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ABSTRACT. As neural networks grow deeper, learning approaches with hard-threshold ac-
tivation functions are becoming increasingly important for reducing computational time
and energy consumption. Those functions allow for the creation of large integrated sys-
tems of deep meural networks, which may have non-differentiable components and must
prevent vanishing and exploding gradients for effective learning. However, gradient-based
learning is in general not applicable to hard-threshold activation functions. We address
this problem by observing that some special activation functions, such as the hyperbol-
ic tangent, are asymptotically binary while training. Then, we show that these activa-
tion functions can replace those hard-threshold activation functions to adapt the gradient
during backpropagation. Moreover, we empirically demonstrated that our method im-
proved the classification accuracy by 0.831% and 0.25% on the MNIST dataset, 0.36%
and 1.06% on the CIFAR-10 dataset when compared to both the straight-through and
saturated straight-through estimators.

Keywords: Neural network, Backpropagation, Gradient-based learning, Gradient ada-
pter

1. Introduction. Deep neural networks are being widely used in different fields and have
been successfully employed in applications such as image classification [1, 2, 3,4, 5, 6, 7, 8],
speech recognition [9, 10], machine translation [11, 12, 13, 14], and text classification
[15, 16]. To further improve performance, these networks tend to become deeper and
commonly rely on gradient-based learning algorithms such as stochastic gradient descend,
root mean square prop (RMSProp) [17] and Adam optimization [18]. Specifically, sto-
chastic gradient descend uses a minibatch of samples drawn uniformly from the training
set to calculate the gradient at each step, where the step size is determined by the learn-
ing rate, which in turn considerably affects the network performance. RMSProp uses an
exponentially decaying average of the squared gradient to adapt the learning rate and
speed up training. This algorithm has been empirically shown to be effective and practi-
cal for optimization of deep neural networks. Extending the RMSProp algorithm, Adam
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optimization includes first-order moments and a correction factor. In general, to com-
pute exact gradients, it is desirable that the relation between the parameters and training
objective is derivable. Therefore, gradient-based learning usually assumes derivable acti-
vation functions.

Commonly used activation functions for deep neural networks such as sigmoid, hyper-
bolic tangent (tanh), and rectified linear units (Relu) [19, 20, 21] are derivable. The
sigmoid function allows to predict the probability of a binary variable to be 1 and satu-
rates over most of its domain, i.e., it saturates to 1 or 0 when its input is very positive or
negative, respectively. This widespread saturation can notably increase the difficulty of
gradient-based learning, and thus the use of sigmoid function is now scarce in feedforward
networks. Nevertheless, it is still appealing in recurrent networks, several probabilistic
models, and some autoencoders given its characteristics [22]. On the other hand, tanh
function is similar to the identity function when close to 0 and may simplify the network
training. Likewise, the identity function is very similar to Relu, but the latter outputs
zero over half of its domain. Therefore, the derivate of Relu is 1 whenever its input is
positive, making it suitable for optimization. However, Relu does not allow learning via
gradient-based methods when its input is negative [22]. In contrast, the derivative of
hard-threshold activation functions is 0 almost everywhere, impeding their direct appli-
cation for gradient-based learning, but they still present many advantages. For instance,
as networks grow deeper, such functions can greatly reduce the energy consumption and
computational time and mitigate problems related to vanishing and exploding gradi-
ents [23, 24]. Therefore, a growing interest has been placed on the use of hard-threshold
activation functions such as the sign function [17, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33].

The authors of [17, 23, 24, 25, 26, 27, 28] focus on gradient-based learning, whereas those
of [29, 30, 31, 32, 33] focus on stochastic approximation. Alternatively, we are interested
in fostering the learning efficiency using deep neural networks with hard-threshold units.
The contributions presented in this paper can be summarized as follows.

1) We propose backpropagation based on gradient adapter (BPGA) to train deep neural
networks with hard-threshold activation functions. We handle the problem of the
derivatives of these functions that impede backpropagation.

2) We demonstrate the effectiveness of BPGA and then propose a method and a measure
for the design and evaluation of the gradient adapter.

