
International Journal of Innovative
Computing, Information and Control ICIC International c⃝2019 ISSN 1349-4198
Volume 15, Number 3, June 2019 pp. 1177–1191

APPROACH OF INTEGRATING BEHAVIOUR-DRIVEN
DEVELOPMENT WITH HARDWARE/SOFTWARE CODESIGN

Mohammad Alhaj1, Gilbert Arbez2 and Liam Peyton2

1Faculty of Engineering
Al-Ahliyya Amman University

Amman 19328, Jordan
m.alhaj@ammanu.edu.jo

2School of Electrical Engineering and Computer Science
University of Ottawa

800 King Edward Avenue, Ottawa, Ontario K1N 6N5, Canada
{ garbez; lpeyton }@uottawa.ca

Received September 2018; revised January 2019

Abstract. Using typical approaches in designing embedded systems to manage the spec-
ification and design of the hardware and software is not suitable in today’s projects. In
this paper, we propose a model-driven approach to integrate Hardware/Software codesign
with Behaviour-Driven Development. Hardware/Software codesign approach allows the
hardware and the software to be designed and implemented concurrently and optimizes
the project design constraint, such as performance and cost. Behaviour-Driven Develop-
ment spurs project stakeholders to collaborate to ensure the right software is developed to
meet their needs and ensures that all project participants communicate in the same lan-
guage. The approach exploits the advantages of each approach and provides the ability to
describe the behaviour of the software as executable user stories in a Hardware/Software
codesign environment. The approach is evaluated using a renewable energy project in
collaboration with a private company in Canada to build a system for autonomous load
management of self-forming renewable energy nanogrids.
Keywords: Embedded systems, Behaviour-Driven Development, Hardware/Software
codesign, Test-driven development, Nanogrid systems, Agile software

1. Introduction. Agile software development methodologies have gained acceptance in
the today’s market [1]. As opposed to delivering one large software code at the end of the
project like the waterfall approach, the software development process in agile methodolo-
gy provides simple client approved incremental software product releases as soon as they
are ready. A set of principles that support software development using agile methodology
is described in [2]. These principles promote for continuous communication and collabo-
ration between project stakeholders to manage the software development [3]; exchanging
user stories to describe system behavior from the perspective of users; using test-driven
approach to delivering software releases incrementally [4].

Embedded systems are characterized as of being heterogeneous where different soft-
ware and hardware technologies and platforms may operate. Hardware and software are
tailored to perform a specific task within a larger and complicated environment. Hard-
ware/Software (HW/SW) codesign is used, in embedded computing, to allow the hardware
and the software to be designed and implemented together and optimize the project de-
sign constraint, such as performance and cost. There is typically limited attention to
developing user interfaces and the focus is mainly on software functional specifications

DOI: 10.24507/ijicic.15.03.1177

1177



1178 M. ALHAJ, G. ARBEZ AND L. PEYTON

defined at the architectural level [4]. However, due to the growing importance of software
development in embedded systems, stakeholders are exploring agile software development
methodologies as being highly adaptive and iterative based on a collaborative team [5].
Behavior-Driven Development (BDD) is an emerging methodology which describes the
behavior of the system as executable user stories. It focuses on how the system behaves
for the users that interact with the system and ensures that all project participants com-
municate in the same language. BDD promotes Test-Driven Development (TDD) where
automated test cases are used to drive software development [6]. It simplifies translation
between software development language and the language of the user’s domain.
This paper extends, updates, and provides more detail on earlier research results p-

resented at the conference in [7]. In this paper, we extend the background and related
work (Section 2); we describe in detail the architecture and process of integrating BDD
with the HW/SW codesign approach (Section 3); we also present and analyze the results
of a different case study from the conference paper, called load management user story
(Section 4). The framework exploits the advantages of each methodology and provides the
ability to describe the behaviour of the software as executable user stories in an HW/SW
codesign environment. The approach is evaluated using a renewable energy project in
collaboration with a private company in Canada to build a system for autonomous load
management of self-forming renewable energy nanogrids.
The paper is organized as follows: Section 2 presents the background and related work;

Section 3 presents an overview for our proposed approach; Section 4 presents a case study
of self-forming nanogrid system; Section 5 presents the testing results; and Section 6
presents the conclusion and future work.

