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Abstract. This paper addresses a backstepping control design for power systems with
STATCOM. With the help of a coordination of backstepping control strategy and rapid-
convergent differentiator, the developed control law is designed to avoid the problem of
“explosion of terms” arising in conventional backstepping method. The differentiator de-
sign is introduced to get the differential estimations of the virtual control function. The
obtained differentials can be used instead of the derivative of the virtual control func-
tions in each design step. Additionally, the derivative estimations of rapid-convergent
differentiator have high precision and no chattering phenomenon. In order to show the
effectiveness of the presented design, simulation results indicate that the presented con-
trol can effectively improve dynamic performances, rapidly suppress system oscillations
of the overall closed-loop dynamics, and outperforms a conventional backstepping control
technique.
Keywords: Backstepping control, Rapid-convergent differentiator, STATCOM, Gener-
ator excitation

1. Introduction. It is well-known that modern power systems have the rapid increase
of the size and complexity. When power system operation is confronted with unavoidable
disturbances, maintaining power system stability is one of the most important problems.
Therefore, this problem has attracted much attention from a number of researchers. Cur-
rently, there are three effective and promising methods that are used to improve system
stability under unpredictable disturbances. The first method is a utilization of generator
excitation control [1, 2, 3, 4, 5, 6, 7]. The second method is a combination of the excita-
tion and energy storage system [8]. The third method is a coordination of the excitation
and Flexible AC Transmission System (FACTS) devices [9, 10]. These schemes focus on
improving power system stability and accomplishing the desired control objectives.

Since there are recently fast developments in power electronic devices, FACTS devices
have been devoted to not only providing an opportunity to effectively tackle the existing
transmission facilities, but also dealing with several constraints to build new transmission
lines. In this paper, the Static Synchronous Compensator (STATCOM) [9, 10] of partic-
ular interest can be employed to increase the grid transfer capability through enhanced
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voltage stability, significantly provide smooth and rapid reactive power compensation for
voltage support, and enhance both damping oscillation and transient stability. So far, the
generator excitation controller [1] and STATCOM controller [10] have separately been
designed. However, in order to further enhance the power system stability of power sys-
tems, the combination of generator excitation and STATCOM is a promising and effective
method and has attracted much attention in literature for years.
To the best of our knowledge, based on directly the nonlinear control strategy, there is

little prior work that has been devoted to a coordination of generator excitation and STAT-
COM. In [11, 12], an adaptive coordinated generator excitation and STATCOM control
strategy was designed via generalized Hamiltonian control for stability enhancement of
large-scale power systems. With the help of the zero dynamic design and pole-assignment
scheme, a coordinated controller [13] for the single-machine infinite bus system was investi-
gated. A nonlinear coordinated controller [14] has been developed through a combination
of the passivity design and backstepping technique. Kanchanaharuthai et al. [15] have
developed an Interconnection and Damping Assignment-Passivity Based Control (IDA-
PBC) strategy for a coordination of generator excitation and STATCOM/battery energy
storage for transient stability and voltage regulation enhancement of multi-machine power
systems. In [16], a coordinated Immersion and Invariance (I&I) control scheme has been
developed for transient stability improvement and voltage regulation. Kanchanaharuthai
[17] presented adaptive I&I control and adaptive backstepping scheme to enhance tran-
sient stability and voltage regulation for power systems with STATCOM in the presence of
unknown parameters. Recently, based on Takagi-Sugeno (T-S) fuzzy scheme, a nonlinear
stabilizer design [18] for power systems with random loads and STATCOM was presented
and tested on both single and multi-machine power systems.
Motivated by the literature above, this paper continues this line of investigation and

