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Abstract. In this paper, we propose an Improved Whale Optimization Algorithm (I-
WOA) to improve the performance of WOA in three aspects. First, nonlinearly changed
convergence factor is introduced to preferably adjust exploration and exploitation process.
Then, inspired by the inertia weight factor of Particle Swarm Optimization (PSO), we
add new inertia weight factor to further enhance the exploitation and exploration ability
of WOA. Finally, random variation of current optimal individual is conducted during
exploitation iterations to reduce the possibility of falling into local optimum. The IWOA
is benchmarked on 29 well-known test functions and the results are verified by comparing
IWOA with basic WOA, Grey Wolf Optimization (GWO) and Particle Swarm Optimiza-
tion (PSO). We also apply the proposed IWOA to multi-resource allocation problem in
resource-constrained embedded system. The results demonstrate that the proposed IWOA
performs much better than WOA, GWO or PSO on most test functions and provides best
performance in multi-resource allocation problem.
Keywords: Improved whale optimization algorithm, Nonlinear convergence factor, In-
ertia weight factor, Random variation, Multi-resource allocation

1. Introduction. Meta-heuristic optimization algorithms are very popular Swarm Intel-
ligence (SI) optimization algorithms in recent years and have been used in many fields
such as machine learning, engineering and environment modeling [1]. It has the advan-
tages of simplicity, flexibility, derivation independency and escaping from local optimum.
Meta-heuristic algorithms create randomly initialized population and improve the popu-
lation during iterations to search for global optimum in search space. The typical search
process of optimization algorithm can be divided into two phases: exploration and ex-
ploitation [1-3]. In the exploration phase, search agents investigate the search space as
widely as possible to obtain the promising region. While in the exploitation phase, search
is carried out in the local region obtained by exploration phase to find the global optimum
solution. It is very important for an algorithm to strike a proper balance between explo-
ration and exploitation to avoid local optimum and find global optimum solution quickly.
Some of the most popular meta-heuristic algorithms are Genetic Algorithm (GA), Parti-
cle Swarm Optimization (PSO), Artificial Fish Swarm Algorithm (AFSA) and Grey Wolf
Optimization (GWO).

Whale Optimization Algorithm (WOA) is a new meta-heuristic optimization algorithm
proposed by Seyedali Mirjalili and Andrew Lewis in 2016. WOA mimics the hunting
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behavior of humpback whales called bubble-net feeding method. Humpback whales prefer
to hunt school of krill or small fishes close to the surface by creating distinctive bubbles
along a circle or ‘9’-shaped path [1,4]. Some studies have been proposed to improve the
performance of basic WOA and apply it into different fields [4-10]. CWOA is proposed in
[5] which blends WOA with chaos theory and applies CWOA to solving transient stability
constrained OPF problem. The authors in [6] propose another CWOA to improve the
diversity and egocentricity of search agents and apply the proposed CWOA to optimizing
the Elman neural network. LWOA is proposed in [7] to improve the performance of WOA
based on Lévy flight trajectory and is applied to solving infinite impulse response model
identification. To improve the exploration and exploitation ability as well as reduce the
possibility of falling into local optimum of WOA, we optimize WOA in three aspects and
apply the improved WOA to multi-resource allocation problem. The main contributions
of this work are described as follows.

• Introducing nonlinearly changed convergence factor to preferably adjust the explo-
ration and exploitation process of WOA. The linearly changed convergence factor
limits the exploration and exploitation ability of WOA, which can be improved by
using nonlinearly changed convergence factor.

• Adding a new inertia weight factor to adjust the influence of current best search
agent on the movements of other search agents. Consequently, the exploration and
exploitation ability and convergence speed of WOA are greatly improved.

• Conducting random variation of current best search agent during exploitation pro-
cess. In the exploitation process of WOA, all the search agents move towards the
best search agent which may be a local optimum. To reduce the possibility of falling
into local optimum, we conduct a certain number of variations during each iteration
of exploitation process.

• Testing IWOA with 29 benchmark functions and comparing it with other well-known
meta-heuristic algorithms. Four types of benchmark functions are employed to test
the performance of algorithms from different perspectives, including exploration abil-
ity, exploitation ability, ability to escape from local minima and convergence speed.

• Applying IWOA to multi-resource allocation problem to evaluate the ability of solv-
ing engineering problem. Multi-resource allocation is a general engineering problem
and various kinds of meta-heuristics have been proposed to solve it. IWOA and
compared well-known meta-heuristics were benchmarked with system utility model
to valuate the performance of solving multi-resource problem.

The rest of this paper is organized as follows. Section 2 outlines the basic WOA. Section
3 presents the Improved WOA (IWOA). Experimental results and performance analysis
of the proposed IWOA are provided in Section 4. Section 5 applies the proposed IWOA to
solving multi-resource allocation problem. Finally, in Section 6, conclusions and possible
future works are given.

2. Basic Whale Optimization Algorithm. The basic WOA includes three parts: en-
circling prey, bubble-net attacking method and search for prey. In this section, we will
briefly describe the three parts.

2.1. Encircling prey. WOA algorithm assumes that the current best search agent is
the target prey or is close to the optimum. The other search agents will update their
positions towards the best search agent according to the following equations:

D = |C ·X∗(t)−X(t)| (1)

X(t+ 1) = X∗(t)− A ·D (2)
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where t is current iteration, and A and C are coefficient vectors. | | is absolute value and
· is an element-by-element multiplication. X is position vector and X∗ is position vector
of best solution obtained so far. X∗ will be updated in each iteration if there is a better
solution.