3) We show that the straight-through estimator (STE) and the saturated straight-
through estimator (SSTE) are special cases of BPGA. Then, we propose another
case of BPGA, namely, BPGA with tanh.

4) We verify the improved performance of BPGA with tanh over both the STE and
SSTE for classification on the MNIST [34] and CIFAR10 [35] datasets.

The rest of this paper is organized as follows. In Section 2, we provide the context of
our method compared to related work. The problem statement and method description
are detailed in Section 3. Then, Section 4 presents experiments and results that verify
the performance of the proposed method. Finally, we draw conclusions in Section 5.

2. Related Work. The most common way to train a deep neural network with hard-
threshold units is by using the STE [17, 29], which simply backpropagates the gradient
straight through the activation function. In other words, the activation function of the
units is treated as the identity function during backpropagation. Similarly, the SSTE [25]
backpropagates the gradient straight through the activation function when pre-activation
(i.e., input of activation function) is in [—1, 1]. In addition, the SSTE cancels the gradient
when the scale of pre-activation is very large, aiming to improve performance. Target
propagation [23, 25, 26, 27, 36] is another method to train deep neural networks with
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hard-threshold units. The main idea is to set appropriate targets for each layer, possibly
reducing the corresponding losses. Likewise, difference target propagation (DTP) [23]
estimates targets considering subsequent layer outputs. Specifically, each layer of the
network is considered as a mapping, from which the corresponding inverse mapping is
constructed. The mapping composition is approximately equal to an identity mapping,
and hence the inverse mapping can be used to approximately estimate the targets. Then,
the DTP determines the estimation error and removes it when backpropagating targets.
However, both the network and inverse mappings require simultaneous training for en-
suring the method effectiveness, at the expense of increasing the computational cost and
complexity during training. Alternatively, feasible target propagation (FTPROP) [24] us-
es pre-activation outputs and targets to construct layer-wise loss functions for recursively
setting the targets of previous layers. FTPROP minibatch is a variation of FTPROP e-
quivalent to STE if a saturated hinge loss is used at each layer (FTP-SH). In [24], however,
the authors only compared FTP-SH with SSTE, suggesting that no better loss function
has been found to outperform STE.

There is also research on learning for deep neural networks with hard-threshold sto-
chastic units by estimating gradient using methods such as finite-difference approxima-
tion [29, 31] and stochastic perturbations [29, 32, 33]. The former is based on individually
evaluating the effect of changing each parameter. Instead, a stochastic perturbation-based
method, such as simultaneous perturbation stochastic approximation [33], selects a ran-
dom perturbation vector to estimate the gradient of the loss function with respect to
the parameters. Regarding computational cost of estimating the gradient, that for finite-
difference approximation is N? and that for stochastic perturbation-based methods is N,
where N is the number of parameters. Although stochastic perturbation-based methods
require less computation than finite-difference approximation, they have a comparable
efficiency when the perturbation is not around 0, whereas the perturbation is invalid if it
is not sufficiently small.

To implement deep neural networks on devices with limited energy and computational
resources, the authors of [28] aimed to train neural networks with binary weights and
activations at runtime. This approach uses shift-based batch normalization instead of the
vanilla network with batch normalization, thus providing a reduced computational cost
in terms of the number of multiplications. However, as the gradient accuracy should be
high, shift-based batch normalization has a negligible effect on backpropagation. Likewise,
binary weights are used in [37], with activation functions and gradients used for training
the networks. In addition, this approach replaces multiplication by bitwise operations,
which allows to implement both training and execution of deep neural networks on low-
resource devices.

3. Problem Statement and Method Description. For a given dataset D = {(2,
y)}Y | with inputs 2 € R™ and labels ' € R™, we are interested in training an L-layer
deep neural network using the sign function as hidden-layer activation function, which is

expressed as

-1, <0
sign(z) =< 0, x=0.
1, x>0
The deep neural network is defined by
hy = sign(Wih,—y), forl=1,...,L—1, (1)

hy, = softmaz(Wphy_1), (2)
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batch_size
1 .
- @ i h
JW) = oo 2 Ty hy), )

where h; is the output of the I-th layer (hy, is the output and hg is the input of the network),
W, is the parameters of the I-th layer, batch_size is the number of hy and J(y', hy) is the
loss of the network for sample (z¢,y%), which is usually computed by cross entropy or
mean squared error (MSE). In probability theory, the output of the softmax function can

be used to represent a categorical distribution. Its definition is expressed as
e~
Z?:l e

softmazx(z); =

where e is the Euler’s number.