further extends the backsteppping design reported in [17]. In this paper, a control al-
gorithm for designing a nonlinear controller for power systems with STATCOM via a
backstepping control [19] and rapid-convergent differentiator [20] is developed. In accor-
dance with the idea presented in [19], even if backstepping design is a powerful tool for
control design and successfully applicable for several real systems, it has an important
drawback. This drawback is the problem of “explosion of complexity” and often occurs
in large-scale systems, thereby leading to a difficulty in finding out the derivative of the
virtual control functions in each design step. In order to overcome this disadvantage,
the differentiator is applied to estimating instead of computing the direct derivative of
the virtual control functions. In recent years, there are several methods to compute d-
ifferentiators such as a linear differentiator [21], Levant differentiator [22], a finite-time
convergent differentiator based on singular perturbation techniques [23], an augmented
nonlinear differentiator [24, 25], and a rapid-convergent nonlinear differentiator [20]. It
can be obviously observed that differentiators reported in [21, 22, 23, 24, 25] are effective
but quite complicated, because their design procedures and differentiator structures are
too complex. In contrast, the recent-convergent differentiator used in this paper becomes
simpler since it consists of two major terms: a nonlinear term (comprising of continu-
ous power function) and a linear correction term. The first term is a continuous power
function with a perturbation parameter. The second term is employed to restrain high-
frequency noise and small bounded noises. Its structure of the designed differentiator is
simple and has the short computation time. Moreover, this differentiator can avoid the
chattering phenomenon, offers desired dynamical performances, and has simpler design
process than other differentiators above.
Therefore, the major contributions of this paper can be outlined as follows: (i) a sys-

tematic strategy consisting of backstepping design and rapid-convergent differentiator to
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stabilize the power systems with STATCOM has not been investigated before; (ii) the de-
rivative estimations of rapid-convergent differentiator developed for power systems with
STATCOM have high precision and no chattering phenomenon; (iii) all trajectories of
the overall closed-loop system are bounded and converge to a small neighborhood of the
equilibrium point; and (iv) in comparison with a conventional backstepping control, the
developed control law without an analytical differentiator offers better dynamic perfor-
mances and can enhance power system stability.

The rest of this paper is organized as follows. Simplified synchronous generator and
STATCOM models are briefly described and control problem formulation is given in Sec-
tion 2. Control design is given in Section 3. Simulation results are given in Section 4.
Conclusions are given in Section 5.

2. Power System Model Description.

Power system models with STATCOM. The complete dynamical model [16, 17] of
the Synchronous Generator (SG) connected to an infinite bus with STATCOM dynamics
can be expressed as follows:






δ̇ = ω − ωs

ω̇ =
1

M
(Pm − Pe − Ps −D(ω − ωs))

Ṗe = (−a + cot δ(ω − ωs))Pe +
bV∞ sin 2δ

2(X1 +X2)
+

V∞ sin δ

(X1 +X2)
·
uf

T ′
0

Ṗs = N (δ, Pe, Ps)(−a+ cot δ(ω − ωs))Pe +
N (δ, Pe, Ps)bV∞ sin 2δ

2(X1 +X2)

+
N (δ, Pe, Ps)V∞ sin δ

(X1 +X2)
·
uf

T ′
0

+
PeX1X2

∆(δ, Pe)
·
1

T

(

−

(
Ps∆(δ, Pe)

PeX1X2

− IQe

)

+ uq

)

(1)

with

∆(δ, Pe) =

√
(
Pe(X1 +X2)X2

V∞ sin δ

)2

+ (V∞X1)2 + 2X1X2Pe(X1 +X2) cot δ (2)

N (δ, Pe, Ps) =
Ps

Pe

−
Ps

∆(δ, Pe)2

(

X1X2 cot δ(X1 +X2) + Pe

(
X2(X1 +X2)

V∞ sin δ

)2
)

(3)

Pe =
EV∞ sin δ

(X1 +X2)
, Ps =

PeIQX1X2

∆(δ, E)
, IQ =

Ps∆(δ, Pe)

PeX1X2
(4)

a =
Xd +XT +XL

(X1 +X2)T ′
0

, b =
Xd −X ′

d

(X1 +X2)T ′
0

V∞ (5)

where δ is the power angle of the generator, ω denotes the relative speed of the generator,
D ≥ 0 is a damping constant, Pm is the mechanical input power, E denotes the generator
transient voltage source, Pe =

EV∞ sin δ
X

dΣ′

is the electrical power, without STATCOM, deliv-

ered by the generator to the voltage at the infinite bus V∞, ωs is the synchronous machine
speed, ωs = 2πf , H represents the per unit inertial constant, f is the system frequency
and M = 2H/ωs. X ′

d denotes the direct axis transient reactance of SG and Xd denotes
the direct axis reactance of SG. XT is the reactance of the transformer, and XL denotes
the reactance of the transmission line. For simplicity, X1 is the reactance consisting of
the direct axis transient reactance of SG and the reactance of the transformer, and X2 is
the reactance of the transmission line. T ′