The vectors A and C are calculated as follows:

A = 2ar − a (3)

C = 2r (4)

where r is a random value in [0, 1]. a is a convergence factor that is linearly decreased
from 2 to 0 during the iteration according to the following equation:

a = 2− t · 2/tmax (5)

where t is current iteration and tmax is the total iteration number.

2.2. Bubble-net attacking method (exploitation phase). Two approaching meth-
ods are designed in WOA to mathematically model the bubble-net behavior of humpback
whales.

• Shrinking encircling mechanism: This behavior is achieved by decreasing the value of
a in Equation (3). A is a random value in the interval [−a, a], where a is decreased
from 2 to 0 during the iteration. When the value of A is in the interval [−1, 1],
the new position of a search agent will be defined anywhere in between the original
position of the search agent and the position of current best search agent.

• Spiral updating position: The helix-shaped movement of humpback whales is mod-
eled by the following equation:

X(t+ 1) = D′ · ebl · cos(2πl) +X∗(t) (6)

whereD′ = |X∗(t)−X(t)| and indicates the distance of the ith whale to the prey (best
solution obtained so far), b is a constant for defining the shape of the logarithmic
spiral, l is a random number in [−1, 1], and · is an element-by-element multiplication
[1,4].

To model the two simultaneous approaching behaviors during the bubble-net attacking
method, there is a probability of 50% to choose between either the shrinking encircling
mechanism or the spiral model to update the position of whales. The mathematical model
is shown as follows:

X(t+ 1) =

{
X∗(t)− A ·D if p < 0.5
D′ · ebl · cos(2πl) +X∗(t) if p ≥ 0.5

(7)

where p is a random number in [0, 1]. In addition to the bubble-net attacking method,
the humpback whales also search for prey randomly, which is described as follows.

2.3. Search for prey (exploration phase). Humpback whales search randomly ac-
cording to the position of each other. This behavior is also achieved by decreasing the
value of factor a in Equation (3). When the value of A is greater than 1 or less than
−1, the search agent will move far away from the reference whale. Different from the
exploitation phase, a search agent updates its position according to a randomly chosen
search agent rather than the current best search agent. This mechanism will allow the
WOA algorithm to perform a global search. The mathematical model is as follows:

D = |C ·Xrand −X| (8)

X(t+ 1) = Xrand − A ·D (9)

where Xrand is a random position vector (a random whale) chosen from the current pop-
ulation [1,4].
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The WOA algorithm starts with a set of randomly initialized solutions. At each itera-
tion, the current best solution is selected when |A| < 1, while a random search agent is
chosen when |A| > 1 for updating the position of the search agents. Depending on the
value of p, WOA switches between either a spiral or circular movement. Finally, the WOA
algorithm is terminated by the satisfaction of an end criterion. In WOA, the exploration
and exploitation ability and balance between them mostly depend on convergence factor
a. However, the linear change of a limits the exploration and exploitation ability and
cannot reflect the real search process of WOA, causing low solution precision and slow
convergence speed when facing complex global searching problem. What is more, all the
search agents move towards best individual in exploitation process, which may cause local
optimum.

3. Improved Whale Optimization Algorithm (IWOA). The performance of basic
WOA is improved in three aspects: nonlinear convergence factor, inertia weight factor
and random variation of best search agent. The detailed introduction of the three aspects
and the pseudo code of IWOA will be discussed in the following three subsections.

3.1. Nonlinear convergence factor. As we can know from current research concern-
ing WOA and GWO, the linearly changed convergence factor a cannot reflect the real
optimizing process of the algorithm and limits the exploration and exploitation abili-
ty. Nonlinearly changed convergence factor is a usual and effective improvement method
[11-14]. Hence, we propose the following nonlinearly changed convergence factor:

a(t) =
2× (1− t/tmax)

2

(1− µ× t/tmax)3
(10)

where t is current iteration and tmax indicates the total iteration number. µ is the adjust-
ment coefficient and the value is in the interval [15, 35].

3.2. Inertia weight factor. To further enhance exploration and exploitation ability and
accelerate convergence speed, we introduce a new inertia weight factor to WOA inspired
by PSO algorithm. In PSO, inertia weight factor can adjust the global and local search
abilities. The global search ability of PSO is better when inertia weight is big while the
local search ability is better when inertia weight is small. In WOA, the movement of
a search agent is determined by the referenced search agent. Inertia weight factor ω is
introduced to tune the influence of referenced search agent on the movement of search
agent. After introducing the inertia weight factor, the exploration and exploitation ability
and convergence speed of WOA are adjusted by convergence factor a and inertia weight
factor ω together. The position updated method with inertia weight factor is represented
by the following equations:

X(t+ 1) =

 ωX∗(t)− A ·D if p < 0.5, |A| < 1
ωXrand(t)− A ·D if p < 0.5, |A| ≥ 1
D′ · ebl · cos(2πl) + ωX∗(t) if p ≥ 0.5

(11)

where t is current iteration, and A and C are coefficient vectors. D′ = |X∗(t)−X(t)| and
D is calculated as Equation (1) or Equation (8). | | is absolute value, · is an element-by-
element multiplication. X is position vector and X∗ is position vector of best solution
obtained so far. ω is inertia weight factor and is calculated as follows:

