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Abstract. The problem of image labeling consists in assigning semantic labels to every
pixel in an image. Recently, given their capacity to learn rich features, many state-of-
the-art techniques make use of Convolutional Neural Networks (CNNs) for dense image
labeling tasks (e.g., multi-class semantic segmentation). In this paper, we propose the
optimization of distributed CNN for image labeling on asynchronous GPU (Graphics
Processing Unit) model. We deduce equations for ADMM (Alternating Direction Method
of Multipliers) which has been widely used in variety of optimization problems, and ap-
ply the optimization to distributed convolutional neural networks training. Our proposed
framework is designed and implemented in GPU-GPU communication depending on the
asynchronous model. The results show that we could get good pixel accuracy of image
labeling while having a fast labeling speed.
Keywords: Image labeling, Convolutional neural networks, Asynchronous GPU model,
Labeling speed

1. Introduction. In the computer vision field, the labeling task aims at getting pixel-
wise dense labeling of an image in terms of semantic concepts such as tree, road, sky,
water, building, and foreground objects. It consists of labeling each pixel in an image
with the category of the object it belongs to, which is an important step towards image
understanding. However, the scene labeling is very challenging, and it implies solving
jointly detection, segmentation and multi-label recognition problems.

Image labeling has been approached with variety of methods in the past. Traditionally,
CRF (Conditional Random Field) [1] and MRF (Markov Random Filed) [2] provide pow-
erful tools for building models to label image segments. They are particularly well-suited
to model local interactions among adjacent regions. Most methods rely on CRF [3], MRF
[4] or similar types of graphical models [5, 6] to ensure consistency in labeling. They
can compute a simultaneous labeling of image regions into semantic classes (e.g., tree,
building, car) and geometric classes (sky, vertical, ground). These methods are augment-
ed with different approaches from conventional vision literature, involving CRF or MRF
over those superpixels and multilevel segmentation with class purity criterion. However,
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they are limited in dealing with complex, global (long-range) interactions between region-
s. Some pre-segmentation methods of image into superpixels [7, 8] are exploited, which
extract features form individual segments to get the most consistent labels for the image.
However, their methods alone do not accurately pinpoint the object boundaries. Then,
Liu et al. [9] show how the parameters of the label tree can be found using maximum like-
lihood estimation. This new probabilistic learning technique produces a label tree with
significantly improved recognition accuracy. At the same time, Kae et al. [10] show how
an RBM (Restricted Boltzmann Machines) can be added to the architecture to provide a
global shape bias that complements the local modeling, which demonstrates its labeling
performance for the parts of complex face images from the labeled faces. Although they
allow for a finer segmentation and optimize the segmentation process with a global objec-
tive of class purity, they still have to improve the labeling accuracy and speedup labeling
process.
As computing power increases, GPUs can solve large data parallel problems at a higher

speed than the traditional CPU, while being more affordable and energy efficient than
distributed systems [11]. Furthermore, GPU can enable concurrent visualization and in-
teractive segmentation, where the user can help the algorithm to achieve a satisfactory
segmentation result [12]. On the other hand, many state-of-the-art techniques make use of
convolutional neural networks for dense image labeling tasks [13], which has recently be-
come one of the most powerful learning tools in computer vision, and achieved good results
in various computer vision tasks. Based on GPU hardware accelerated implementation,
Pinheiro and Collobert [14] state that backpropagated gradients on image are equivalent
to convolutional networks by Zeiler et al. [15] wherein, they reverse the layers and apply
them on the generated code. Deep Convolutional Neural Networks (DCNNs) Feature
Extractor (DCNN-FE) has been widely applied in many applications and achieved great
success. It is true that CNNs handle much smaller number of parameters than the stan-
dard neural networks by sharing weights (convolution layers), but several state-of-the-art
CNNs applications such as hyperspectral image segmentation [16, 17], image action recog-
nition [18] and image retrieval [19] still require a lot of parameters. The large number of
parameters make training hard, causing fatal issues such as overfitting and local optima.
More recently, convolutional neural networks as important parts of DCNNs have achieved
great successes in the field of computer vision [20]. However, convolution always takes
much computation time in the DCNNs.
In order to improve the efficiency of CNNs, many solutions [21, 22, 23] focusing on