2. Background and Related Work. Software development methodology organizes and
structures the work of developing a software system into tasks that are performed at differ-
ent stages of the software development process. The early traditional methodologies were
relying on heavily initial requirements, detailed and documented stages of planning, rigid
and consecutive phases of development. The most widely used is the waterfall methodol-
ogy [9] where consecutive phases of software development and design flow like a waterfall.
These phases are conception, initiation, analysis, design, implementation, testing, deploy-
ing and maintenance. The V-model [10] is an extension of waterfall where the phases of
the development are associated with their phases of testing. Also, Capability Maturity
Model (CMM) [11] is with five-level processes: initial, managed, defined, quantitatively
managed and optimized.
The agile software development methodology became more accepted and adopted in to-

day’s software business market and was able to replace the traditional one. This is due to
its simplicity, flexibility and the ability to meet the changes in the business requirements
and evolution of technologies. There are many examples of agile methodologies support-
ing iterative software development process in today’s market including Rational Unified
Process (RUP) [12], an iterative software development process; eXtreme Programming
(XP) [13], where small groups work together to iteratively produce the code; Scrum [14],
an agile development framework where large processes are broken down into small pieces
of user stories; Test-Driven Development (TDD) [15], a software development process that
relies on test cases; and BDD [16].
HW/SW codesign is a methodology for combining the work of software and hardware

development teams for complex electronic systems which integrate both software and
hardware [17]. There has been work to apply HW/SW codesign in various practices and
case studies such as management systems [18], image processing [19] and artificial neural
networks [20].



APPROACH OF INTEGRATING BDD WITH HW/SW CODESIGN 1179

With more than 1.5 billion people being out of electricity mainly in the rural areas, it
is a challenge to build and maintain a sustainable and robust power delivery network by
extending the electrical grid due to cost issues [21,22]. To overcome challenges of grid de-
velopment, several research projects were proposed. In [23], a promising project proposed
a solution using a scalable, self-forming nanogrid control architecture. The architecture
is used to manage and monitor the electrical power supply to dynamically varying loads
within a local electrical grid which may operate either isolated from, or connected to,
the main grid. In [24], a proposed concept, called energy control centers, utilizes the
emerging installation technologies of energy sources and storages where DC nanogrid in
residential regions is interconnected to traditional AC utility grid. The proposed concept
is an alternative future system solution for improving energy consumption and optimizing
power management. In [25,26], DC Bus Signaling (DBS) is used to control nanogrid sys-
tems through prioritizing and scheduling load shedding. DBS strategy is used to convey
the nanogrid information based on the level of the DC bus. Another approach in [27]
introduces hybrid photovoltaic/diesel generation systems to supply a remote power plant
using new control devices that maintain the optimum and balance energy flows.

In summary, it is obvious that the works above have addressed some features that
are similar to our work. The architecture of embedded systems is characterized as of
being heterogeneous since different software and hardware technologies and platforms may
operate. It is considered to be complex since their components are forming a monolithic
behaviour, where each component could operate for a distinct purpose, and interactions
between components could be restricted to certain service points. The whole system will
not function unless most or all of the components are working [4]. The major advantage
of our proposed approach compared to the others is that it is using BDD agile software
methodology that can be used to resolve designing complexity by performing HW/SW
testing procedures early and frequently at different level of architecture abstractions. The
adopted BDD methodology has a behavior driven approach [8] to ensure the system is
validated against the complex set of scenarios that must be satisfied [3]. It is also a
model-driven [28] in terms of the software solution generated. Our proposed approach is
used to help the development teams to work concurrently and avoid any delay might be
caused by the slow working progress of some teams and used to verify the correctness of
integrated parts of the system at different system development stages.

3. Approach Overview.

3.1. Building testing environments using HW/SW codesign. The proposed mod-
el-driven approach uses a closed loop testing environment principle that systemically
develops and tests the hardware and software testing scenarios. It is used to separate the
requirement concerns and provide concurrent testing environments that allow different
development teams to operate separately and not to interfere with each other.

