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Abstract. Multi-Bernoulli (MB) filter has been demonstrated as a promising algorithm
for tracking multiple point targets with unknown and time-varying number of targets.
However, for the visual multi-object tracking (VMOT), the tracking accuracy will decrease
severely due to the problems of closely-spaced object, occlusion and scale variation. To
solve these problems, an adaptive VMOT algorithm based on the framework of the MB
filter is proposed in this paper. First, the region feature covariance (RFC) is employed
to enhance the ability of anti-interference, and then the discrimination strategy for the
closely-spaced objects and the adaptive estimate strategy for scale variation are developed
according to the constraints of tracking boxes. Finally, the particle labeling technique
is introduced to identify the track of each target. Experimental results validate superior
performance of the proposed algorithm over the traditional MB-based VMOT algorithm
in scenarios that include occlusion, background clutter, scale changes, and closely-spaced
objects.
Keywords: Visual multi-object tracking (VMOT), Multi-Bernoulli (MB) filter, Region
feature covariance, Closely-spaced objects

1. Introduction. Visual object tracking (VOT) [1-5] is a key enabling technology for
numerous emerging computer vision applications including video surveillance, navigation,
human-computer interactions, augmented reality, higher level scene understanding and
action recognition among many others. Although VOT has been researched for several
decades, and much progress has been made in recent years [6-10], it is still a challenging
task because the visual observations often suffer from disturbances due to occlusions, scale
variation, illumination variation, complex background, etc. Especially, visual multi-object
tracking (VMOT) has become one of the most difficult problems due to the extra influence
of object number variation, closely-spaced objects and mutual disturbance [11-16].
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For the early VMOT, tracking is mainly achieved through association technologies
with target detection, such as linear programming [11], belief propagation [12], network
flow [13,14], subgraph decomposition [15], and multiple hypothesis tracking (MHT) [16].
However, these algorithms are quite complicated in computation. Especially, as the target
number increases, the computational cost increases exponentially, seriously affecting the
real-time performance of VMOT.
Recently, there is a great concern for random finite set (RFS) theory [17-30]. The

probability hypothesis density (PHD) filter [17], the cardinalized PHD (CPHD) filter [18]
and cardinality-balanced MeMBer (CBMeMBer) filter [19] have proved to be promising
approaches based on the RFS theory for multi-target tracking [20-24]. Especially, the
multi-Bernoulli (MB) representation allows reliable and inexpensive extraction of state
estimates. Some of improved versions are proposed in [25-28], such as variational Bayesian
MB (VB-MB), labeled MB (LMB), generalized LMB, and poisson MB (PMB). However,
these methods are mainly used for point target tracking. In [29-36], RFS-based filters have
been applied to VMOT by using detectors to generating target position and box (scale) as
the tracking feature. In [29], adaptive PHD tracker is proposed for VMOT by introducing
both scale invariant feature and color distribution feature. In [31], Hoseinnezhad et al.
extended the MB filter to track the visual targets and successfully demonstrated tracking
of sport players. In [32], an MB-based algorithm is proposed to construct a multi-target
likelihood function by using kernel density estimation and background subtraction tech-
nique, which can make the multi-target posterior be efficiently propagated forward by
using the MB filter. In [35], LMB is employed for VMOT. Generally, the abovementioned
methods cannot efficiently handle the VMOT with some severe disturbance factors, such
as illumination variation, complex background and occlusion.
Taking the abovementioned problems into account, we propose an improved VMOT

algorithm based on MB framework which can oppose occlusions and get adapt to the
target appearance variation. First, the multiple features covariance matrices (MFCM)
[37] are employed to analyze the local region of the target using block-partition technique,
which can express the target accurately alleviating the occlusion disturbance. Moreover,
the closely-spaced objects handling method and adaptive template update strategy are
proposed to improve the robustness of the proposed algorithm. Finally, the MB based
particle label technique is employed to identify the track of each object.
The remainder of the paper is organized as follows. Section 2 summarizes the MB filter

and the MFCM method. Section 3 proposes VMOT algorithm based on MFCM and an
adaptive template scheme under the MB filter framework, and PF is employed to extract
the multi-target states. Particle label technique is implemented to identify the track of
each object. Experimental results are presented in Section 4. Finally, the conclusions are
given in Section 5.