ω = α× rand() (12)

where α is a number in the interval [0.5, 2.5].
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3.3. Random variation of best search agent. In the exploitation process of WOA, all
the search agents move towards the current best search agent. If the current best solution
is a local optimum, the WOA will fall into local optimum. To reduce the probability of
local optimum, we propose random variation of the current best search agent. Supposing
the current best search agent is Xi = (xi1, xi2, . . . , xid), we choose an element xk (k =
1, 2, . . . , d) from Xi and replace it with a random number in [li, ui]. The newly generated
search agent is X ′

i = (x′
i1, x

′
i2, . . . , x

′
id). The mathematical model is shown as follows:

X ′
i =

{
li + λ× (ui − li), i = k
Xi, otherwise

(13)

where li and ui are the lower bound and upper bound of xi respectively, and λ is a random
value in [0, 1]. However, a single time of variation of best search agent may result in the
search agent jumping out the current region that includes the global best solution and
reaching a local better solution. To reduce the possibility of this phenomenon, the above
random variation operation is carried out for N times during each exploitation iteration.

Above all, the pseudo code of IWOA algorithm is presented in Figure 1. In IWOA,
the exploration and exploitation process is divided by A and which kind of approaching
behavior is adopted in exploitation process is determined by p. If the value of p is larger
than 0.5, the search agent will perform spiral movement towards current best search
agent, which is shown in line 14 of Figure 1. When the value of p is less than 0.5 and

(1) Initialize the whales population Xi (i = 1, 2, . . . , n)
(2) Calculate the fitness of each search agent, X∗ = the best search agent
(3) while (t < maximum iteration number)
(4) for each search agent
(5) Update a, A, C, l, and p
(6) if1 (p < 0.5)
(7) if2 (|A| < 1)
(8) Update the position of the current search agent by

Equation (11)
(9) else if2 (|A| ≥ 1)
(10) Select a random search agent (Xrand)
(11) Update the position of the current search agent by

Equation (11)
(12) end if2
(13) else if1 (p ≥ 0.5)
(14) Update the position of the current search by Equation (11)
(15) end if1
(16) end for
(17) Check if any search agent goes beyond the search space and amend it
(18) Calculate the fitness of each search agent, UpdateX∗ if there is a better solution
(19) if3 (|A| < 1)
(20) Random variation of current best search agent for N times by

Equation (13)
(21) end if3
(22) t = t+ 1
(23) end while
(24) return X∗

Figure 1. Pseudo code of IWOA algorithm
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the absolute value of A is less than 1, the search agent will perform shrinking encircling
movement towards current best search agent. Otherwise, the search agent will conduct
search behavior by selecting a random search agent and moving towards it. The two
movements are shown in lines 8 and 11. Line 20 shows that the random variation of
current best search agent is conducted for N times if it is exploitation process.

4. Results on Benchmark Experiment. The numerical efficiency of the proposed I-
WOA algorithm is benchmarked on 29 test functions [15,16], which can be divided into
four groups: unimodal, multi-modal, fixed-dimension multimodal and composite function-
s. Different types of functions benchmark the performance of the algorithm from different
perspectives. These functions are listed in Tables 1-4 where Dim indicates dimension
of the functions, Range is the boundary of the function’s search space, and fmin is the
optimum.

Table 1. Unimodal benchmark functions

Function Dim Range fmin

F1(x) =
∑n

i=1 x
2
i 30 [−100, 100] 0

F2(x) =
∑n

i=1 |xi|+
∏n

i=1 |xi| 30 [−10, 10] 0

F3(x) =
∑n

i=1

(∑i
j=1 xj

)2
30 [−100, 100] 0

F4(x) = maxi {|xi|, 1 ≤ i ≤ n} 30 [−100, 100] 0

F5(x) =
∑n−1

i=1

[
100(xi+1 − x2

i )
2 + (xi − 1)2

]
30 [−30, 30] 0

F6(x) =
∑n

i=1 ([xi + 0.5])2 30 [−100, 100] 0

F7(x) =
∑n

i=1 ix
4
i + random[0, 1) 30 [−1.28, 1.28] 0

Table 2. Multimodal benchmark functions

Function Dim Range fmin

F8(x) =
∑n

i=1−xi sin
(√

|xi|
)

30 [−500, 500] −418.9829× 5

F9(x) =
∑n

i=1 [x
2
i − 10 cos(2πxi) + 10] 30 [−5.12, 5.12] 0

F10(x) = −20 exp
(
−0.2

√
1
n

∑n
i=1 x

2
i

)
− exp

(
1
n

∑n
i=1 cos(2πxi)

)
+ 20 + e

30 [−32, 32] 0

F11(x) =
1

4000

∑n
i=1 x

2
i −

∏n
i=1 cos

(
xi√
i

)
+ 1 30 [−600, 600] 0

F12(x) =
π
n

{
10 sin2(πy1) +

∑n−1
i=1 (yi − 1)2[1

+ 10 sin2(πyi+1)] + (yn − 1)2
}

+
∑n

i=1 u(xi, 10, 100, 4)
yi = 1 + xi+1

4

u(xi, a, k,m) =


k(xi − a)m xi > a

0 −a < xi < a

k(−xi − a)m xi < −a

30 [−50, 50] 0

F13(x) = 0.1
{
sin2(3πx1) +

∑n
i=1 (xi − 1)2[1

+ sin2(3πxi + 1)] + (xn − 1)2[1
+ sin2(2πxn)]