Gradient-based learning algorithms for neural networks contain forward-propagation
and backpropagation steps, as illustrated in Figure 1. The first L — 1 layers are hidden
layers with the sign activation function, and the last one is the output layer with softmax
as activation function.

0 L-1

FiGURE 1. Gradient-based neural networks. Forward propagation and
backpropagation are indicated by solid lines and dash-dot lines, respectively.

A

Forward propagation is defined by (1), (2), and (3) and computes the output and loss
of each layer in the network. This propagation can be performed even when using hard-
threshold activation functions such as the sign function. Then, backpropagation computes
the gradient of the loss throughout the network with respect to W; by using the following
relations:

VJ (W) = (b))  [VJ (h)sign], 1=1,...,L—1, (4)
VJ (hy) = (W) [V (by)sign’], 1=1,...,L—1. (5)

Term VJ(W,;) in (4) is the gradient of J with respect to parameters W; for reducing
the network loss by updating the parameters. The expression in (5) describes the back-
propagation from V.J(h;) to V.J(hi—1). Both (4) and (5) require derivative sign’ of the
sign function. However, as the sign function is mostly flat, its derivative is 0 almost ev-
erywhere, and consequently gradient-based learning for neural networks could fail. We
address this problem by using the proposed BPGA.

3.1. BPGA.

Proposition 3.1. An elementwise function g is a gradient adapter of function sign if
sign(x) = sign(g(z)) = sign o g. Given that the output of function sign represents the
sign of its input, this function is identical with the composite sign o g provided that g
does not change the sign of the inputs. Therefore, the neural network remains unchanged
if function sign is replaced with sign o g as activation function. Still, sign o g is a hard-
threshold function and cannot be directly applied for gradient-based learning unless the
gradient adapter satisfies the following proposition.
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Proposition 3.2. If a gradient adapter satisfies g ~ sign, gradient-based learning can be
effectively used to train deep neural networks that admit the sign function.

Based on Proposition 3.1, g = I o g ~ sign = sign o g, where [ is the identity function.
This can be simplified as sign o g >~ [ o g. Therefore, we can use the derivates of [ o g
to approximate the derivates of sign o g. Consequently, if an L-layer deep neural network
uses the sign activation function, this function can be replaced by sign o g, and forward-
propagation can be expressed as h; = sign(g(W;h;_1)) = sign (Wih,_1), 1l =1,..., L — 1.
Likewise, backpropagation can be expressed as V.J (W;) = (hl_l)T [VJ (hy) (signog)'] ~
(hi-1)" [VJ () €], VI (hia) = (W) [V () (sign o g)] = (W0)" [V (lu) g].

Hence, the gradient can be backpropagated straight through the outer function (sign) of
signo g as if it is the identity function, whereas the inner function (g) adapts the gradient.
Based on this consideration, we propose the BPGA method to train deep neural networks
that use the sign activation function.

Specifically, the BPGA method has the same forward propagation as backpropaga-
tion algorithm, with backpropagation being V.J (W;) = (hi_1)" (VJ (W) g, VJ (h-y) =
(wy)" [VJ (i) g,]. The BPGA is illustrated in Figure 2.

0

X} -

»

FiGURE 2. Backpropagation based on gradient adapter. Forward propa-
gation and backpropagation are indicated by solid lines and dash-dot lines,
respectively.

In addition, the proposed BPGA method is similar to the backpropagation algorithm,
as both rely on the same network architecture including activation function and datasets.
Hence, the BPGA method is not an instance of transfer learning. Moreover, the only
difference of the proposed method is the use of ¢’ instead of f’ during backpropagation.
On the other hand, the sign function output is insensitive to the scale of the input,
and hence loses the scale information during forward propagation. To compensate this
information loss, ¢’ considers the scale for adapting the gradients during backpropagation.
To this end, the gradient adapter should be appropriately designed for the sign function.

