider four real world data sets, including a handwritten
digit data set and three microarray data sets. A brief description of these real world data
sets is provided below.

5.1. Description of the data set.

5.1.1. Handwritten digit data set. The Multiple Feature (Mfeat) data set is a multi-class
data set described in [31], which consists of handwritten digits (from ‘0’ to ‘9’) obtained
from Dutch utility maps. The data set includes six different feature sets of the same data,
such as Fourier coefficients of the character shapes (fou), Karhunen-Love coefficients (kar),
profile correlations (fac), pixel averages (pix), Zernike moments (zer) and morphological
features (mor). We have chosen the fac and pix feature sets in our experiments. Each
feature set is composed of altogether 2000 digitized images and is divided into ten classes.
The fac feature set is described by 216 features while pix is described by 240 features.

5.1.2. Microarray data set. Three types of microarray data are used in the study, which
are prostate, leukemia and SRBCT, respectively. Prostate data set is collected from pa-
tients undergoing radical prostatectomy, which has 10,510 genes and 102 samples. Among
the 102 samples, there are 52 prostate tumor samples and 50 normal prostate samples
[32].

Golub et al. have presented methods for classifying a leukemia data set consisting of
acute myeloid leukemia (AML) samples and acute lymphoblastic leukemia (ALL) samples
[33]. Recently, Armstrong et al. have reported that the difference in gene expression is
robust enough to classify leukemias correctly as mixed-lineage leukemia (MLL), AML or
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ALL [34]. The data set contains 11,225 genes for 28 AML samples, 24 ALL samples and
20 MLL samples.
Small round blue cell tumors (SRBCT) of childhood has been applied for classification

in [35]. The data set is divided into four classes, including 29 samples of Ewing’s sarcoma
(EWS), 25 samples of rhabdomyo sarcoma (RMS), 11 samples of Burkitt’s lymphoma
(BL), and 18 samples of neuroblastoma (NB). Each sample is described by 2,308 genes.
In order to reduce the computational cost and reveal the practical performance for

microarray data sets, a gene selection method is necessary. The BW method, which is
a frequently used gene selection method proposed by Dudoit et al. [1], has been applied
for discriminant analysis of microarray data. Using this metric, we are able to choose the
top p features with the largest BW ratios in the experiments. To choose an appropriate
value of p, we have compared the classification accuracy of our algorithm for various p
and fixed n. The results are shown in Figure 2. We can see that our algorithm achieves
the best classification accuracy when p is approximately equal to 240. So we will choose
240 genes to test the performance of our RMRDA algorithm.

p

50 100 150 200 250 300 350 400

A
C

C
R

0.5

0.6

0.7

0.8

0.9

1
 Prostate

 Leukemia

SRBCT

Figure 2. ACCR for RMRDA with different p on the microarray data

5.2. Experimental results. Each of the real world data set above is split into a training
data set and a testing data set for cross validation purpose. The sample size n and the
dimension p of the training and testing data sets are summarized in Table 5. As above,
each procedure runs 100 times and the average correct classification rates are obtained
together with the standard deviations.

Table 5. Summary of training and testing data sets

Dataset Class Dimension Training set Testing set
Mfeat-pix 10 240 260 600
Mfeat-fac 10 216 260 600
Prostate 2 240 51 51
Leukemia 3 240 36 36
SRBCT 4 240 41 42
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The classification results for the handwritten digit data set are presented in Table 6.
We can see that LDA has a poor performance when the sample size n is close to p. The
classification accuracy of MDMP slightly exceeds that of RMRDA on pix data set, but
RMRDA still outperform other competitors. For the fac data set, RMRDA shows the
best classification performance and maintains high classification accuracy.

Table 6. ACCR and standard deviation for the Mfeat data set

LDA DLDA MDMP smDLDA RMRDA
Mfeat-pix 0.402(0.033) 0.918(0.012) 0.940(0.011) 0.918(0.012) 0.932(0.011)
Mfeat-fac 0.071(0.036) 0.887(0.010) 0.884(0.013) 0.887(0.010) 0.951(0.009)

The classification results for the microarray data sets are shown in Table 7. It can be
seen that the classification performance of LDA classifier is extremely poor compared
with other classifiers while RMRDA always keeps higher classification accuracy and its
standard deviation is lower.

Table 7. ACCR and standard deviation for the microarray data set

LDA DLDA MDMP smDLDA RMRDA
Prostate 0.517(0.190) 0.834(0.030) 0.922(0.048) 0.830(0.031) 0.911(0.039)
Leukemia 0.319(0.195) 0.904(0.047) 0.901(0.039) 0.906(0.046) 0.965(0.027)
SRBCT 0.201(0.136) 0.978(0.036) 0.835(0.061) 0.977(0.038) 0.994(0.018)

The experimental results demonstrate that, for the high-dimensional data classification
problems, our proposed algorithm performs better than the other popular discriminant
analysis algorithms. We will attribute the good performance of our algorithm to the
flexible estimation of the population covariance matrix in high dimensions.

6. Conclusions. Linear discriminant analysis is a widely used method for classification.
However, it may fail when the number of the features is close to or larger than the
sample size. We propose a regularized discriminant analysis method based on random
matrix theory. It can handle the high-dimensional data sets. Compared with other popular
classifiers, it shows competitive and satisfying performance when evaluated on both the
synthetic data sets and the real world data sets.

It has been pointed out recently that the Marchenko-Pastur law is more suitable for the
data set in which the ratio of its dimension p to the sample size n is between 0.1 and 10
[36]. This explains, at least in part, why our proposed algorithm does not work well for the
ultrahigh-dimensional data sets (p/n ≫ 10). So how to classify the ultrahigh-dimensional
data sets merits further research. Moreover, the proposed regularization method may be
further extended to quadratic discriminant analysis with minimal effort.
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