}
+
∑n

i=1 u(xi, 5, 100, 4)

30 [−50, 50] 0
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Table 3. Fixed-dimension multimodal benchmark functions

Function Dim Range fmin

F14(x) =
(

1
500

+
∑25

j=1
1

j+
∑2

i=1 (xi−aij)6

)−1

2 [−65, 65] 0

F15(x) =
∑11

i=1

[
ai − x1(b2i+bix2)

b2i+bix3+x4

]2
4 [−5, 5] 0.00030

F16(x) = 4x2
1 − 2.1x4

1 +
1
3
x6
1 + x1x2 − 4x2

2 + 4x4
2 2 [−5, 5] −1.0316

F17(x) =
(
x2 − 5.1

4π2x
2
1 +

5
π
x1 − 6

)2
+10

(
1− 1

8π

)
cos x1 + 10

2 [−5, 5] 0.398

F18(x) =
[
1 + (x1 + x2 + 1)2

(
19− 14x1 + 3x2

1

−14x2 + 6x1x2 + 3x2
2

)]
×
[
30 + (2x1 − 3x2)

2 ×
(
18− 32x1

+12x2
1 + 48x2 − 36x1x2 + 27x2

2

)]
2 [−2, 2] 3

F19(x) = −
∑4

i=1 ci exp
(
−
∑3

j=1 aij(xj − pij)
2
)

3 [1, 3] −3.86

F20(x) = −
∑4

i=1 ci exp
(
−
∑6

j=1 aij(xj − pij)
2
)

6 [0, 1] −3.32

F21(x) = −
∑5

i=1

[
(X − ai)(X − ai)

T + ci
]−1

4 [0, 10] −10.1532

F22(x) = −
∑7

i=1

[
(X − ai)(X − ai)

T + ci
]−1

4 [0, 10] −10.4028

F23(x) = −
∑10

i=1

[
(X − ai)(X − ai)

T + ci
]−1

4 [0, 10] −10.5363

To verify the results, IWOA is compared to basic WOA, GWO and PSO. The values
of µ and α are set to 25 and 0.5 respectively, which will be justified in the following
Subsection 4.5. The value of N is set to 20. Each algorithm runs 30 times on each test
function and the collected statistical results (average and standard deviation of the best
solution) are shown in Tables 5, 7, 9, 11. For unimodal, multimodal and fixed-dimension
multimodal functions, each of them is solved by 30 search agents over 1000 iterations.
Each composite function is solved by 30 search agents over 100 iterations. Apart from
average and standard deviation, p-value of Wilcoxon ranksum test [17] is conducted to
determine the significance level of two algorithms and the results are listed in Tables 6, 8,
10, 12. If a p-value is less than 0.05, it means that the difference between two compared
algorithms is statistically significant.

4.1. Evaluation of exploitation capability. Functions F1-F7 are unimodal since they
have only one global optimum. These functions allow to evaluate the exploitation capabil-
ity of the algorithm. It can be seen from Table 5 that IWOA achieves best performance
in F1-F5, F7 and second best performance in F6. Besides, the p-values in Table 6 are
much less than 0.05 and it means that IWOA performs statistically much better than the
compared algorithms. The above test results demonstrate that IWOA provides very good
exploitation capability.

4.2. Evaluation of exploration capability. In contrast to umimodal functions, multi-
modal functions (F8-F23) have many local optima whose number increases exponentially
with the number of variables. Therefore, this kind of test functions is very suitable to
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Table 4. Composite benchmark functions

Function Dim Range fmin

F24(CF1)
f1, f2, f3, . . . , f10 = Sphere Function,
[σ1, σ2, σ3, . . . , σ10] = [1, 1, 1, . . . , 1]
[λ1, λ2, λ3, . . . , λ10] = [5/100, 5/100, 5/100, . . . , 5/100]

30 [−5, 5] 0

F25(CF2)
f1, f2, f3, . . . , f10 = Griewank’s Function,
[σ1, σ2, σ3, . . . , σ10] = [1, 1, 1, . . . , 1]
[λ1, λ2, λ3, . . . , λ10] = [5/100, 5/100, 5/100, . . . , 5/100]

30 [−5, 5] 0

F26(CF3)
f1, f2, f3, . . . , f10 = Griewank’s Function
[σ1, σ2, σ3, . . . , σ10] = [1, 1, 1, . . . , 1],
[λ1, λ2, λ3, . . . , λ10] = [1, 1, 1, . . . , 1]

30 [−5, 5] 0

F27(CF4)
f1, f2 = Ackley’s Function, f3, f4 = Rastrigin’s Function,
f5, f6 = Weierstrass Function, f7, f8 = Griewank’s Function,
f9, f10 = Sphere Function, [σ1, σ2, σ3, . . . , σ10] = [1, 1, 1, . . . , 1]
[λ1, λ2, λ3, . . . , λ10] = [5/32, 5/32, 1, 1, 5/0.5, 5/0.5, 5/100,

5/100, 5/100, 5/100]