2. Multiple Feature Express of Target. In order to cope with occlusions, illumi-
nation changes, etc., the block-partition technique is employed for expressing the target
accurately, i.e., we partition the target into five parts as shown in Figure 1, including local
and global parts. Simultaneously, each part is expressed as a feature covariance matrix
(FCM) by using multiple features, and we can analyze the change degree of the local
region by comparing the local FCM between the target temple and the candidate target.

2.1. Feature covariance matrix. Assume FI(m,n) is a feature image extracting from
a gray (intensity) image I(m,n) with size M × N , according to the gradient operator
technique, i.e.,
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FI(m,n) = φ(I(m,n))

=

[

I(m,n)
∂I(m,n)

∂m

∂I(m,n)

∂n

∂2I(m,n)

∂m2

∂2I(m,n)

∂n2

]T

,

1 ≤ m ≤M, 1 ≤ n ≤ N

(1)

where φ(·) denotes the mapping function which can be any mapping, such as gray intensity
and gradients. For the color images, we transfer them from RGB space into HSV space
and gray space, and then three extra features (hue, saturation and value) are added in (1)
to construct the feature image of color images. For simplicity, we generally discuss the
feature covariance matrix (FCM) of the intensity image here. FCM of intensity image is
defined as

RI =
1

C − 1

C
∑

p=1

(fp − µ)(fp − µ)T (2)

where fp denotes the feature vector corresponding to the pth pixel of the intensity image.

fp ∈ FI , p = 1, 2, . . . , C, C = M × N , µ = 1
C

∑C
p=1 fp denotes the mean feature vector

of the intensity image and it can be fast computed by using the integral images method
[38].

Figure 1. Block partition of the target

2.2. Feature divergence. In Figure 1, the target is partitioned into five parts, and they
are expressed as five FCMs. To measure the similarity between the target temple and the
candidate target, the Log-Euclidean distance [39] is introduced to measure the divergence
between two covariance matrices, i.e.,

d(RC , RT ) = ‖log(RC)− log(RT )‖ (3)

where RC and RT denote the candidate target covariance and the target model, respec-
tively. For the five FCMs of the target, we discard the least matching region covariance,
and the fusion feature divergence (distance) can be expressed as [39]

D
(

Ri
T , R

j
C

)

= min
γ

(

5
∑

ξ=1

d
(

Ri
Tξ
, Ri

Cξ

)

− d
(

Ri
Tγ
, Ri

Cγ

)

)

(4)

where Ri
Cγ

denotes the γth block covariance of the ith candidate (particle) target. The

feature covariance Ri
Tξ

of the ξth block of the ith target template is defined as the Log-

Euclidean mean [39] that blends the s matrices before time k, i.e.,

Ri
Tξ

= exp

(

1

s

k−s
∑

τ=k−1

log
(

Ri
Cξ

)

)

, ξ = 1, 2, 3, 4, 5 (5)
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where Ri
Cξ

denotes the feature covariance of the ξth block of the ith estimated target x̂i
τ

at time τ .

3. Adaptive-Particle-MB Filter. As shown in Figure 2, two parallel tasks should be
completed in the initial stage, newborn multi-target prediction and initial multiple targets.
New targets are generated in some given regions according to the prior knowledge, but
their scales are not known. Notice that the initial targets are considered as the surviving
targets in the next frame, and latter the estimated targets are considered as the surviving
targets. Then particle filter is applied to generating potential positions of newborn targets
and surviving targets at (k + 1)th frame according to the representation of the state
transition probability p(xk+1|xk), such that E(xk+1|xk) = xk, where xk = {mk, nk, wk, hk}
is the state vector of the target at the kth frame. The assumption is that the target motion
may be described by an affine transformation such that (mk, nk) is the target position,
wk, and hk are respectively the width and height of the tracking box. We also assume
p(xk+1|xk) has a Gaussian distribution where the covariance matrix is selected based on
prior knowledge of the tracking task.