training algorithms and parallelism strategies have been proposed. Their results are con-
siderably better than the traditional image feature extraction and segmentation, and
show great potential of CNN used for image interpretation. An improved deep learning
framework brief-net based on CNN [24] is presented, which provides higher accuracy of
identification and classification for the image datasets considered. Also Maggiori et al.
[25] establish the desired properties of an ideal semantic labeling CNN, and assess how
those methods stand with regard to these properties for high-resolution aerial image la-
beling. Nowadays, in the applications such as online recognition [26], ocean emergency
warning [27] and fast applications [28, 29], the main challenge of image segmentation and
labeling is not only to give a high accuracy, but also it should take less computation time
and integrate processing with existing GPU pipelines easily.
To accelerate the process of image labeling, we propose a novel asynchronous distribut-

ed CNN optimization using Alternating Direction Method of Multipliers (ADMM). Unlike
previous works on distributed optimization for neural network training which rely solely
on the primal optimization, we formulate the problem into a global consensus optimiza-
tion and distribute the neural network training in a principled fashion. In this paper,
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we present distributed CNN training framework based on ADMM, and design the da-
ta parallelization scheme applied to image labeling. We deduce equations for ADMM,
which has been widely used in variety of optimization problems. Then we present the
ADMM-based parameter update equations adapted to CNN training context and design
distributed implementation based on asynchronous GPU model. Experimental results
have demonstrated that the proposed method can achieve satisfactory labeling accuracy
and speed.

The rest of this paper is organized as follows. Scene labeling and its implementation
flow are given in Section 2. Optimization of convolutional neural network is described in
Section 3. GPU-based distributed CNN training framework is deduced and designed in
Section 4. At last, experimental results are discussed in Section 5, and finally conclusions
are given in Section 6.

2. Scene Labeling and Its Implementation Flow. In the context of scene labeling,
given an image I we are interested in finding the label of each pixel at location (i, j)
in the image. More precisely, the network is fed with a squared context patch Ii,j,k
surrounding the pixel at location (i, j) in the kth image. The main difficulty of scene
labeling is to select appropriate features and how to use contextual semantic information.
Features provide a compact and concise representation for scene image. A good feature
should be robust to accommodate intra-class variations and also provides good inter-class
discriminativeness. Few other properties of good feature descriptors are locality, pose-
invariance, scale-invariance, repeatability, etc. There is one example of scene labeling as
shown in Figure 1.

Figure 1. From the query image to scene labeling

From Figure 1, on the left there is one scene of city street for image labeling. Four
categories of the object region on the right, that is, sky, building, car and road are
segmented based on feature information and semantic concepts. Therefore, the scene
labeling task consists of partitioning the different meaningful regions of one image and
labeling pixels with their regions.

In order to get more accurate labeling information, it is necessary to use multi-scale
semantic information, namely, the semantic features of close adjacent pixels, different ob-
jects in long range and interconnections between backgrounds. Recently, convolutional
neural network has obtained good classification and detection results on several image
datasets. So it has been paid more attention to extract features and produce better
robustness of classification. However, the problem of scene labeling is not only a classi-
fication problem, but a structural prediction problem. The graph model structure can
predict the structure better and establish semantic association on the basis of extracting
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features. Therefore, combining the convolutional neural network and the graph model,
such as conditional random fields, we can solve the problem of scene labeling.
In scene labeling, we use distributed convolutional neural networks to label each pixel.

It utilizes different scales of context information. After coarse labeling of CNN, a fully-
connected conditional random field corrects some labeling mistakes. Implementation flow
of our scene labeling is shown in Figure 2.

Figure 2. Whole implementation flow of scene labeling

From Figure 2, there are four major steps to accomplish the labeling task as follows.
• Preprocess of the original image: the original RGB (Red, Green and Blue) color

channel is transformed into YUV color channel, where the Y component, also called
luma, represents the brightness value of the color, and the U and V components are
called chroma values or color difference values. The global normalization is processed on
each channel. In the local region, subtraction normalization and division normalization
are applied later.
• Points sampling: several points are randomly sampled on the training image to keep

the training samples of different classes balanced.
• CNN training: during the training process, using distributed CNN, features are ex-

tracted around the sampling point in different scale windows. The rough classification is
carried out by the CNN classifier.
• Scene labeling: based on classification, the full connection CRF is used for smooth

processing, in which the edge potential cluster is the color and position relation. The
vertex potential cluster is the number of categories, that is, the output of scene labeling
via distributed CNN.