Propositions 3.1 and 3.2 serve as guidelines for the design of the gradient adapter. Still,
it is necessary to evaluate the suitability of the gradient adapter. Specifically, Proposition
3.2 can derive in the evaluation of its quality by training a network with g as activation
function and determining the MSE of the hidden-layer outputs (MSE-HLO), which can
be written as L~ [sign(hy) — hy)?, where M is the number of hidden-layer outputs.
If MSE-HLO asymptotically reaches 0, the gradient adapter meets Proposition 3.2 and is
thus effective.

3.2. Relationship between STE, SSTE, and BPGA. The STE backpropagates the
gradient straight through the hard-threshold activation function, i.e., its backpropagation
can be written as VJ (W) = (hi_1)"VJ (b)), VJ (h_1) = (W)"VJ (h). Likewise, if
BPGA uses identity function I as gradient adapter, its backpropagation can be written
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as V.J (W) = (1) [V () 9] = (i) "'V (), W (hia) = (W) [V (ln) 9] =
(I/VZ)TVJ (hi). Clearly, the STE and BPGA with identity function have the same forward
propagation and backpropagation. Therefore, the STE is a special case of BPGA.

Hard hyperbolic tangent function (Htanh) [38] is illustrated in Figure 3 and given by
Htanh(z) = max(—1, min(1, x)), with derivative

reon 1 |z <1
Htanh'(z) = 1 ;<1 = {O > 1

The backpropagation of the SSTE can be written as V.J (W;) = (hi_1)" [V.J (h;) Htanh'],
VJ (hi—1) = (W))" [VJ (h;) Htanh']. Therefore, the SSTE is a special case of BPGA that
uses function Htanh as gradient adapter.

1.5

0.5

-15

F1GURE 3. Htanh function (solid blue line) and its derivate (dashed red line)

3.3. Gradient adapters. Based on Propositions 3.1 and 3.2, we evaluate three gradient
adapters, namely, identity I, hard hyperbolic tangent function Htanh, and hyperbolic
tangent function tanh, which are depicted in Figure 4 and defined as follows:

I(z) =z, (6)
Htanh(z) = max(—1, mi_n(l, T)), (7)
Tanh(z) = S (8)

er +e "

Note that the identity function is not equal to the sign function neither asymptotically
nor approximately, and hence it meets Proposition 3.1 but not Proposition 3.2. Moreover,
the function is clearly biased, but correctly retrieves the sign when considering a single
layer. However, this condition is not guaranteed when backpropagating through hidden
layers.

In contrast, Htanh is a bounded and saturated function, and Htanh(z) = sign(x),
V|z| > 1. Hence, it meets Proposition 3.2, and is thus more suitable to serve as gradient
adapter than the identity function. However, its derivative is not smooth (see Figure 3).
Therefore, it is just applicable to first-order methods. Moreover, note that the derivative
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F1GURE 4. Different gradient adapters

of Htanh is a hard threshold that can be expressed as Htanh'(x) = Lizj<1- Consequently,
the gradient of some units may be unable to undergo backpropagation to previous layers
according to (5), thus disabling these units.

Finally, tanh function is saturated and asymptotically equal to the sign function. There-
fore, tanh meets Proposition 3.2 and should also be an effective gradient adapter. More-
over, it is a smooth function, and is thus suitable for second- or higher-order methods
with no dead units.

4. Experiments and Results. In the previous section, we presented the characteristics
of functions I, Htanh, and tanh as gradient adapters. In this section, we evaluate these
gradient adapters through experiments. Specifically, we trained a network using I, Htanh,
and tanh as activation functions and verified whether the outputs of the hidden layers are
asymptotically close to sign(z).

Then, we trained a multilayer perceptron model using the sign activation function and
STE, SSTE, DTP and BPGA with tanh on the MNIST dataset. The network architecture
was the same as that used in DTP to use its results without reconstruction. However,
this architecture may not be the best suited for BPGA with tanh, and hence we employed
a convolutional neural network to improve the BPGA results.