30 [−5, 5] 0

F28(CF5)
f1, f2 = Rastrigin’s Function, f3, f4 = Weierstrass Function,
f5, f6 = Griewank’s Function, f7, f8 = Ackley’s Function,
f9, f10 = Sphere Function, [σ1, σ2, σ3, . . . , σ10] = [1, 1, 1, . . . , 1]
[λ1, λ2, λ3, . . . , λ10] = [1/5, 1/5, 5/0.5, 5/0.5, 5/100,

5/100, 5/32, 5/32, 5/100, 5/100]

30 [−5, 5] 0

F29(CF6)
f1, f2 = Rastrigin’s Function, f3, f4 = Weierstrass Function,
f5, f6 = Griewank’s Function, f7, f8 = Ackley’s Function,
f9, f10 = Sphere Function
[σ1, σ2, σ3, . . . , σ10] = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1]
[λ1, λ2, λ3, . . . , λ10] = [0.1 ∗ 1/5, 0.2 ∗ 1/5, 0.3 ∗ 5/0.5, 0.4 ∗ 5/0.5,

0.5 ∗ 5/100, 0.6 ∗ 5/100, 0.7 ∗ 5/32,
0.8 ∗ 5/32, 0.9 ∗ 5/100, 1 ∗ 5/100]

30 [−5, 5] 0

evaluate the exploration capability of an algorithm. According to the results in Tables
7 and 9, IWOA outperforms all other compared algorithms on all the multimodal test
functions except for F16, F17, F22 and F23. The p-values presented in Tables 8 and 10 also
certify that IWOA performs significantly better than other compared algorithms. It is
obvious that IWOA also exhibits very excellent exploration capability.

4.3. Ability to escape from local minima. Composite functions are very challenging
test beds for meta-heuristic algorithms because it tests the exploitation and exploration
ability simultaneously. Only a proper balance is struck between the exploration and
exploitation phases can local optima be avoided. The results in Tables 11 and 12 show
that IWOA outperforms other algorithms on F24, F29 and provides very competitive
performance on other composite functions. The above results prove that the IWOA can
provide very competitive ability to escape from local minima.
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Table 5. Results of unimodal benchmark functions

F Type IWOA WOA GWO PSO
F1 Ave 0 1.9041e-151 4.8457e-59 1.0958e-08

Std 0 1.0366e-150 1.4651e-58 2.1943e-08
F2 Ave 0 1.1382e-102 1.0347e-34 7.0003

Std 0 5.2393e-102 1.0982e-34 8.3667
F3 Ave 0 22019.7193 1.4007e-15 16.7928

Std 0 10741.5251 3.0218e-15 8.4393
F4 Ave 0 41.3522 1.7273e-14 0.63892

Std 0 31.7993 2.061e-14 0.15003
F5 Ave 0.99072 27.2429 26.8548 160.7873

Std 5.0979 0.51479 0.85161 545.3538
F6 Ave 0.029631 0.088295 0.65025 1.2409e-07

Std 0.03281 0.12346 0.33988 5.8755e-07
F7 Ave 3.6978e-05 0.0014232 0.00078793 3.277

Std 3.0105e-05 0.0016038 0.00040596 5.1537

Table 6. p-values of the Wilcoxon ranksum test over unimodal benchmark functions

F IWOA WOA GWO PSO
F1 N/A 1.2118e-12 1.2118e-12 1.2118e-12
F2 N/A 1.2118e-12 1.2118e-12 1.2118e-12
F3 N/A 1.2118e-12 1.2118e-12 1.2118e-12
F4 N/A 1.2118e-12 1.2118e-12 1.2118e-12
F5 N/A 5.0723e-10 4.1997e-10 8.9934e-11
F6 N/A 0.029205 3.0199e-11 3.0199e-11
F7 N/A 1.4643e-10 3.0199e-11 3.0199e-11

Table 7. Results of multi-modal benchmark functions

F Type IWOA WOA GWO PSO
F8 Ave −12568.425 −11424.1706 −6196.377 −6192.0758

Std 0.45296 1568.8643 650.5042 1530.2941
F9 Ave 0 0 0.15873 106.7903

Std 0 0 0.86938 28.4414
F10 Ave 8.8818e-16 4.0856e-15 1.7112e-14 0.038557

Std 0 2.158e-15 3.8108e-15 0.21089
F11 Ave 0 0.0019151 0.0025294 0.0068944

Std 0 0.010489 0.005314 0.0087035
F12 Ave 9.8882e-05 0.0075511 0.038067 0.0069113

Std 0.00010377 0.0088261 0.019881 0.026302
F13 Ave 0.001424 0.17788 0.51169 0.0032962

Std 0.0016209 0.11249 0.18207 0.0051211

4.4. Analysis of convergence behavior. In this subsection the convergence behav-
ior of IWOA is investigated. According to Bergh and Engelbrecht [18], there should be
abrupt changes in the movement of search agents over the initial steps of optimization to
explore the search space extensively, and then the changes should be reduced to focus on
exploitation at the end of optimization. This guarantees a population-based algorithm
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Table 8. p-values of the Wilcoxon ranksum test over multi-modal bench-
mark functions

F IWOA WOA GWO PSO
F8 N/A 1.1567e-07 3.0199e-11 3.0199e-11
F9 N/A NaN 0.0013247 1.2118e-12
F10 N/A 2.742e-09 3.7782e-13 1.2118e-12
F11 N/A 0.33371 0.011035 1.2118e-12
F12 N/A 3.3384e-11 3.0199e-11 8.4848e-09
F13 N/A 3.0199e-11 3.0199e-11 0.007959