Figure 2. Block of the proposed algorithm

Each particle corresponds to a candidate target and we divide each particle into several
blocks shown in Figure 1, and calculate its feature covariance which is used to estimate the
likelihood between the candidate target template and the target template. Target states
can be extracted according to the existence probability of each target. Notice that the
existence probability depends on the likelihood. Finally, the adaptive scale process scheme
and closely-spaced targets process scheme are proposed and implemented to obtain the
optimal states of the estimated multiple targets. The steps of the proposed algorithm are
as follows.

3.1. Steps of proposed algorithm. At time k = 0, assume that the initialized target
state set is X0 = {xi

0}M0
i=1, and xi

0 =
[

mi
0, n

i
0, w

i
0, h

i
0

]

denotes the ith target state by using

a rectangular box, where
(

mi
0, n

i
0

)

denotes the position coordinates of the box center. wi
0

and hi
0 denote the width and height of the box. M0 denotes the target number. The FCM

of the ith target is defined as R0,i
T . The newborn target can be initialized with the same

method. The FCM of the ith newborn target is defined as RΓ,i
T .

(1) Prediction. The CBMeMBer filter [24] can eliminate the posterior cardinality bias
existing in the MeMBer filter by modifying the measurement-updated tracks parameters.
Assume the dynamic process of the target state is x(k + 1) = x(k) + e(k), where e(k) is
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the Gaussian white noise with zero mean and covariance Σk = diag
(

σ2
m, σ

2
n, σ

2
w, σ

2
h

)

. The
state transfer function is defined as fk|k−1(x|xk−1) = N(x; xk−1,Σ).

Assume at time k−1, the posterior multi-target density can be presented by the multi-

Bernoulli parameter set, i.e., πk−1 =
{(

r
(i)
k−1, p

(i)
k−1

)}Mk−1

i=1
, where r

(i)
k−1 and p

(i)
k−1 denote the

existence probability and probability density of the ith Bernoulli component, respectively.

p
(i)
k−1 can be expressed by a group weighted particle

{

ω
(i,j)
k−1 , x

(i,j)
k−1

}L
(i)
k−1

j=1
, i.e.,

p
(i)
k−1(x) =

L
(i)
k−1
∑

j=1

ω
(i,j)
k−1δx(i,j)

k−1
(x) (6)

where ω
(i,j)
k−1 denotes the weight of the particle x

(i,j)
k−1 of the ith target and L

(i)
k−1 denotes the

number of the particles. δ(·) is the Dirichlet function.
In the process of prediction, newborn particles can be obtained from the parameters

{(

r
(i)
Γ,k, p

(i)
Γ,k

)}MΓ,k

i=1
of newborn targets. r

(i)
Γ,k and p

(i)
Γ,k denote the existence probability and

probability density of the ith newborn target, respectively. MΓ,k denotes the number of
the newborn targets.

The predicted parameters of the surviving targets can be expressed as

r
(i)
p,k|k−1 = r

(i)
k−1

L
(i)
k−1
∑

j=1

ω
(i,j)
k−1pS,k

(

x
(i,j)
k−1

)

(7)

where pS,k denotes the existence probability of the targets at time k,

x
(i,j)
p,k|k−1 ∼ fk|k−1

(

·
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)

(8)

fk|k−1

(

·
∣

∣

∣
x
(i,j)
k−1

)

= N
(

·
∣

∣x
j
k−1,Σ

j
k−1

)

(9)
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(i,j)
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(i,j)
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/

∑L
(i)
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j=1
ω
(i,j)
p,k|k−1 (10)

ω
(i,j)
p,k|k−1 = ω

(i,j)
k−1 (11)