3. Optimization of Convolutional Neural Network. After given the definition of
scene labeling and its implementation flow in Section 2, we introduce how to use CNN to
implement the scene labeling and solve the complex dual problem in CNN by applying
the projection gradient method in this section.
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Figure 3. Model of convolutional neural network

Figure 4. Example of a convolutional layer

Convolutional neural networks are state-of-the-art models for many image classification
and labeling tasks, which are designed as shown in Figure 3. From Figure 3, our CNN
consists of a series of sublayers, namely a convolution (filter bank) sublayer, a non-linearity
sublayer, a local response normalization sublayer, and a feature pooling sublayer followed
by an output. Each type of layer contains several feature maps, or groups of neurons, in
a rectangular configuration.

To be specific, Figure 4 shows two layers of a CNN. Layer m− 1 contains four feature
maps. Hidden layer m contains two feature maps (h0 and h1). Pixels (neuron outputs) in
h0 and h1 are computed from pixels of layer (m−1) which fall within their 2×2 receptive
field in the layer below.

In this paper we would discuss the Objective Function of CNN and the back propagation
algorithm to compute the gradient with respect to the parameters of the model in order to
use gradient based on optimization. The act of training a CNN is a (mainly) supervised
learning problem. It is the task of adjusting the output function to match what is reflected
in the training image. The first step to perform this task is quantifying how well the
current output matches the desired output. We call this quantifier the Objective Function,
but it is equivalently referred to as a Loss Function or a Cost Function. Once we have
found such a fitting measure, we can rephrase the training of a neural network as a
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mathematical optimization problem. It is our objective to adjust the weights such that
they minimize the Loss/Cost/Objective Function.
The goal of the CNN is to collectively solve the following convex optimization problem

minimize f(w) subject to Aw = b (1)

where f is the Objective Function and w is a primal variable. A is an r × n matrix with
rows aTi , and b ∈ Rr is a vector with components bi.
In some situations, the partial dual problem is considered and is still referred to as

the dual. In particular, consider relaxing only the inequality constraints of the problem
Equation (1), yielding a dual problem of the form

g(λ) = inf {L(w, λ)} (Dual function) (2)

where the dual function L is given by

L(w, λ) = f(w) + λT (Aw − b) (Lagrangian) (3)

where λ is a dual variable.
To solve the dual problem, we can now apply the projection gradient method, which

is adapted to handle maximization. The projected gradient method for the dual problem
has the new form. Since ∇λg(λ) = Aw+ − b where w+ = argminw L(w, λ), the update
equations can be written as follows:

wk+1 ← argminL
(
w, λk

)
(w-minimization step) (4)

λk+1 ← λk + η
(
Awk+1 − b

)
(Dual update) (5)

where η is an appropriate step size.
Finally, we can solve the dual problem in CNN by alternately repeating the above

update equations Equation (4) and Equation (5) until convergence would result in the
optimal solution.

4. GPU-Based Distributed CNN Training Framework. The optimization of con-
volutional neural network is given in Section 3, the detailed solution of the convex opti-
mization problem in CNN has been acquired. So in Section 4, we represent the distributed
implementation of CNN via improved ADMM algorithm in Section 4.1 and design the
asynchronous peer-to-peer GPU model for the distributed implementation in Section 4.2.

4.1. Design of distributed CNN. Considering separability of the Objective Function
and improved ADMM algorithm, CNN training in this paper can be designed for dis-
tributed implementation. We assume that W is a two dimensional parameter matrix,
X = {xi}Ni=1 is the set of training scene image and Y = {yi}Ni=1 is the set of corresponding
class features of scene image. We can represent the final L2-regularized loss in terms of a
linear sum of individual losses over the whole training scene images. The image dataset
D is separated into m subsets {Dj}mj=1, and also the new Objective Function of CNN F
could be split into m disjoint terms as follows:

F (W ;D) =
1

N

N∑
i=1

l(W ;xi, yi) +
λ

2
∥W∥2F

=
1

N

m∑
j=1

∑
i∈Dj

l(W ;xi, yi) +
λ

2
∥W∥2F

=
m∑
j=1

[
Fj(Wj;Dj) +

λ

2m
∥W∥2F

]
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In order to exploit the GPU parallelization scheme, each of terms m should be fed
into one of the GPU processors. Although we divide the process into m separate terms
independently, all GPU processors solve the same problem actually. So combining ADMM
with the global consensus optimization problem by introducing the consensus variable
Z, we can acquire the Objective Function optimization problem of convolutional neural
network as follows

minimize
Wj

m∑
j=1

[
Fj(Wj;Dj) +

λ

2m
∥Wj∥2F

]
subject to Wj = Z, j = 1, . . . ,m

Then the augmented Lagrangian of the Objective Function can be obtained as follows

Lρ(W,Z,Λ) =
m∑
j=1

[
Fj(Wj, Dj) +

λ

2m
∥Wj∥2F

]
+ tr

(
ΛT

j (Wj − Z)
)
+

ρ

2
∥Wj − Z∥2F (6)

where ρ is the dual variable of augmented Lagrange, Λj is the jth dual multiplier matrix
of Lagrange, and tr

(
ΛT

j (Wj − Z)
)
is the sum of all the matrix elements after multiplying

Λj with Wj − Z.
In order to find a minimizer of the constrained problem Equation (6), the improved

ADMM algorithm uses three iterative computations for the j-th data subset as follows.
1) Make use of a descent method to solve the following performance promoting problem,

W k+1
j = argmin

W
Lρ,j

(
W,Zk,Λk

j

)
(7)

2) Find the analytical expressions for the solutions of the following sparsity promoting
problem,

Zk+1 = argmin
Z

Lρ

(
W k+1

j , Z,Λk
j

)
(8)

3) Update the dual variable Λ using a step-size equal to ρ, in order to guarantee that
the dual feasibility condition is satisfied in each ADMM iteration,

Λk+1
j = Λk

j + ρ
(
W k+1

j − Zk+1
)

(9)

Later we use ρUj to replace Λj, and simplify the update equations, which is called
scaled version of ADMM as follows

W k+1
j = argmin

W
Fj(W ;Dj) +

λ

2m
∥W∥2F +

ρ

2

∥∥W − ZK + Uk
j

∥∥2

F
(10)

Zk+1 =
1

m

m∑
j=1

(
W k+1

j + Uk
j

)
(11)

Uk+1
j = Uk

j +
(
W k+1

j − Zk+1
)

(12)

Finally, we compute W k+1
j using the back propagation of CNN via gradient descent

method as follows

∂

∂W l
j,pq

L
(
W,Zk,Λk

)
= alj,qδ

l+1
j,p +

(
λ

m
+ ρ

)
W l

j,pq + ρ
(
U l
j,pq − Z l

pq

)
(13)

∂

∂blj,pq
L
(
W,Zk,Λk

)
= δl+1

j,p + ρ
(
blj,pq − Z l

pq + U l
j,pq

)
(14)

W l
j,pq = W l

j,pq − α
∂

∂W l
j,pq

L(W,Z,Λ) (15)
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4.2. Asynchronous peer-to-peer GPU model. Our proposed framework can be im-
plemented in the way depending on the communication strategy among GPU processors.
The asynchronous GPU model is the peer-to-peer model, where client processors inter-
communicate directly to transfer parameters without the server processor.
Instead of reporting W and U to the server and receiving the updated Z from the server

as in the client-server model, Z is defined in all the processors, and is updated locally.
When the client reaches certain period, it gathers up the U +W values from every client,
and computes Z by using Equation (11). Figure 5 shows how the processor 0 gathers up
parameters from other processors.

Figure 5. Asynchronous peer-to-peer GPU model

From Figure 5, in the peer-to-peer model, we assign the number of processors as m = 4.
We classify the training data into four data batches, and transfer data batch 1, data batch
2 and data batch 3 to three GPU processors for proceeding asynchronously in different
processors. Then the processor 0 can update its local Z by gathering up the U+W values
from three clients via inter-GPU communication. The Z computing process is repeated
periodically, and is proceeded asynchronously in different processors.