Figure 1 describes the process of building the testing environments in our proposed
approach. Usually, user requirements of a project are provided in a form of documents
to describe the functional and non-functional requirements of the system. Based on these
requirements, user stories are created where there is a simplified description of the software
feature from an end-user point view. A user story can be represented in a textual format
using natural language, or graphical format using behaviour modeling languages, e.g.,
UML activity or flow chart.

Based on HW/SW codesign concept, our proposed approach supports three testing
environments (as in Figure 1).



1180 M. ALHAJ, G. ARBEZ AND L. PEYTON

a) System Testing Environment provides the ability to test and validate the developed
software in a real hardware environment. It contains the hardware grid such as the
Printed Circuit Boards (PCBs), processors and other artifacts. The captured user
stories are used to define the system configuration to build system testing environments.
They are also used for developing the software and for generating testing scenarios.
BDD methodology is applied within the HW/SW codesign approach to test and

validate both the software and hardware of the system where further changes can be
applied to the user requirement document.

b) Software Testing Environment provides the ability to test the software modules in-
dependently from the hardware. Testing stubs are used to simulate the behaviour of
the hardware APIs. Initially, the developed software in the system environment is
migrated and deployed in the software environment; then, BDD methodology is used
to validate the behavior of developed software using testing scenarios.

c) Hardware Testing Environment provides the ability to test the measures of the hard-
ware components independently of the software modules. Testing scenarios captured
previously in the system environment are used to validate the behavior of the hardware
components. The testing focuses on individual hardware component not an end to end
testing.

Figure 1. Architecture and process of the testing environments

Notice that our proposed approach allows to build multiple environments of software
modules and hardware components. This helps the developer teams to migrate and test
the software and the hardware at different levels of architecture abstraction and then
integrate them again after completing the tests.

3.2. Creating testing scenarios using Behaviour-Driven Development (BDD).
Agile software methodology, such as BDD, can be used to resolve designing complexity by
performing HW/SW testing procedures early and frequently. The target is to build user
stories and validate them with respect to testing scenarios. Each user story is validat-
ed by multiple of testing scenarios which capture combinations of system configuration



APPROACH OF INTEGRATING BDD WITH HW/SW CODESIGN 1181

elements and alternative behaviour paths. The flow of alternative paths is described by
traversing time-based states. Theoretically, there are an infinite number of combinations
that can be captured. However, in practice we do not use the whole combinations of
system configuration elements because it causes redundant testing scenarios. A template
of testing scenario is described in Table 1. To standardize writing testing scenarios, we
use a template described by D. North in [16] based on three directives.

a) Given: represents the initial context of the scenario. The initial context is defined
using input parameters which are assigned or compared with constants.

b) When: represents the timestamp of an event occurrence or decision node during the
testing scenario workflow.

c) Then: represents an action to be done after every event occurrence.

Table 1. A template of testing scenario using BDD

Given param1, param2, . . . , paramN

Sequence At t0: When < event Occurence1 >
Then: < action1 >

At t1: When < event Occurence2 >
Then: < action2 >

...
At tN: When < event OccurenceN >

Then: < actionN >

4. Case Study: Behaviour-Driven Development Self-Forming Nanogrid Sys-
tem. In this section, we describe a collaborative project with Solantro Semiconductor
Inc. to design a self-forming nanogrid system. Our objective is to apply a BDD [8] with-
in HW/SW codesign to develop an autonomous load management software that can be
embedded in power architecture owned by Solantro to intelligently manage load demands
to the power supply [22].

Figure 2 describes the architecture of the nanogrid system in [29]. A collection of
individual photovoltaic bank (PV1, . . . , PVN) and battery bank (B1, . . . ,BN) are con-
nected through inverters to the Intelligent Distribution Panel (IDP) with a load bank
(L1, . . . ,LN). Solantro has established a hierarchy of control functions [29] to supply AC
electrical power to dynamically varying loads within a local electrical grid [30], which may
operate either isolated from, or connected to, the main grid. The system is using shedding
loads based on priority from lowest to highest to maximize utility when constrained by the
availability of supply. The higher priority control maximizes power usage by optimizing
power consumption of loads to run as little as possible from batteries.