(2) Update. Assume the predicted multi-target density at time k can be expressed by

a known multi-Bernoulli parameter set as πk|k−1 =
{(

r
(i)
k|k−1, p

(i)
k|k−1

)}Mk|k−1

i=1
, where p

(i)
k|k−1

is composed of a set of weighted samples
{

ω
(i,j)
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(i,j)
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}L
(i)
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j=1
, i.e.,

p
(i)
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(i,j)
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where ω
(i,j)
k|k−1 denotes the predicted weight of the predicted particle x

(i,j)
k|k−1. The number

of the predicted Gaussian complements is Mk|k−1 = Mk−1 +MΓ,k.
Update the parameters of the multi-Bernoulli as follows,

r
(i)
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r
(i)
k|k−1ε

(i)
k

(

1− r
(i)
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(i)
k|k−1ε

(i)
k

) (13)
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where ε
(i)
k =

∑L
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(i,j)
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x
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)

, gyk

(

x
(i,j)
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)

denotes the likelihood of the latest

observation (candidate target or particle in kth frame from the ith target), which can be
obtained according to the fusion feature distance D(i,j) = D

(

Ri
T , R

j
C

)

of Equation (4),
i.e.,

gyk

(

x
(i,j)
k|k−1

)

=
1√
2π

e−λD(i,j)/2 (16)

where λ ∈ [10, 30].
(3) Target extraction. To alleviate the effect of the particle degeneracy, the updated

particles are resampled with the number of particles reallocated in proportion to the
probability of existence as well as restricted between a minimum Lmin and maximum
Lmax. The resampling step can effectively eliminate the particles with low weights and
multiply the particles with high weights to focus on the important zones of the state space.
The resampling process is similar to that of the CBMeMBer filter [24]. Notice that the
number of the particles increases due to the spontaneous births in the prediction and the
averaging of the hypothesized tracks in the update. Therefore, the hypothesized tracks
need to be pruned by discarding those with existence probabilities below a threshold η

(e.g., 0.01), which can reduce the number of particles effectively.
Finally, the number of targets and their states are estimated via finding the multi-

Bernoulli parameters with existence probabilities larger than a threshold (set at 0.5 in
our experiments). Each target state estimate is then given by the weighted average of the
particles of the corresponding density, i.e.,

xi
k =

L
(i)
k|k−1
∑

j=1

ω
(i,j)
k x

(i,j)
k|k−1 (17)

3.2. Adaptive process of closely-spaced objects. When two targets are close to each
other, it is easy to be estimated as one target, which causes underestimate. To solve this
problem, we propose an effective scheme to detect the close targets and separate them
adaptively.
Taking two targets shown in Figure 3 as an example, they are close in the horizon

direction (x direction). Assume the states of the two targets are xi = [mi, ni, wi, hi],
xj = [mj , nj, wj, hj ], and the horizon distance between the two targets is dhij = |mj −mi|,
s.t. nj = ni. If d

h
ij is less than a distance threshold T 1

h , then we consider the two targets

are superposition without special process. If T 1
h ≤ dhij ≤ T 2

h , then we consider that the
two targets are close, and we separate the tracking box apart each other according to the
scheme in Table 1. In this paper, we set T 1

h = (wi + wj)/5 and T 2
h = (wi + wj)/2. If the

targets are close in the vertical direction (y direction), the similar method can be used.
In Table 1, α is an empirical parameter and set as 0.15, which means that the tracking
box will be moved apart 0.15 times of the box width when the targets are close to each
other.
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Figure 3. Separation of the close targets

Table 1. The scheme to separate close targets

Initial parameter α = 0.15
if T 1

h < dhij < T 2
h then

if mi ≤ mj then
mi ← mi − wiα

mj ← mj + wjα

else
mi ← mi + wiα

mj ← mj − wjα

end if
end if

Figure 4. Adaptive tracking box

3.3. Adaptive tracking box. Assume the state of the ith extracted target at time k

is expressed as xR
k,i = [mr

k, n
r
k, w

r
k, h

r
k], and the tracking box is L1 shown in Figure 4.