Table 9. Results of fixed-dimension multimodal benchmark functions

F Type IWOA WOA GWO PSO
F14 Ave 0.998 2.5357 5.1739 3.6607

Std 9.3074e-11 3.0119 4.3923 2.4925
F15 Ave 0.00037713 0.0005287 0.003681 0.0037375

Std 8.0891e-05 0.00014271 0.00759 0.0068748
F16 Ave −1.0316 −1.0316 −1.0316 −1.0316

Std 3.9212e-06 6.1097e-11 5.181e-09 6.6486e-16
F17 Ave 0.39789 0.39789 0.39789 0.39789

Std 6.6218e-07 2.4908e-06 3.7745e-07 0
F18 Ave 3 3 5.7 5.7

Std 1.9809e-05 2.7488e-05 14.7885 14.7885
F19 Ave −3.8628 −3.8604 −3.8614 −3.8617

Std 2.5611e-07 0.0028611 0.0027758 0.002725
F20 Ave −3.2744 −3.2524 −3.251 −3.2374

Std 0.059241 0.083037 0.081519 0.096601
F21 Ave −9.8131 −9.2207 −9.3107 −8.8907

Std 1.2934 2.1533 1.9151 2.3641
F22 Ave −9.339 −8.3607 −9.8737 −9.1099

Std 2.162 2.7558 1.6134 2.6826
F23 Ave −9.9903 −8.7696 −10.536 −10.1699

Std 1.6486 2.7791 0.00019883 1.3585

Table 10. p-values of the Wilcoxon ranksum test over fixed-dimension
multimodal benchmark functions

F IWOA WOA GWO PSO
F14 N/A 0.00015846 3.2555e-07 0.00039091
F15 N/A 0.00016813 0.00010407 7.3445e-10
F16 N/A 3.0199e-11 3.6897e-11 2.3638e-12
F17 N/A 0.19073 0.16687 1.2118e-12
F18 N/A 0.00026806 0.65204 1.4507e-10
F19 N/A 3.0199e-11 3.8202e-10 4.2293e-07
F20 N/A 0.00028389 0.0014423 0.59676
F21 N/A 2.5721e-07 5.6073e-05 0.00017163
F22 N/A 0.00037704 0.63088 7.1797e-05
F23 N/A 1.0907e-05 0.19073 2.2841e-08
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Table 11. Results of composite benchmark functions

F Type IWOA WOA GWO PSO
F24 Ave 63.0787 330.9793 161.2208 298.247

Std 126.9148 89.2588 142.7551 141.3892
F25 Ave 554.0999 541.5759 369.4023 373.0556

Std 286.0643 138.8732 139.3397 125.6001
F26 Ave 609.0276 1023.5434 474.6884 625.768

Std 285.5999 167.7353 121.7745 108.8543
F27 Ave 890.9206 908.0536 800.0873 767.9273

Std 49.7298 56.327 141.9259 153.9118
F28 Ave 639.5027 575.1635 127.6304 323.7544

Std 389.3627 286.6679 113.3831 158.1828
F29 Ave 900 900 900.0005 929.3696

Std 0 2.7426e-12 0.00044274 20.5434

Table 12. p-values of the Wilcoxon ranksum test over composite bench-
mark functions

F IWOA WOA GWO PSO
F24 N/A 7.1186e-09 2.4327e-05 1.0666e-07
F25 N/A 1 0.046085 0.0034018
F26 N/A 5.3824e-08 0.27413 0.77171
F27 N/A 2.4759e-09 0.12592 0.00053813
F28 N/A 0.47275 0.0018645 0.0029259
F29 N/A 1.6024e-10 1.2118e-12 1.2118e-12

eventually converges to a point in the search space. In order to observe the convergence
behavior of IWOA, convergence curves of the IWOA, WOA, GWO and PSO are provided
in Figure 2 for some of the benchmark functions. The average best-so-far indicates the
average of the best solution obtained so far in each iteration over 30 runs.

As is shown in Figure 2, IWOA provides best solution and convergence rate on most of
benchmark functions and provides second best performance on some functions. There are
three different convergence behaviors when IWOA optimizes the test functions. The first
convergence curve accords with Bergh and Engelbrecht [18]. The slope of convergence
curve is large in initial iterations and gradually becomes small at the end of optimization.
This behavior is evident in F5, F6, F15, F18. We notice that IWOA performs better than
basic WOA and other two algorithms on these functions. This is due to the nonlinear
change of convergence factor a which preferably adjusts exploration and exploitation pro-
cess. The second convergence curve directly searches the theoretical best solution in the
first half of iterations and this behavior is evident in F1, F9. This superior search ability
is mainly due to the introduction of inertia weight ω which further enhances the explo-
ration and exploitation ability. The third convergence behavior shows abrupt changes in
the second half of iterations and this behavior is evident in F7, F12, F24. This benefits
from the Random Variation Mechanism of current best search agent during exploitation
iterations.