The IDP controller is embedded in the power architecture of the IDP panel and forms
point of interfacing to the local/other networks, user interfaces and portals. It is respon-
sible for:

a) Participating in power optimization strategies by allowing interaction with external
and internal devices;

b) Monitoring voltage, frequency, phase, and power of the main grid, PV panels, batteries
and loads;

c) Connecting and disconnecting the PV panels, batteries and loads with the main gird
according to safety, regulatory, and policy direction;

d) Providing a secured granular view of actual loads and giving the user the opportunity
and obligation to configure the system using IDP portal.



1182 M. ALHAJ, G. ARBEZ AND L. PEYTON

Figure 2. The architecture of the self-forming nanogrid system

4.1. HW/SW codesign testing environments. We created three testing environ-
ments based on our proposed approach, as described in the previous section.

• System Testing Environment: It is a black box testing that requires a complete and
integrated system of both software and hardware to evaluate whether it complies
with user requirements. The produced results are presented using IDP portals in a
form of real-time signals, for example, the grid voltage or the open/close state of the
relay.

• SWTesting Environment: It is a white box testing which validates only the developed
software, while the behaviour of hardware components is simulated using testing
stubs. The software behaviour of each process in the nanogrid system is tested by
an SW module testing procedure, as in Figure 3.
a) The load management testing is used to evaluate the load shedding behaviour of

the nanogrid system.
b) The data analysis testing is used to evaluate the behaviour of the modules that

handle the computational functionality and produce the nanogird system state
measures, such as voltage, current and power.

c) The data acquisition testing is used to evaluate the behaviour of the modules that
handle raw data acquisition from the hardware and opening/closing relays.

• Hardware Testing Environment: it is a black box testing which validates the be-
haviour of hardware components. The produced output is viewed on electrical in-
struments such as the oscilloscope. Software test drivers, including IDP controller
modules, can also be used to send inputs to the hardware components and verify
their behavior.

4.2. SW module testing procedure. We use a multi-process architecture running on
Linux OS to develop the nanogrid software, as in Figure 3. This improves the software



APPROACH OF INTEGRATING BDD WITH HW/SW CODESIGN 1183

Figure 3. The structure of the testing procedures

performance by distributing the software operations between the processes. It also re-
duces the chances of process wait time in cases of synchronous messaging between the
software and the hardware component. We also introduced shared memories and signaling
mechanisms to allow the three processes to interrupt and communicate with each other
during the operation. Shared memories contain data structures used to pass data between
the processes. When the software is executed, the program starts three processes at the
same time. These processes are:

• The Data Acquisition process: A low-level process that is mainly responsible for
communicating with the hardware by reading the raw data, i.e., hexadecimal sam-
ples, from the HW component buffers and stores it into the Raw Data structures. It
also handles the operation of opening/closing the IDP relays.

• The Data Analysis process: A mid-level process that is responsible for the main com-
putational functionality by reading the raw data from the shared memory obtained
by the Data Acquisition process and calculating the values that reflect the state of
the nanogrid system necessary for controlling and monitoring (such as voltage, cur-
rent, frequency, real and reactive power and power factor pf). The nanogrid state is
saved in the Nanogrid State Data Structures.

• Load Management process: A top-level process that is responsible of monitoring
and controlling the system behaviour. The calculated values, obtained by the data
analysis process and stored in the shared memory, are used to handle the system
logic. Additional shared memory serves for interprocess communication with the
low-level Data Acquisition process to open and close relays.

4.3. Behaviour specified by user story. The target is to build user stories of nanogrid
system operations and validate them with respect to testing scenarios. Each user story is
validated by multiple of testing scenarios which capture combinations of alternative paths
and system configuration.