0 is the direct axis transient short-circuit time
constant. uf is the field voltage control input to be designed. IQ denotes the injected
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or absorbed STATCOM currents as a controllable current source, IQe is an equilibrium
point of STATCOM currents, uq is the STATCOM control input to be designed, and T
is a time constant of STATCOM models.
For convenience, let us introduce new state variables as follows:

x1 = δ − δe, x2 = ω − ωs, x3 = Pe, x4 = Ps (6)

Subsequently, after differentiating the state variables (6), we have the power system with
STATCOM which can be written in the following form of an affine nonlinear system1 :

ẋ = f(x) + g(x)u(x) (7)

where






f(x) =








f1(x)

f2(x)

f3(x)

f4(x)







=


















x2

1

M
(Pm − x3 − x4 −Dx2)

(−a + x2 cot x1)x3 +
bV∞ sin 2x1

2(X1 +X2)

N (−a+ x2 cot x1)x3 +
N bV∞ sin 2x1

2(X1 +X2)

−
x3X1X2

(
x4∆(x1,x3)
x3X1X2

− Iqe

)

∆(x1, x3)


















g(x) =








0 0

0 0

g31(x) 0

g41(x) g42(x)







=












0 0

0 0
V∞ sin x1

(X1 +X2)
0

NV∞ sin x1

(X1 +X2)

x3X1X2

∆(x1, x3)












, x =








x1

x2

x3

x4







, u(x) =






uf

T ′
0

uq

T






(8)

The region of operation is defined in the set D =
{
x ∈ S×R×R×R×R| 0 < x1 <

π
2

}
. The

open loop operating equilibrium is denoted by xe = [0, 0, x3e, x4e]
T = [0, 0, Pee, Pse]

T =

[0, 0, Pm, 0]T .
For the sake of simplicity, the power system considered (7) and (8) can be expressed as

follows.






ẋ1 = x2

ẋ2 =
1

M
(Pm − x3 − x4 −Dx2)

ẋ3 = f3(x) + g31(x)
uf

T ′
0

ẋ4 = f4(x) + g41(x)
uf

T ′
0

+ g42(x)
uq

T

(9)

Control Problem Formulation: The main goal of this paper is to solve the control
problem of the stabilization of the power systems with STATCOM (9). The control
problem can be formulated as follows. For the system (9), with the help of the combination
of a nonlinear differentiator technique [20] and backstepping design, find out, if possible,
a nonlinear controller u(x) such that all trajectories of the overall closed-loop system are
bounded.

1It is assumed that all functions and mapping are smooth, i.e., C∞, throughout this paper.
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For the developed design procedure in the next section, the combination of the backstep-
ping strategy and nonlinear differentiator design will be developed to obtain a feedback
stabilizing nonlinear control without an analytical differentiator. In the following section,
the developed control is designed step by step to achieve the desired performances.

3. Nonlinear Controller Design. In this section, the control law for stabilizing pow-
er systems with STATCOM is developed. The main control development can be ac-
complished in the following three subsections. The first subsection is to introduce a
rapid-convergent differentiator to obtain the differential estimations of the system sig-
nals. The second subsection is to develop a backstepping strategy combined with the
rapid-convergent differentiator from the first subsection. The final subsection presents
the overall closed-loop system stability analysis via Lyapunov stability arguments.

3.1. Rapid-convergent differentiator. In this subsection, we concentrate on the d-
ifferentiator estimation of the system signals, in particular differentiator of the virtual
control law in the next subsection. So far, there exist several techniques to estimate
the differentiators of arbitrary signals such as linear differentiators [21], a second-order
(or high-order) sliding mode method [22], a finite-time convergent differentiator [23], and
augmented nonlinear differentiators [24, 25]. However, the differentiator based on slid-
ing mode algorithm has unavoidably the time-lagging phenomenon and the chattering
problems. Furthermore, the finite-time differentiator has the complicated structure. As
a result, a rapid-convergent differentiator, which has simpler structure, is introduced to
estimate the differentiator of desired virtual signals. This differentiator has an ability to
keep more rapidly convergence at all times. The rapid-convergent differentiator used in
the control strategy is given in the following lemma.