To sum up, the results verify the high performance of IWOA in solving different kinds of
benchmark functions compared to well-known meta-heuristics. In the following sections,
the performance of IWOA is further verified on multi-resource allocation problem.
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Figure 2. Comparison of convergence curves in some of the benchmark functions
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4.5. Experiments on the setting of values µ and α. In this subsection, the settings
of values µ and α in Equation (10) and Equation (12) are evaluated. Considering that
there are two types of values to be evaluated, one of the values changes while the other
one stays unchanged to verify the impact on algorithm performance. In the experiments
of setting value µ, µ is set to 15, 20, 25, 30, 35 and α is set to 1.5. In the experiments
of setting value α, α is set to 0.5, 1, 1.5, 2, 2.5 and µ is set to 25. Each setting is
benchmarked 30 times on the test functions with 30 search agents over 100 iterations.
Some of the results are shown in Figure 3 and Figure 4. As we can see from Figure 3,
IWOA converges faster on unimodal benchmark functions when the value of α is smaller
and the performance is competitive on other types of test functions. IWOA converges
slower on unimodal benchmark functions when the value of α is 2.5 and performances are
unstable on other types of test functions. Figure 4 shows that the bigger the value of µ is,
the faster IWOA converges to optimal value on unimodal benchmark functions. However,
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Figure 3. Experiments on the setting of value α
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Figure 4. Experiments on the setting of value µ

the performance tends to become unstable on other types of test functions. A middle
value is more acceptable. Hence, we set the value of α and µ to 0.5 and 25 respectively.

5. IWOA for Multi-Resource Allocation. Multi-resource allocation is a general en-
gineering problem that exists in many fields such as wireless network [19-22], embedded
system [23,24], real-time system [25], cloud computing [26-28], mobile edge computing [29]
and data center [30,31]. In multi-resource allocation problem, many tasks compete for
multiple kinds of limited system resources. Each task has a minimum requirement of each
type of resource. The general solution to multi-resource allocation problem is allocating
multiple types of resources among multiple tasks to fulfil a certain objective. There are
three kinds of objectives in existing multi-resource allocation researches. First, maximize
the overall system utility [32,33]. Second, achieve fairness of resource allocation between
multiple tasks [30,34]. Third, trade off between system utility and fairness [23,27]. Many
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different methods such as neural network [34], mixed integer programming [35], auction
approach [20,36] and meta-heuristics algorithm are adopted to solve multi-resource allo-
cation problem. Meta-heuristic algorithm is one of very important methods and various
kinds of meta-heuristic algorithms [22,28,32,37-39] have been used to solve multi-resource
allocation problem. Meta-heuristic algorithms have advantages in optimization [2,3,25].
What is more, when the number of resources and tasks increases, many traditional meth-
ods used in multi-resource allocation become complicated and the time complexity tends
to become unacceptable [32]. Hence, we apply the proposed IWOA algorithm to solve
multi-resource allocation problem and the objective is to maximize the overall system
utility.

5.1. Multi-resource allocation model. The multi-resource allocation problem is de-
scribed as follows. (1) Set of n tasks π = {π1, π2, . . . , πn}; (2) Set of m shared re-
source R = {R1, R2, . . . , Rm}; (3) Suppose that the resource Ri acquired by πj is Rij

(1 ≤ i ≤ m, 1 ≤ j ≤ n), then Ri1 + Ri2 + · · · + Rin =
∑n

j=1Rij ≤ Ri, 1 ≤ i ≤ m;

(4) The resource demand of Ri by πj has a minimum value Rmin
ij and a maximum value

Rmax
ij . Rmin

ij must be satisfied to reach the lowest QoS. We can improve QoS by adding
the resource allocation Rij until Rij reaches Rmax

ij , when the QoS will not improve even
if we continue to add Rij; (5) The utility function [30,32] of πj is defined as follows:
qj = λjfj(R1j, R2j, . . . , Rmj), where λj is a value in [0, 1], which indicates the weight pa-
rameter of task πj. qj

(
Rmin

1j , Rmin
2j , . . . , Rmin

mj

)
= qjmin, qj

(
Rmax

1j , Rmax
2j , . . . , Rmax

mj

)
= qjmax;

(6) The utility function of different tasks may be different from each other. To have a u-
niform measure standard of the utility of different tasks, we normalize the utility function
as follows:

Qj(R1j, . . . , Rmj) =


0, Rij = Rmin

ij
qj − qjmin

qjmax − qjmin

, Rmin
ij < Rij < Rmax

ij

1, Rij = Rmax
ij

(14)

where 1 ≤ i ≤ m, 1 ≤ j ≤ n, 0 ≤ Qj ≤ 1.

5.2. System utility maximization model. In this section we give the system u-
tility maximization model with n tasks and m resources. In a system with task set
{π1, π2, . . . , πn} and resource set {R1, R2, . . . , Rm}, the utility of task πj isQj (R1j, R2j, . . .,
Rmj). We need to search for an m × n resource allocation matrix Uij to maximize the
utility of all tasks. The system utility maximization model can be formulated as follows:

max
n∑

j=1

Qj(R1j, R2j, . . . , Rmj) (15)

subject to:
n∑

j=1

Rij ≤ Ri, 1 ≤ i ≤ m (16)

Rmin
ij < Rij < Rmax

ij , 1 ≤ i ≤ m (17)

In addition, Qj in Equation (15) satisfies the normalization in Equation (14).