Finally, we trained a convolutional neural network using the STE, SSTE, FTP-SH, and
BPGA with tanh on the CIFAR-10 dataset. Like in the previous experiment, the network
architecture was the same as that used in FTP-SH.

In all the experiments, we randomly initialized normalized weights and set to 0 the bias
parameters. In the sequel, we detail the results of the above mentioned experiments.

4.1. Gradient adapter evaluation. The network was structured with nodes according
to 784-500-500-10 on the MNIST dataset and trained with the Adam optimizer and a
learning rate of 2.5e-4. Then, we separately used I, Htanh, and tanh as activation func-
tions. The outcomes for each gradient adapter according to the training epochs are shown
as MSE-HLO in Figure 5.

The MSE-HLO of I increases with the number of epochs, showing an opposite trend
from both Htanh and tanh. Initially, the MSE-HLO of Htanh is the lowest, but it grows
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I | @ Htanh [ Tanh
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Ficure 5. MSE-HLO according to the gradient adapter used as activation
function and the number of training epochs

epoch=10 epoch=100
0.75 A 0.6 1
0.50 0.4 1
0.25 A 0.2+
0.00 - 0.0 -
=2 0 2 =5 0 5
epoch=500 epoch=1000
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0.4 1
0.4 -
0.2 0.2 1
00 T T 00 T T T
=5 0 5 =10 =5 0 5

F1GURE 6. Histogram of hidden-layer outputs when using activation func-
tion [

higher than that of tanh afterwards. We consider that this behavior appears because
Htanh only backpropagates some gradients, as mentioned above. For a better visualization
of the error, Figure 6 shows the hidden-layer output histograms when using function I,
where the values converge to 0 as the number of epochs increases, thus increasing the
MSE-HLO, with only few outputs being close to 1. In contrast, Figures 7 and 8 show
that the hidden-layer outputs of Htanh and tanh converge to binary values —1 and 1,
suggesting the preservation of the network outputs if the sign activation function is used
and the suitability of Htanh and tanh as gradient adapters. Note that the outputs of tanh
seem closer to the sign function than those of Htanh.
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epoch=10 epoch=100
15 21
1.0 1
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F1GURE 7. Histogram of hidden-layer outputs when using activation func-

tion Htanh
epoch=10 epoch=100
154 2
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1_ e
0.5 1
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T
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F1GURE 8. Histogram of hidden-layer outputs when using activation func-
tion tanh

4.2. Performance on MNIST dataset. Figure 9 shows the DTP structure [23] for
training a multilayer perceptron model on the MNIST dataset. To maintain a fair com-
parison, we used the same network architecture with no data augmentation, preprocessing,
or unsupervised learning. In addition, we used Adam optimization [18] with learning rate
of 2.5e-4 and weight decay 5e-4 to minimize the cross-entropy loss for 200 epochs.
Figure 10 shows the classification error of all the evaluated methods. During backpropa-
gation, the STE maintains the right sign of the gradient, and consequently its classification
error initially declines. However, the STE is insensitive to the scale of the inputs, thus
quickly converging to a minimum error that is higher than that of the other methods.
The DTP retrieves inverse mappings of the network to predict targets. However, these
mappings are inaccurate at the beggining, causing a relatively high classification error
during the first 50 epochs. Given that the complexities to determine the inverse mappings
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input: (None,784)
output: (None,784)

[ v A

InputlLayer:

L1 input: (None,784)
FullyConnected:

ay output: (None,500)

input: (None,500)

Sign:

output: (None,500)
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_
|

i t: N ,500
FullyConnected: 1Py (None )
output: (None,500)
. input: (None,500)
Sign:
output: (None,500)
i v )
i t: N 500
L3 FullyConnected: 1Py (None,500)
output: (None,10)
i t: N ,10
Softmax: 1Py (None, 10)
output: (None,10)

FI1GURE 9. Network architecture for classification on the MNIST dataset.
None denotes the batch size for mini-batch training.