Lemma 3.1. [20] The rapid-convergent second-order differentiator is designed as






ẏ1 = y2

ǫ2ẏ2 = −a10(y1 − v(t))− a11sig(y1 − v(t))
α

(2−α) − a20ǫy2 − a21sig(ǫy2)
α

yout = y2

(10)

where y1, y2, and yout denote the system state and the output of the rapid-convergent
differentiator, respectively, sig(y)α = |y|αsign(y), α > 0. It is clear that sig(y)α = yα only
if α = q/p where p, q are positive odd numbers. For a continuous and piecewise two-order
differentiator signal v(t), there exists γ > 0 (where ργ > 2 and ρ = min{α, α/(2− α)} =
α/(2− α)), such that

yi − v(i−1)(t) = O
(
ǫργ−i+1

)
(11)

for t ≥ ǫΓ(Ξ(ǫ)e(0)), i = 1, and tj > t ≥ tj−1 + ǫΓ(Ξ(ǫ)e+(t)), j = 1, 2, . . . , k + 1, i = 2,
respectively, with y2(tj)− v′−(tj) = O (ǫργ−1), j = 1, 2, . . . , k, where α ∈ (0, 1), ǫ > 0 is the
perturbation parameter and O(ǫργ−i+1) is the approximation of ǫργ−i+1 order [28] between
yi and v(i−1)(t); ei = yi − v(i−1)(t), i = 1, 2, e = [e1, e2]

T , e+(tj−1) = [e1(tj−1), e2(tj−1)]
T ,

e+2 (tj−1) = y2 − v′+(tj−1), and Ξ(ǫ) = diag{1, ǫ}.

3.2. Rapid-convergent differentiator based-backstepping design. In this subsec-
tion, the backstepping scheme combined with the rapid-convergent differentiator is used
to find out the control law capable of achieving the desired control performances. Similar
to the idea reported in [26], the proposed control procedure is developed step by step as
follows.
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Step 1: First, we focus on the first subsystem (9), and then let z1 = x1, z2 = x2 − α1

where α1 denotes the virtual control that needs to be designed. The Lyapunov function
candidate is chosen as

V1 =
1

2
z21 (12)

Then the time derivative of V1 along the system trajectories becomes

V̇1 = z1ż1 = z1x2 = z1(z2 + α1) (13)

Choose the virual control law α1 as

α1 = −

(

c1 +
1

2

)

z1 (14)

where c1 is a design parameter. Thus, after combining (13) with (14), we have

V̇1 = −

(

c1 +
1

2

)

z21 + z1z2 ≤ −c1z
2
1 +

1

2
z22 (15)

Step 2: Let z2 = x2 − α1 and introduce the Lyapunov function candidate as:

V2 = V1 +
1

2
z22 (16)

By calculating the derivative of (16), we have

V̇2 = V̇1 + z2(ẋ2 − α̇1) = V̇1 + z2

(
1

M
(Pm − x3 − x4 −Dx2)− α̇1

)

(17)

Define x2 as the input of the rapid-convergent differentiator (10), i.e., v1(t) = x2 and
define the differentiator output yout1 = yx2. Therefore, the rapid-convergent differentiator
with the input x2 is as follows.






ẏ11 = y12
ǫ2ẏ12 = −a10(y11 − v1(t))− a11sig(y11 − v1(t))

α

(2−α) − a20ǫy12 − a21sig(ǫy12)
α

yout1 = y12 = yx2

(18)

Based on Lemma 3.1, we obtain

Pm −
1

2
Dx2 =

M

2

(
yx2 − O

(
ǫργ−3
x2

))
− x3 (19)

−
1

2
Dx2 =

M

2

(
yx2 −O

(
ǫργ−3
x2

))
− x4 (20)

where yx2 can be directly computed from (18). Let us define z3 = x3−α2 and z4 = x4−α3

where α2 and α3 are the virtual control functions to be defined. After substituting (19)
and (20) into (17), we have

V̇2 = V̇1 −
1

M
z2(z3 + z4) + z2

(

−
1

M
(α2 + α3 + x3 + x4) + yx2 − α̇1 −O

(
ǫργ−3
x2

)
)