Figure 4 describes the user stories of self-forming nanogrid power system. The initial
user story is the dark start when the system starts up in the morning with no energy
available in the nanogrid. PV panels are illuminated one at a time as the sun rises. As
energy becomes available batteries are charged and loads are connected. Next, the load
management user story describes the process of system load monitoring by connecting
and disconnecting the load relays based on the voltage and frequency of the grid. When



1184 M. ALHAJ, G. ARBEZ AND L. PEYTON

Figure 4. User stories of self-forming nanogrid power system

an under voltage occurs due to the drop of the illumination, the system will progressively
shed loads as the State of Charge (SoC) of the batteries depletes. The highest priority
loads will continue to be powered until the SoC of the batteries reaches the lower safe limit
for the batteries used. Lower priority loads will be powered until the nanogrid voltage falls
below their specified shut-off thresholds. When an over voltage or under/over frequency
occurs, the system re-starts up with energy available from the PV panels or batteries.
The PV panels are illuminated as the sun rises. As the alternative current is present on
the nanogrid, batteries are charged.
In this paper, we will present load management user story, as in Figure 5. The IDP

controller continuously handles connecting/disconnecting loads to the grid by checking
grid voltage and frequency with respect to connect/disconnect voltages defined in the
configuration file. The controller also handles three protective scenarios: a) when grid
voltage goes below v min2 (216 volt) for more than 2 second, it opens the relays of the
batteries; b) when grid voltage exceeds v max2 (264 volt) for more than 50 msecond, it
opens all the relays of IDP; and c) when the grid frequency is below 57 Hz or exceeds 63
Hz, it opens all the relays of the IDP.

4.4. System configuration. The configuration file defines the list of variables that is
used to initialize the software, such as the PVs, Batteries and Load parameters, and
the GPIO pin numbers. Figure 6 describes the xml configuration file with the following
sections.

• Properties of PVs and Batteries: bus number, port number, frequency, Root Mean
Square (RMS) voltage and current, real and reactive power.

• Properties of Loads: bus number, port number, load status, voltage of connect and
disconnect, time to connect and disconnect.

• System properties: sampling rate, baud rate, bit per word, number of buses, number
of ports and system status.

• General-Purpose Input/Output (GPIO) pin numbers.
• Levels of grid voltage: shutdown, minimum, nominal, maximum voltages.

4.5. Load management testing scenario. In this section, we capture a sample of
testing scenario from load management user story (as in Section 4.4). Figure 7 describes
testing scenario with three loads: two batteries and one PV. Initially, there is enough



APPROACH OF INTEGRATING BDD WITH HW/SW CODESIGN 1185

User Story Load Management
Actors Main Grid, Set of Loads, Set of Batteries, Set of PVs
Input Grid Voltage > 0

Sequence 1. Begin
2. Loop through all loads

a. Check Grid voltage
b. If Grid voltage > Connect voltage,

i. Close load relay.
c. If Grid voltage < Disconnect voltage,

i. Open load relay.
d. If Grid Voltage < v min2 for greater than 2 second

i. Open the all Battery relays
e. If Grid Voltage > v max2 for greater than 50 msecond

i. Open all relays
ii. End

f. If Grid Frequency < 57 Hz or Grid Frequency > 63 Hz
i. Open all relays
ii. End

Output Open all Battery relays or Open all IDP relays

Figure 5. User story of Load Management process



1186 M. ALHAJ, G. ARBEZ AND L. PEYTON

Figure 6. System configuration of self-forming nanogrid project

power produced such that VGRID > 0 volt and FGRID = 60 Hz. At t1, t2, t3 and t4,
VGRID = 242 volt. At t4, FGRID = 65 Hz.

5. Testing Results.

5.1. System testing environment. The system testing environment was performed in
a lab where the IDP panel was assembled and the developed IDP controller was deployed
in Linux OS using Beagle Bone Black (BBB) micro-processor [31]. Several voltage sources
were connected to represent PV panels in the nanogrid system. Batteries, however, were
already installed. In order to display the output, a Laboratory Virtual Instrument En-
gineering Workbench (LabView) application [32] is also connected to interact with the
system and view relay status and real-time measures for the main grid, PVs, Batteries
and Loads such as voltage, current, frequency and power.