When the scale variation of the target is big, L1 may not describe the target well, i.e.,
it cannot contain the whole target; therefore, we should adjust the size of the tracking
box. We propose to enlarge L1 as L2, and the enlarged state is described as xE

k,i =
[mr

k, n
r
k, (1 + λ)wr

k, (1 + λ)hr
k], where λ is the scale factor and it is set as 0.4 according to

the experience in this paper. Then image binarization is implemented in the box of L2,
and the maximal connected region of the target can be obtained. Finally, the minimal box
L3 containing the maximal connected region can be extracted as the estimated tracking
box of the target, and the state is described as xmin

k,i . If |CL3 − CL1 | > η, where η is
a threshold of the difference value between two boxes and set as 0.4CL1 , CL3 and CL1

denote the perimeter of the boxes L3 and L1, then the estimated state is updated as
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xF
k,i = β ∗ xmin

k,i + (1 − β)xR
k,i, where β = 0.1, otherwise, β = 0.9. It means that if the

difference value is bigger than the threshold, i.e., the variation of the target state xmin
k,i is

big corresponding to xR
k,i, then we more believe xR

k,i; therefore, we select smaller value of
β.

3.4. Track maintenance. In order to obtain the target tracks, the particle labeling
technique [40,41] is employed to identify the targets. In prediction stage, the prediction
labels of the Bernoulli components keep the same labels with the previous components.
It is noticed that all the particles from the same Bernoulli component have the same
label. While in the update stage, the measurement-updated components are assigned the
labels of the predicted tracks. Moreover, the resampled particles keep the same label as
their father particles. Finally, the track continuity can be completed according to the
particle labels by the data association technique [40,41], i.e., the track can be obtained
by comparing the number of particles with the same labels in each component.

4. Experimental Results and Analysis. To verify the effectiveness of the proposed
algorithm, some challenging sequences from the public dataset of VMOT are used to
evaluate the performance of the proposed algorithm. The video data (Data 1, 2 and
3) of the experiment are from the Terravic Research Infrared Database [42], CAVIAR
Database 05 and Dataset 03 [43]. The main challenging features of these data include
target number variation, scale changes, close target, occlusion and background clutter.
The proposed algorithm is compared with the original MB-based tracking algorithm [31].
The experiments are implemented on computer with Intel Core 2.4 GHz, i7-4700HQ
processor with 8GB RAM. The software tool is MATLAB 2014a. For each sequence, the
location of the target is manually labeled in the first frame.
In the experiments, the probabilities of target survival pS,k = 0.99, and at each time,

a maximum of Lmax = 1200 and minimum of Lmin = 300 particles per-hypothesized
track are imposed so that the number of particles representing each hypothesized track is
proportional to its existence probability after resampling in the update stage. In addition,
the hypothesized tracks pruning is performed with a weight threshold of η = 10−3 and
the maximum number of hypothesized tracks is Tmax = 100.
To evaluate the performance of the tracking algorithms, four evaluation criteria are

employed to quantitatively assess the performance of the proposed algorithm. They are
average number estimate of targets, optimal subpattern assignment (OSPA) distance [19],
average miss tracking rate (AMTR) and average running time. AMTR is defined as the
rate between the average number of the miss estimated targets and the real number of
targets. Experimental results are shown in Figures 5-10 and Table 2.

4.1. Qualitative evaluation. Figures 5, 6 and 7 show the tracking results of the visual
targets with different algorithms, where the video Data 1 in Figure 5 is infrared and Data
2 and 3 in Figures 6 and 7 are colorized.
(1) Scale change. As we can see that the targets in Figure 5 undergo heavy scale

changes. The proposed algorithm can adaptively estimate the scale of target accurately,
which demonstrates that the adaptive scale process scheme in the proposed algorithm can
effectively work. From Figures 6 and 7, we can also conclude that the proposed algorithm
has a better performance for estimating the target scale.
(2) Closely-spaced targets. In Figure 6, some of the targets are close to each other,

and partial occlusion occurs in this scenario. However, it is clear that the proposed
algorithm can identify each target and extract the targets accurately, which illustrates
that the adaptive process scheme of closely-spaced targets in the proposed algorithm can
work well. Moreover, the multiple features of the local blocks and global of targets are
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Frame 30 Frame 60 Frame 100 Frame 140