(21)

It can be seen that α̇1 can be directly computed using the analytical differentiator. In
order to determine the virtual control functions α2 and α3 used in the next step, with the
help of Young inequality [27], one has

−
1

M
z2z3 ≤

1

4M2η21
z22 + η21z

2
3 (22)

−
1

M
z2z4 ≤

1

4M2η22
z22 + η22z

2
4 (23)
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−
1

M
z2x3 ≤

1

4M2η23
z22x

2
3 + η23 (24)

−
1

M
z2x4 ≤

1

4M2η24
z22x

2
4 + η24 (25)

z2 (yx2 − α̇1) ≤
1

4η25
z22 (yx2 − α̇1)

2 + η25 (26)

z2O
(
ǫργ−3
x2

)
≤

1

2
z22 +O

(
ǫ2ργ−6
x2

)
(27)

where ηi > 0, i = 1, 2, . . . , 5 are design parameters. By substituting (22)-(27) into (21),
we have

V̇2 ≤ −c1z
2
1 +

(

1 +
1

4M2η21
+

1

4M2η22
+

x2
3

4M2η23
+

x2
4

4M2η24
+

(yx2 − α̇1)
2

4η25

)

z22 + η21z
2
3

+ η24z
2
4 + η23 + η24 + η25 +O

(
ǫ2ργ−6
x2

)
−

1

M
z2(α2 + α3) (28)

Design the virtual control functions α2 and α3 as






α2 =
Mz2
2

(

c2 + 1 +
1

4M2η21
+

1

4M2η22
+

x2
3

4M2η23
+

(yx2 − α̇1)
2

4η25

)

α3 =
Mz2
2

(

c2 + 1 +
1

4M2η21
+

1

4M2η22
+

x2
4

4M2η24
+

(yx2 − α̇1)
2

4η25

) (29)

where c2 > 0 is a design parameter. By substituting (29) into (28), we obtain

V̇2 ≤ −c1z
2
1 − c2z

2
2 + η21z

2
3 + η24z

2
4 + η23 + η24 + η25 +O

(
ǫ2ργ−6
x2

)
(30)

Step 3: Define the Lyapunov function from Step 2 as

V3 = V2 +
1

2
z23 +

1

2
z24 (31)

Then the time derivative of V3 along the system trajectories turns into as follows:

V̇3 = V̇2 + z3

(

f3(x) + g31(x)
uf

T ′
0

− α̇2

)

+ z4

(

f4(x) + g41(x)
uf

T ′
0

+ g42(x)
uq

T
− α̇3

)

(32)

It can be observed from (29) and (32) that the direct computation in the derivative
of α2 and α3 is quite difficult. Similar to Step 2, we define α2 and α3 as the input of
the rapid-convergent differentiators (10), i.e., v2(t) = α2 and v3(t) = α3, respectively.
Therefore, two rapid-convergent differentiators with the input α2 and α3, respectively, are
as follows.






ẏ21 = y22
ǫ2ẏ22 = −a10(y21 − v2(t))− a11sig(y21 − v2(t))

α

(2−α) − a20ǫy22 − a21sig(ǫy22)
α

yout2 = y22 = yα2

ẏ31 = y32

ǫ2ẏ32 = −a10(y31 − v3(t))− a11sig(y31 − v3(t))
α

(2−α) − a20ǫy32 − a21sig(ǫy32)
α

yout3 = y32 = yα3

(33)

Then, we define two differentiator outputs from (33) as yα2 and yα3 , respectively. With
the help of Lemma 3.1, we get

α̇2 = yα2 − O
(
ǫργ−3
α2

)
(34)

α̇3 = yα3 − O
(
ǫργ−3
α3

)
(35)
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where yα2 and yα3 can be directly computed from (33).
From (32)-(35), we obtain

V̇3 = V̇2 + z3

(

f3(x) + g31(x)
uf

T ′
0

− yα2 +O
(
ǫργ−3
α2

)
)

+ z4

(

f4(x) + g41(x)
uf

T ′
0

+ g42(x)
uq

T
− yα3 +O

(
ǫργ−3
α3

)
)

≤ −c1z
2
1 − c2z

2
2 + z3

(

f3(x) + g31(x)
uf

T ′
0

− yα2 +

(

η21 +
1

2

))