APPROACH OF INTEGRATING BDD WITH HW/SW CODESIGN 1187

Given PV = {PV1}, Battery = {B1, B2}, Load = {L1, L2, L3}, VGRID

= 242 volt, FGRID = 65 Hz, xml config file.
Sequence 1. Initially VGRID > 0

2. At t1: when VGRID > v connect1
a. then, close the relay of the L1.

3. At t2: when VGRID > v connect2
a. then, close the relay of L2

4. At t3: when VGRID < v disconnect3
a. then, open the relay of L3

5. At t4: when FGRID = 65
a. then, open the relays of L1, L2, L3

b. open the relay of B1, B2

c. open the relays of PV1

Figure 7. Load management testing scenario

Table 2. Results of system testing scenario

Input Output
Grid

voltage
Grid

frequency
Relay status

of {L1, L2, L3}
Relay status
of {B1, B2}

Relay status
of {PV1}

Initial > 0 60 {Open, Open, Open} {Close, Close} {Close}
End 242 65 {Open, Open, Open} {Open, Open} {Open}

The results of system testing scenario of the load management user story are described
in Table 2. It validates the results of the testing scenario where initially, grid voltage is
greater than zero, the frequency is 60 Hz, the PV and batteries are connected to the IDP
while the loads are disconnected. At the end of the process, the grid voltage is 242 volts
with 65 Hz frequency and all the PVs, batteries and loads are disconnected.

5.2. SW testing environment. We perform three SWmodule testing procedures: Load
Management Testing, Data Analysis Testing and Data Acquisition Testing. In the SW
testing environment, the developed software is implemented and tested without the hard-
ware being installed. Instead, three types of test stubs are created to replace the behaviour
of the hardware during the testing. The test stubs come in a form of text files.

a) Input files represent the hardware components that provides data to the IDP controller,
i.e., Analog to Digital Converters (ADCs).

b) In/Out files represent the hardware components where the IDP controller reads, writes
or updates data, i.e., relays.

c) Log files record events and messages that occur during the testing.

The testing results described in Table 3 were produced by running the SW module
testing scenarios. The load management testing describes the top level behavior of the
nanogrid system. The data analysis testing describes the values of input parameters in a
form of 2500 sample array in hexadecimal format. In order to produce the output mea-
sures, the input samples are first converted from hexadecimal to decimal. The converted
decimal samples are then calibrated, and the RMS value is calculated. The data acquisi-
tion module, not shown in the table, describes the values of input parameters in a form
of a continuous reading of 12-bit binary, the size of the ADC buffer. The values of the
output parameters are stored into a form of 2500 sample array in hexadecimal format.



1188 M. ALHAJ, G. ARBEZ AND L. PEYTON

Table 3. Results of SW module testing scenario

(a) Load management testing
Input Output

Event
Grid voltage

(Volt)
Grid

frequency (Hz)
Relay status

of {L1, L2, L3}
Relay status
of {B1, B2}

Relay status
of {PV1}

Initial > 0 60
{Open, Open,

Open} {Close, Close} {Close}

t1 242 60
{Close, Open,

Open} {Close, Close} {Close}

t2 242 60
{Close, Close,

Open} {Close, Close} {Close}

t3 242 60
{Close, Close,

Open} {Close, Close} {Close}

t4 242 65
{Open, Open,

Open} {Open, Open} {Open}

(b) Data analysis testing
Input Output

Event Grid voltage (2500 samples in hex)
Grid voltage

(Volt)
Grid frequency

(Hz)

Initial
ae8, ae6, ae2, add, ada, ad9, ad6, ad0, acd,
acc, aca, ac4, ac0, ac0, abe, ab9, ab5, ab2,
ab0, aab, aa6, aa3, aa2, a9f, a9a, . . .

> 0 60

t1
a8d, a88, a87, a84, a7f, a7a, a77, a75, a71,
a6c, a69, a68, a65, a5f, a5b, a59, a56, a51,
a4c, a4a, a48, a43, a3e, a3a, a39, . . .

242 60

t2
a75, a71, a6c, a69, a68, a65, a5f, a5b, a59,
a56, a51, a4c, a4a, a48, a43, a3e, a3a, a39,
a36, a30, a2c, a2b, a27, a21, a1d, . . .