Test Error
6y— ‘ ‘
—STE
558 - -=-=-SSTE
5 KO DTP
5 : —a— BPGA-tanh|

| 1 | |
0 20 40 60 80 100 120 140 160 180 200

FIGURE 10. Mean classification error using different methods on the M-
NIST dataset

and network parameters are comparable, we suppose that the DTP requires more epochs
for a suitable training and convergence. Both the SSTE and the proposed BPGA method
with tanh seem to retrieve fast convergence and low classification error.

The best performance achieved by each of the evaluated methods is listed in Table 1.
The proposed method retrieved a minimum classification error of 1.4%, representing only
a 0.14% improvement with respect to DTP, but DTP requires more extensive training.
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TABLE 1. Lowest classification error over all epochs among the evaluated
methods on the MNIST dataset

Method (Classification error %
STE [23] 1.71
SSTE 1.65
DTP [23] 1.54
BPGA with tanh 1.40
InoutLa input: (None,24,24,3)
nputlayer:
P Y output: | (None,24,24,3)
11 . input: (None,24,24,3)
C lution:
onveldtion output: | (None,24,24,32)
MaxPooli input: | (None,24,24,32)
axPooling:
& output: | (None,12,12,32)
i input: | (None,12,12,32)
ign:
& output: | (None,12,12,32)
B v N
) Convolution: input: | (None,12,12,32)
' output: | (None,12,12,64)
MaxP ool input: | (None,12,12,64)
axPooling:
& output: (None,6,6,64)
S input: (None,6,6,64)
ign:
& output: | (None,6,6,64)
Flattern: input: (None,6,6,64)
' output: (None,2304)
L3 FullyConnected: input: (None,2304)
" | output: (None,1024)
Sien: input: (None,1024)
gn: output: (None,1024)
v )
L4 FullyConnected: input: (None,1024)
" | output: (None,10)
) input: (None,10)
Softmax: output: (None,10)

FIGURE 11. Network architecture for classification on the CIFAR-10
dataset. None indicates the batch size for mini-batch training.

4.3. Performance on CIFAR-10 dataset. The network architecture for this evalu-
ation is shown in Figure 11. Both convolutional layers used filters of size 5 x 5. We
normalized the images to zero mean and unit variance and augmented the dataset with
random horizontal flips and crops. Adam optimization [18] with learning rate 2.5e-4 and
weight decay 5e-4 was used to minimize the cross-entropy loss for 300 epochs. Table 2
lists the highest accuracy over all epochs for the evaluated methods.
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TABLE 2. Highest classification accuracy over all epochs among evaluated
methods on the CIFAR-10 dataset

Method Classification accuracy %
SSTE [24] 80.6
FTP-SH [24] 81.3
BPGA with tanh 81.66

Compared with STE and SSTE, the proposed BPGA with tanh achieves 1.06% and
0.36% accuracy improvement, respectively. The STE is a special case of FTPROP mini-
batch using a saturated hinge loss at each layer, equivalent to FTP-SH [24]. Obviously,
FTP-SH is a special case of BPGA whose gradient adapter is identity function based on
Section 3.3. Sections 3.3 and 4.1 illustrate theoretically and experimentally tanh is better
than identity function as the gradient adapter of the sign function. The main reason is
that tanh function is asymptotically equal to the sign function, but identity function is
not.

5. Conclusions. We proposed a BPGA method and demonstrated its effectiveness in the
training of deep neural networks that used the sign activation function. We provided two
propositions and one measure to aid in the design and evaluation of gradient adapters.
Moreover, we showed that the commonly-used STE and SSTE are special cases of the
BPGA method. Finally, we showed that BPGA with tanh improved the classification
accuracy on the MNIST and CIFAR-10 datasets when compared to both the STE and
SSTE.

In upcoming works, we plan to derive the BPGA for quantized activation functions.
This will be an important step because the sign function removes scale information of
the input, which can greatly reduce the energy consumption and computational time to
determine the neural network parameters, but at the expense of information loss and
compromising accuracy. In contrast, quantized activation functions provide a suitable
tradeoff between complexity and accuracy, and applying them for BPGA may improve
performance while guaranteeing a high accuracy.
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