︸ ︷︷ ︸

−c3z3

+ z4

(

f4(x) + g41(x)
uf

T ′
0

+ g42(x)
uq

T
− yα3 +

(

η22 +
1

2

))

︸ ︷︷ ︸

−c4z4

+ η23 + η24 + η25

+O
(
ǫ2ργ−6
x2

)
+O

(
ǫ2ργ−6
α2

)
+O

(
ǫ2ργ−6
α3

)
(36)

From (36), in order to achieve the desired control performance, the proposed control
law can be designed as

uf(x) = −
T ′
0

g31(x)

[

f3(x) +

(

c3 + η21 +
1

2

)

z3 − yα2

]

(37)

uq(x) = −
T

g42(x)

[

f4(x) + g41(x)
uf

T ′
0

+

(

c4 + η22 +
1

2

)

z4 − yα3

]

(38)

where c3 and c4 denote positive design parameters. The nonlinear control design is com-
pleted here.

3.3. Closed-loop stability analysis.

Theorem 3.1. Consider the power systems with STATCOM (9). If the rapid-convergent
differentiators are constructed as in (10), (18) and (33), then the desired control law
u(x) chosen as in (37) and (38) will guarantee that state trajectories zk converge to the

radius
√

2b/a, and all trajectories in the overall closed-loop system are bounded, where

a = min1≤k≤4{2ck}, b =
∑5

i=3 η
2
i +O

(
ǫ2ργ−6
x2

)
+O

(
ǫ2ργ−6
α2

)
+O

(
ǫ2ργ−6
α3

)
for i = 3, 4, 5.

Proof: After substituting the proposed control law (37) and (38) into (36), we have

V̇3 ≤ −c1z
2
1 − c2z

2
2 − c3z

2
3 − c4z

2
4 + η23 + η24 + η25 +O

(
ǫ2ργ−6
x2

)
+O

(
ǫ2ργ−6
α2

)
+O

(
ǫ2ργ−6
α3

)

≤ −aV3 + b (39)

From (39), it is easy to show that

V3(t) ≤

(

V3(0)−
b

a

)

e−at +
b

a
(40)

The expression above can indicate that all trajectories in the closed-loop system are
bounded. In particular, it is evident that

z2k ≤ 2

(

V3(0)−
b

a

)

e−at +
2b

a
(41)

Therefore, it means that limt→+∞ zk ≤
√

2b
a
. From the definition of the system state

variables xk, (k = 1, 2, 3, 4) and αi, (i = 1, 2, 3), it is obvious that the xk are also bounded.
Thus, the developed strategy can guarantee that all signals of the overall closed-loop
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system are bounded, converge to a small neighborhood of the desired equilibrium point,
and achieve the desired requirements. This completes the proof.

Remark 3.1. It is easy to see that even if the developed control law does not need to
employ the analytical differentiator in the design process and depends upon design param-
eters ck like the conventional backstepping control, it has the additional design parameters
(ηj) that are used to further enhance the desired control performances.

Remark 3.2. It can be observed that the proposed strategy is a systematic control strat-
egy to design the desired control law by using three steps. The presented three steps are
similar to the conventional backstepping strategy but replace the derivative of the virtual
control functions (α̇i) with the output of rapid-convergent differentiator (youtj) and the
approximation of ǫpγ−i−1 order between youtj and vj(t).

SG

E∠δ

jX1

P
F

j2X2

j2X2
Vt∠β V∞∠0

STATCOM :jIQ

Figure 1. A single line diagram of SMIB model with STATCOM

4. Simulation Results. In this section, in order to verify the effectiveness of the pre-
sented approach, we consider a Single-Machine Infinite Bus (SMIB) power system with
STATCOM as shown in Figure 1. The developed controller is evaluated through MAT-
LAB environment, and the performance of the designed control is compared with that of
the following nonlinear controller:

• A Conventional Backstepping Controller (CBC) [19].

uf(x) = −
T ′
0

g31(x)

[

c3e3 + f3(x)−
e2
M

− α̇2

]

(42)

uq(x) = −
T

g42(x)

[

c4e4 + f4(x) + g41(x)
uf

T ′
0

−
e2
M

− α̇3

]

(43)

where e1 = x1, e2 = x2 − α1, e3 = x3 − α2, e4 = x4 − α4, α1 = −c1x1, α2 =
Pm−D

2
x2−

M
2
(c2e2+e1−α̇1), α3 = −D

2
x2−

M
2
(c2e2+e1−α̇1), ck = 20, (k = 1, 2, 3, 4).