242 60

t3
a56, a51, a4c, a4a, a48, a43, a3e, a3a, a39,
a36, a30, a2c, a2b, a27, a21, a1d, a1b, a19,
a13, a0e, a0b, a08, a04, 9fe, . . .

242 60

t4
a39, a36, a30, a2c, a2b, a27, a21, a1d, a1b,
a19, a13, a0e, a0b, a08, a04, 9fe, 9fb, 9fa, 9f6,
9f0, 9eb, 9e9, 9e6, 9e1, . . .

242 65

5.3. Hardware testing results. In hardware testing, we use lab instruments to display
the input/output signals producing the hardware components involved in the testing
scenarios. Table 4 describes a sample of the signals produced, by the main grid and relays
of the Loads, Batteries and PVs during the scenario testing of load management user
story. The voltage samples of the grid is an input; while the relays of Load L1, Battery
B1 and PV1 are output. Notice that at t1, the Load L1 is connected to the grid and at t4
all relays are disconnected from the grid.

6. Conclusion and Future Work. We proposed an approach that integrates classic
HW/SW codesign with the Behavior Driven Development (BDD) as an agile software
methodology. The approach is used in complex systems to coordinate the development
teams to work concurrently and avoid any delay might be caused by the slow working
progress of some teams and help to verify the correctness of integrated parts of the system



APPROACH OF INTEGRATING BDD WITH HW/SW CODESIGN 1189

Table 4. Result of HW testing scenario

Input Output

Event Grid voltage
Relay status

of {L1}
Relay status

of {B1}
Relay status
of {PV1}

Initial

t1

t2

t3

t4

at different system development stages. The approach exploits the advantages of BDD
also to provide the ability to describe the behaviour of the software as executable user
stories in HW/SW codesign environment, and ensure target systems are validated against
a complex set of scenarios that must be satisfied. The approach is applied on a renewable
energy project in collaboration with a private company in Canada to build a system
for autonomous load management of self-forming renewable energy nanogrids. The load
demand of the system can be intelligently managed using an embedded controller within
the nanogrid architecture. Various challenges at the development phase were easily solved
by using the proposed agile approach, such as HW/SW delays, 50 Hz signal noise, antenna



1190 M. ALHAJ, G. ARBEZ AND L. PEYTON

effect, zero crossing. In the future, we are planning to validate the proposed approach
using other projects.

Acknowledgment. The authors would like to thank Solantro Semiconductor Inc. for
giving us an opportunity to work closely with their team and use their facilities. We
would also like to thank NSERC for funding this research with an engage grant.

REFERENCES

[1] K. Petersen, C. Wohlin and D. Baca, The waterfall model in large-scale development, Lecture Notes
in Business Information Processing, 2009.

[2] Manifesto for Agile Software Development, http://www.agilemanifesto.org/.
[3] I. Lazar, S. Motogna and B. Parv, Behaviour-driven development of foundational UML components,

Proc. of the 7th International Workshop on Formal Engineering Approaches to Software Components
and Architectures (FESCA 2010), 2010.

[4] D. Dahlby, Applying agile methods to embedded systems development, Journal of Software, vol.41,
pp.101-123, 2004.

[5] Accelerating Embedded Software Development via Agile Technologies, Technology Institute, 2013.
[6] K. Beck, Test-Driven Development: By Example, Addison-Wesley, 2003.
[7] M. Alhaj, G. Arbez and L. Peyton, Using behaviour-driven development with hardware-software

co-design for autonomous load management, The 8th International Conference on Information and
Communication Systems (ICICS), Irbid, Jordan, 2017.