5. Experiment and Results. Based on GPU platform, we have implemented the ef-
ficient scene labeling using distributed convolutional neural networks on asynchronous
peer-to-peer GPU model. Our final labeling is tested on a computer equipped with ex-
periment on Intel i5-4670k@3.4Ghz, 16GB DDR3@1800Mhz and Nvidia GeForce GTX
780 Ti 3GB with 2880 CUDA Cores. We have realized the method C++ programming
in Visual Studio 2016. We have achieved relatively high speed of labeling and our results
clearly show the effective implementation of our technique.
We use the Stanford Background Dataset [30] to test, train and validate our proposed

networks. The Stanford Background Dataset consists of 715 images having an approxi-
mate size of 320 × 240 pixels, and each pixel labels into one of the following categories:
sky, tree, road, grass, water, building, mountain, foreground, unknown. In addition, we
add one more category: undefined, to take account of the variable image size. If the image
is of size 300 × 240, then the last 20 columns of the resultant image (of size 320 × 240)
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Figure 6. Ten categories when labeling scene image

Figure 7. One scene labeling result. (L-R): input image, ground truth
labels, output learnt labels.

Figure 8. Another scene labeling result. (L-R): input image, ground truth
labels, output learnt labels.

are labeled as undefined. Thus, our goal is to classify each pixel in an image into one of
the ten categories.

We use the first 429 images out of all the 715 images for training, and equally split up
the remaining (143 each) for validation and testing. Although this may appear to be a
small dataset, we are training for each pixel and so, effectively, the number of training,
validation and test points is 32947200, 10982400 and 10982400 respectively (since image
size is 320× 240). To visualize our results, each of ten labels is given a unique grey scale
color as shown in Figure 6.

We evaluate our results based on per pixel and per class accuracy. We achieve an
average per pixel accuracy of only 93% on the validation data and 95% on the test data
after training for about 90 epochs. Figure 7 and Figure 8 show two scene labeling results
on the basis of per pixel accuracies.

As shown in Figure 7 and Figure 8, The location features are important in discrim-
ination few classes from other. For example, ‘sky’ generally appears in top portion of
images, ‘grass’, ‘water’ and ‘road’ appear in bottom portion of images, and ‘foreground
objects’ appear in center portion of images. The labeling result is quite good and is close
to the true object in scene. Also the boundaries seem to be correct and average accuracy
of scene labeling is relatively high.

In order to show the effectiveness of our method, we give an objective evaluation for
validation accuracies for our model across training iterations as shown in Figure 9.

From Figure 9, we achieve a validation accuracy of approximately 93%. Especially in
some categories such as sky, road and water, we have obtained a better labeling effect. The
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Figure 9. Per class accuracies

Table 1. Labeling speed comparison via different methods

Different scenes Pinheiro’s method [14] Jiang’s method [21] Our method
Scene in Figure 7 25s 19.8s 4.7s
Scene in Figure 8 23s 17.4s 2.0s

LogLoss value, which is the Objective Function to minimize to fit a log linear probability
model to a set of labeled images, achieved using this model is approximately 0.08 and it
shows the model is reasonable.
Then, we implement the method for high-performance image labeling. which achieves

the state-of-the-art performance. To give an objective evaluation, we implement different
labeling for comparison with two methods [14, 21] as shown in Table 1.
From Table 1, we obtain a relatively faster labeling speed as a result of GPU acceler-

ation. When the entire distributed convolutional neural networks can be put on many
single GPUs instead of single CPU cluster, everything is much faster: communication
latency is reduced, bandwidth is increased, and size and power consumption are signif-
icantly decreased, which make speed of image labeling faster. In addition, a very large
number of features can be extracted from a super-pixel. However, increasing the num-
ber of features would increase the computation time for extracting the features, time of
training the classifier, and time of predicting the labels after training.

6. Conclusions. Instead of naively distributing the computation over multiple proces-
sors, we attempt to apply one of the distributed optimization techniques to training
convolutional neural networks, and implement an efficient scene labeling on GPU. Our
framework is based on the combination of ADMM and global consensus optimization. We
divide ten categories when labeling scene, and use different grey scale colors to visualize
our labeling results. From labeling visualization, validation accuracy and LogLoss value,
we can acquire efficient scene labeling with faster labeling speed.
To our knowledge, this is very useful to apply ADMM to neural network training,

so it seems meaningful to further explore the problem. We also plan to experiment on
different datasets with larger networks where the communication overhead of the naive
data parallelism becomes worse.
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