The physical parameters (pu.), the controller parameters, and initial parameters used
for this power system model are as follows:

• The parameters of synchronous generators, STATCOM, and transmission line: ωs =
2πf rad/s, D = 0.2, H = 5, f = 60 Hz, T ′

0 = 4, V∞ = 1∠0◦, Xd = 1.1, X ′
d = 0.2,

XT = 0.1, T = 1, X2 = XL = 0.2, Pm = 1,
• The tuning parameters of the proposed controller are ck = 20, (k = 1, 2, 3, 4), ηj = 2,
ǫ = 1/300, α = 1/3.
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• Initial parameters δe = 0.4964 rad, ωe = ωs, Pee = 1 pu., Pse = 0 pu., yi1 = yi2 = 0,
(i = 1, 2, 3). These initial parameters can be directly determined from setting all time
derivatives of the complete dynamical model in [16] to zero and then directly solved
from the resulting algebraic equations to obtain the equilibrium point (δe, ωe, E

′
e, Iqe).

Afterwards, by substituting such equilibrium point into (4), we obtain the initial
parameters above used throughout the simulations.

The SMIB power system consisting of generator excitation and STATCOM has been
simulated using the the physical parameters and initial conditions above. In the sim-
ulations, in order to demonstrate the effectiveness of the developed strategy over the
conventional backstepping control, we assume that there is a symmetrical three phase
short circuit (temporary fault) occurring on one of the transmission lines as shown in
Figure 1. Further, we assume that the system is in a pre-fault steady state, a fault occurs
at t = 0.5 sec., the fault is isolated by opening the breaker of the faulted line at t = 1.0
sec., and the transmission line is recovered without the fault at t = 2.5 sec. Afterward
the system is in a post-fault state.
The simulation results are presented in Figures 2-4 and discussed as follows. It can

be seen that Figure 2 shows the time responses of power angle (δ), frequency (ω − ωs),
transient voltage (E) and STATCOM current (IQ), eventually settling down to the pre-
fault state values, under two controllers. Figure 3 shows the active power (Pe + Ps) and
terminal voltage (Vt) under the proposed control and the CBC scheme.
It is evident from Figures 2 and 3 that the proposed scheme and the CBC scheme can

successfully stabilize the system, and the developed scheme demonstrates a more good
transient behavior compared with the CBC scheme. In particular, it is easy to see that
time responses of the CBC method eventually return to the pre-fault values after the tran-
sient fault is clear, but its time responses have very slow rate of convergence and are quite
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Figure 2. Controller performance – Power angles (δ) (rad.), frequency
(ω − ωs) rad/s, transient voltage (E), and STATCOM current (IQ) (Solid:
Proposed control, Dashed: Conventional backstepping control)
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Figure 3. Controller performance – Active power (Pe+Ps) (pu.) and the
terminal voltage (Vt) (pu.) (Solid: Proposed control, Dashed: Conventional
backstepping control)
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Figure 4. Time responses of power angle, frequency, transient voltage,
and STATCOM current under different coefficient control ηj = 2, 4, 6
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oscillatory as compared with the proposed controller under the same tuning parameters
ck = 20, (k = 1, 2, 3, 4). It can be observed that the developed control law is designed
by combining rapid-convergent differentiator with the backstepping scheme. Especially,
it adds the additional degrees of freedom into the design procedure to further improve
the system performances. Figure 4 shows the time trajectories of power angle, frequency,
transient voltage, and STATCOM current of the proposed control under different control
coefficients ηj, j = 3, 4, 5. This means that apart from the suitable selection of ck like
the CBC strategy, the dynamic performances of the presented strategy can be further
improved by selecting appropriate control parameters ηj . Obviously, the small values of
ηj lead to improvement of better transient performances with less regulation time.
As indicated in the simulation results above. It can be, overall, concluded that the

proposed control law is effectively designed for transient stabilization and voltage regula-
tion following short circuit. The developed control can stabilize the power system with
STATCOM and steer the overall closed-loop system to a small neighborhood of the de-
sired equilibrium point. Moreover, both active power and the terminal voltage can be
quickly regulated to the reference active power and voltage values without oscillations as
compared to the CBC method. Even though the presented method does not need to use
the analytic differentiator, its control performances can be further improved by selecting
the suitable parameters of ηj. In summary, the proposed method obviously outperform-
s the CBC one in terms of fast convergence speed, rapid reduction of oscillations, and
shorter settling time.