[8] M. Cohn, User Stories Applied: For Agile Software Development, Addison-Wesley, 2009.
[9] K. Petersen, C. Wohlin and D. Baca, The waterfall model in large-scale development, International

Conference on Product-Focused Software Process Improvement, 2009.
[10] L. Cimasoni, The Use of Methodologies for the Development of IT Projects, Bachelor Thesis, Business

Informatics, University of Fribourg, Fribourg, Switzerland, 2009.
[11] M. C. Paulk, B. Curtis, M. B. Chrissis and C. V. Weber, Capability maturity model, version 1.1,

IEEE Software, vol.10, no.4, 1993.
[12] P. Kruchten, The Rational Unified Process: An Introduction, Addison-Wesley Professional, 2004.
[13] K. Beck, Extreme Programming Explained: Embrace Change, Addison-Wesley, 2004.
[14] K. Schwaber, SCRUM development process, in Business Object Design and Implementation, 1997.
[15] D. Astels, Test Driven Development: A Practical Guide, Prentice Hall Professional, 2003.
[16] D. North, Introducing BDD, http://dannorth.net/introducing-bdd/.
[17] J. Teich, Hardware/Software Codesign: The Past, the Present, and Predicting the Future, 2011.
[18] T.-Y. Lee, P.-A. Hsiung and S.-J. Chen, A case study in hardware-software codesign of distributed

systems – Vehicle parking management system, Proc. of the International Conference on Parallel
and Distributed Processing Techniques and Applications, Las Vegas, NV, USA, 1999.

[19] R. Joost and R. Salomon, Hardware-software co-design in practice: A case study in image processing,
The 32nd Annual Conference on IEEE Industrial Electronics, DOI: 10.1109/IECON.2006.347790,
Paris, France, 2006.

[20] J. Parri, J.-M. Desmarais, D. Shapiro, M. Bolic and V. Groza, A case study on hardware/software
codesign in embedded artificial neural networks, Applied Computational Intelligence in Engineering
and Information Technology, vol.1, pp.225-237, 2012.

[21] S. Rolland and G. Glania, Hybrid Mini-Grids for Rural Electrification: Lessons Learned, 2011.
[22] D. Li, S. Poshtkouhi, O. Trescases, R. Orr and B. Bacque, Intelligent AC Distribution Panel for Real-

Time Load Analysis and Control in Small-Scale Power Grids with Distributed Generation, Ottawa,
2015.

[23] B. Bacque, T. K. Gachovska, R. Orr, N. Radimov, D. K. Li, S. Poshtkouhi and O. Trescases, Solving
the last mile problem for energy self-forming nano-grids, IEEE Canada International Humanitarian
Technology Conference (IHTC2015), Ottawa, 2015.

[24] D. Dong, I. Cvetkovic, D. Boroyevich, W. Zhang, R. Wang and P. Mattavelli, Grid-interface bidirec-
tional converter for residential DC distribution systems – Part One: High-density two-stage topology,
IEEE Trans. Power Electronics, vol.28, no.4, 2013.

[25] J. K. Schonberger, Distributed Control of a Nanogrid Using DC Bus Signalling, Ph.D. Thesis, Uni-
versity of Canterbury, 2006.

[26] J. K. Schonberger, R. Duke and S. D. Round, DC-bus signaling: A distributed control strategy for
a hybrid renewable nanogrid, IEEE Trans. Industrial Electronics, vol.53, no.5, 2006.



APPROACH OF INTEGRATING BDD WITH HW/SW CODESIGN 1191

[27] W. Dalbon, M. Roscia and D. Zaninelli, Hybrid photovoltaic system control for enhancing sustainable
energy, Power Engineering Society Summer Meeting, Chicage, USA, 2002.

[28] P. Fraternali, S. Comai, A. Bozzon and G. T. Carughi, Engineering rich Internet applications with
a model-driven approach, ACM Trans. the Web (TWEB), vol.4, no.2, 2010.

[29] T. Vandoorn, J. D. Kooning, B. Meersman and L. Vandevelde, Review of primary control strategies
for islanded microgrids with power-electronic interfaces, Renewable and Sustainable Energy Reviews,
vol.19, pp.613-628, 2013.

[30] B. Nordman, K. Christensen and A. Meier, Think globally, distribute power locally: The promise of
nanogrids, Computer, vol.45, no.9, pp.89-91, 2012.

[31] BeagleBoard.org – Black, http://beagleboard.org/BLACK, [Accessed 1 January 2016].
[32] Laboratory Virtual Instrument Engineering Workbench (LabView), https://www.ni.com/en-lb/shop

/labview.html, [Accessed 1 January 2016].