(a) Algorithm in [31]

(b) Proposed algorithm

Figure 5. Experimental results of Data 1 (Infrared Database)

Frame 170 Frame 220 Frame 270 Frame 370

(a) Algorithm in [31]

(b) Proposed algorithm

Figure 6. Experimental results of Data 2 (CAVIAR Database 05)

extracted to form the FCMs which can more accurately express the targets and alleviate
the disturbance of the occlusion. While part of the targets are missed by using the original
MB-based algorithm due to the close target and the occlusion, such as the targets in the
270th frame.

(3) Disturbance of complex background. In Figure 7, some of the targets are disturbed
in the complex background, such as the shadow, building, lawn, and tree. We also draw
the conclusion that the proposed algorithm has a better tracking performance of position
and scale estimation than the original MB-based algorithm.

4.2. Quantitative evaluation. Figure 8 shows the average target number estimates of
the three different video. We can see that the proposed algorithm provides more accurate
target number estimates than the original MB-based method. The reason is that the
feature covariance technique of the proposed algorithm can effectively present the targets.
Moreover, the tracking box and the close targets are adaptively processed by the proposed
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Frame 30 Frame 60 Frame 90 Frame 110

(a) Algorithm in [31]

(b) Proposed algorithm

Figure 7. Experimental results of Data 3 (CAVIAR Dataset 03)

(a) Data 1 (b) Data 2 (c) Data 3

Figure 8. The comparisons of target number estimates

(a) Data 1 (b) Data 2 (c) Data 3

Figure 9. OSPA distance estimation

scheme. While for the original MB-based method, it is clear that some of the targets are
missed.
Figure 9 shows the comparisons of the OSPA distances between the two algorithms,

and it is clear that the proposed algorithm again outperforms the original MB-based
algorithm. This is also due to the fact that the proposed method can adapt to the scale
changes and has a good performance for tracking the close targets.
Table 2 shows the average OSPA distance and miss tracking rate of the two algorithms.

It can be seen that the proposed algorithm has a better performance than the originated
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(a) Data 1 (b) Data 2 (c) Data 3

Figure 10. (color online) Results of the track estimation (different colors
denote different tracks)

Table 2. Average OSPA distance and miss tracking rate

Data Algorithm Average OSPA Miss tracking rate

Data 1
Algorithm in [31] 5.3963 0

Proposed algorithm 1.8763 0

Data 2
Algorithm in [31] 12.7337 0.5275

Proposed algorithm 3.4233 0.0125

Data 3
Algorithm in [31] 23.7528 0.9733

Proposed algorithm 5.1358 0.0333

MB-based method. However, the average run time of the proposed algorithm is slightly
higher than that of another algorithm. The reason is that the proposed algorithm includes
the procedure of adaptive close targets and scale variation.

4.3. Trajectory estimates. Figure 10 shows the estimated trajectories of the targets, it
is clear that the proposed algorithm can effectively estimate the trajectory of each target,
although some of the targets are close in Figure 10(b), and partial targets are occluded
by the background in Figure 10(c). Therefore, the proposed algorithm has a good ability
of track estimation by employing the particle labeling technique.

5. Conclusions. In this paper, we present an adaptive visual multiple object tracking
based on MB filter. The region feature covariance (RFC) is employed to construct the
target template which has a better ability of anti-interference. To robustly decide the
final tracking state, the discrimination strategy for the closely-spaced objects and the
adaptive estimate strategy for scale variation are proposed according to the image fusion
technique. Finally, the particle labeling technique is introduced to identify the track of
each target. The effectiveness of the proposed algorithm is experimentally demonstrated
by being compared with the original MB-based algorithm on challenging video sequences,
and the experimental results show that the proposed algorithm has a better tracking
performance for visual multi-object tracking in the scenarios with the interference of
occlusion, background clutter, scale change, shadow as well as the closely-spaced targets.
However, the compute cost is high; in future, we would like to improve the computational
efficiency by considering some optimal schemes.
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