5. Conclusions. In this paper, a nonlinear control strategy has been developed for pow-
er systems with STATCOM. In order to avoid the problem of “explosion of term” arising
in the conventional backstepping method, the developed strategy has been designed by
combining backstepping method with rapid-convergent differentiator. This combination
is able to offer better dynamical performances as compared with the Conventional Back-
stepping Control (CBC) and avoid the chattering phenomenon arising in other kinds of
differentiators. Based on Lyapunov control theory, the stability analysis of closed-loop
system has been provided. Further, the presented control law is able to ensure that al-
l trajectory states converge to a small neighborhood of the desired equilibrium point.
The simulation results have confirmed that the proposed nonlinear control can improve
obviously better dynamical performances than the CBLC method, although there is no
analytical differentiator in the presented design process. Future study will be devoted to
extension of this approach to a nonlinear controller for multimachine power systems with
STATCOM or other kinds of FACTS devices.
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multi-machine power systems vis-à-vis STATCOM and battery energy storage, IEEE Trans. Power
Systems, vol.30, no.5, pp.2404-2416, 2015.

[16] A. Kanchanaharathai, Immersion and invariance-based non-linear coordinated control for generator
excitation and static synchronous compensator for power systems, Electric Power Components and
Systems, vol.42, no.10, pp.1004-1015, 2014.

[17] A. Kanchanaharuthai, Nonlinear adaptive controller design for power systems with STATCOM via
immersion and invariance, ECTI Trans. Electrical Engineering, Electronics, and Communications,
vol.14, no.2, pp.35-46, 2016.

[18] A. H. Abolmasoumi and M. Moradi, Nonlinear T-S fuzzy stabilizer design for power systems including
random loads and static synchronous compensator, International Trans. Electrical Energy Systems,
vol.28, no.1, pp.1-19, 2018.

[19] M. Krstic, I. Kanellakopoulos and P. V. Kokotivic, Nonlinear and Adaptive Control Design, John
Willey & Sons, 1995.

[20] X. Wang and B. Shirinzadeh, Rapid-convergent nonlinear differentiator, Mechanical Systems and
Signal Processing, vol.28, pp.414-431, 2012.

[21] H. K. Khalil, Robust servomechanism output feedback controllers for feedback linearizable system-
s, Automatica, vol.30, no.10, pp.1587-1599, 1994.

[22] A. Levant, Higher-order sliding modes, differentiation and output feedback control, International
Journal of Control, vol.76, no.9/10, pp.924-941, 2003.

[23] X. Wang, Z. Chen and G. Yang, Finite-time-convergent differentiator based on singular perturbation
technique, IEEE Trans. Automatic Control, vol.52, no.9, pp.1731-1737, 2007.

[24] X. Shao, J. Liu, W. Yang, J. Tang and J. Li, Augmented nonlinear differentiator design, Mechanical
Systems and Signal Processing, vol.90, pp.268-284, 2017.

[25] X. Shao, J. Liu, J. Li, H. Cao, C. Shen and X. Zhang, Augmented nonlinear differentiator design
and application to nonlinear uncertain systems, ISA Transactions, vol.67, pp.30-46, 2017.

[26] X. Yang, X. Zheng and Y. Chen, Position tracking control law for an electro-hydraulic servo system
based on backstepping and extended differentiator, IEEE/ASME Trans. Mechatronics, vol.23, no.1,
pp.132-140, 2018.

[27] C. Qian and W. Lin, Non-smooth stabilizers for nonlinear systems with uncontrollable unstable
linearization, Proc. of the 39th IEEE Conference on Decision and Control, Sydney, NSW, pp.1655-
1660, 2000.

[28] H. K. Khalil, Nonlinear Systems, Prentice Hall, 2002.