5.3. Results of IWOA on multi-resource allocation problem. In the experiments,
we set the number of resource types m to 4 and the number of parallelized tasks n to 10.
We give 4 types of tasks as in [32]:

(1) Qj =

(
4∑

i=1

Rij −
4∑

i=1

Rmin
ij

)/(
4∑

i=1

Rmax
ij −

4∑
i=1

Rmin
ij

)
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(2) Qj =

(
4∏

i=1

Rij −
4∏

i=1

Rmin
ij

)/(
4∏

i=1

Rmax
ij −

4∏
i=1

Rmin
ij

)

(3) Qj = sin

(
π

2
×
∑4

i=1Rij −
∑4

i=1R
min
ij∑4

i=1R
max
ij −

∑4
i=1R

min
ij

)

(4) Qj = 1− sin

(
π

2
×
∏4

i=1R
max
ij −

∏4
i=1Rij∏4

i=1R
max
ij −

∏4
i=1 R

min
ij

)
The total available resources of each type are 1, and the resource requirements of 10

tasks are shown in Table 13 [32].

Table 13. Task type and resource requirement

Task
Minimum resource

requirement
Maximum resource

requirement
Task type

1 (0.02, 0.01, 0.02, 0.01) (0.35, 0.4, 0.2, 0.3) 4
2 (0.01, 0.01, 0.01, 0.01) (0.3, 0.25, 0.22, 0.25) 1
3 (0.02, 0.03, 0.03, 0.01) (0.25, 0.3, 0.35, 0.2) 4
4 (0.01, 0.01, 0.02, 0.03) (0.2, 0.3, 0.3, 0.3) 2
5 (0.02, 0.03, 0.01, 0.03) (0.32, 0.3, 0.2, 0.2) 1
6 (0.03, 0.02, 0.03, 0.01) (0.28, 0.22, 0.38, 0.19) 1
7 (0.01, 0.01, 0.02, 0.02) (0.19, 0.18, 0.23, 0.26) 3
8 (0.01, 0.01, 0.01, 0.01) (0.32, 0.28, 0.19, 0.18) 3
9 (0.02, 0.03, 0.01, 0.02) (0.38, 0.3, 0.32, 0.29) 2
10 (0.01, 0.02, 0.01, 0.02) (0.3, 0.4, 0.5, 0.35) 2

To verify the effectiveness of IWOA on multi-resource allocation problem, WOA, GWO
and PSO algorithms are employed to solve multi-resource allocation problem. Each algo-
rithm runs 30 times, and the collected statistical results (average and standard deviation
of the best solution) are reported in Table 14. The problem is solved using 30 search
agents over 1000 iterations. As is shown in Table 14, the proposed IWOA algorithm out-
performs all other compared algorithms and is more stable. The p-values show that the
difference between IWOA and compared algorithm is statistically significant.

Table 14. Result on multi-resource allocation problem

Algorithm Ave Std p-value
IWOA 4.0004 4.1829e-05 N/A
WOA 3.6676 0.15068 3.0199e-11
GWO 3.9924 0.0051296 3.0199e-11
PSO 3.8466 0.19378 8.4848e-09

6. Conclusions. This paper proposed an Improved Whale Optimization Algorithm (I-
WOA). A nonlinear convergence factor a was adopted and a random inertia weight control
parameter ω was introduced. To avoid local optimum, we introduced random variation
of current best search agent during exploitation iterations. The performance of IWOA
was tested on 29 benchmark functions and compared to basic WOA, GWO and PSO
algorithms. The p-values of Wilcoxon statistical tests were also conducted to compare
the performance of algorithms. The proposed IWOA was finally applied to multi-resource
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allocation problem. The results show that IWOA provides highly competitive perfor-
mances and outperforms other compared algorithms on most of the benchmark functions
and provides best performance in multi-resource allocation problem. For future work, we
intend to further improve the performance of IWOA, especially on composite functions.
Besides, the random variation mechanism of best search agent can be well-designed to
further improve local minima avoidance ability of IWOA.

Acknowledgment. This work is partially supported by Pioneering Action Initiative of
Chinese Academy of Sciences (shuaixianxingdong jihua) (Project No. Y654101601). The
authors would like to thank the anonymous referees for their comments and suggestions.
Furthermore, the authors also gratefully acknowledge the helpful comments and sugges-
tions of the reviewers, which have improved the presentation.

REFERENCES

[1] H. Faris, I. Aljarah, M. A. Al-Betar et al., Grey wolf optimizer: A review of recent variants and
applications, Neural Computing & Applications, no.22, pp.1-23, 2017.

[2] S. Mirjalili and A. Lewis, The whale optimization algorithm, Advances in Engineering Software,
vol.95, pp.51-67, 2016.

[3] S. Mirjalili, S. M. Mirjalili and A. Lewis, Grey wolf optimizer, Advances in Engineering Software,
vol.69, no.3, pp.46-61, 2014.

[4] H. Hu, Y. Bai and T. Xu, A whale optimization algorithm with inertia weight, WSEAS Trans.
Comput., vol.15, pp.319-326, 2016.

[5] D. Prasad, A. Mukherjee, G. Shankar et al., Application of chaotic whale optimisation algorithm for
transient stability constrained optimal power flow, IET Science Measurement & Technology, vol.11,
no.8, pp.1002-1013, 2017.

[6] W. Z. Sun and J. S. Wang, Elman neural network soft-sensor model of conversion velocity in poly-
merization process optimized by chaos whale optimization algorithm, IEEE Access, vol.5, pp.13062-
13076, 2017.
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