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ABSTRACT. In this work a novel strategy based on compressive sensing (CS) is pro-
posed to improve conventional root-MUSIC for direction-of-arrival (DOA) estimation of
coherent signal sources. It provides a new attempt to construct covariance matriz of
sources. Steering matriz of signals is converted into the form of trigonometric according
to e?? = cos@+ jsin@, and then the real and imaginary parts are respectively compressed
into a sparse framework by fast Fourier transform (FFT). Orthogonal matching pursuit
(OMP) is adopted to be reconstruction algorithm and a random matrix is used as the
measurement matriz. In the course of recovering steering matriz, because of the differ-
ence of “sparsity”, the real and imaginary parts are not recovered in the meantime by
assigning a same value to sparsity. So covariance matriz is changed into a new matriz
with a feature of full-rank and the number of mazimum eigenvalues of covariance matriz
equals the number of sources. Consequently, coherent signals are estimated effectively.
Simulation results show that this strategy provides a significant performance in estimat-
ing the DOAs of coherent signals compared to conventional root-MUSIC, and we get a
low estimation bias at closely angle separation. Meanwhile, a lower RMSE is gained at
low SNR and small snapshot number.

Keywords: Direction-of-arrival (DOA), Coherent signals, Compressive sensing (CS),
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1. Introduction. Direction-of-arrival (DOA) estimation is an active research area in
modern signal processing whose purpose is to be able to distinguish closely single sources
in the case of considerable noise [1]. Some well-known existing classical algorithms include
Beamforming [2], MUSIC [3], and ESPRIT [4], and they played important roles in solving
high resolution problems.

As a derivation of MUSIC algorithm, root-MUSIC utilizes rooting method that a more
accurate estimation performance is obtained. However, due to the multipath propagation,
there are many coherent signals among the emitted signal sources [5]. Numerous studies
have demonstrated that conventional root-MUSIC is not applicable to estimate coherent
signals, and there exists a great deviation between the estimated and initial data. Why are
coherent source signals hard to estimate? It has been proved that correlation of emitted
signals leads to rank deficient of covariance matrix, which makes the signal-noise subspace
suffer serious performance degradation [5]. Early works on de-correlation DOA estimation
methods hold the idea that the larger number of the sensors is, the higher resolution is.
Under this circumstance, a sufficient number of sensors are needed for achieving the goal.
However, lavish spending on hardware may get more kicks than halfpence.

Many remarkable methods for coherent signals estimation were presented on the basis
of those classical algorithms. Huarng et al. [6,7] proposed a real-valued variant of spectral
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MUSIC via a unitary transformation. Haardt et al. derived a unitary ESPRIT, which
exploited the centro-Hermitian property of forward and backward covariance matrix, and
increased estimation accuracy was gained with a reduced computational burden [7,8].
Gershman and Haardt developed the unitary ESPRIT using estimator bank approach
[9,10]. Reference [11] proposed an ESPRIT-Like algorithm based on Toeplitz matrix
theory to estimate the coherent signals. In reference [12], Qian et al. put forward a novel
unitary root-MUSIC, which utilized the information contained in the root estimator bank
to eliminate the abnormal DOA estimator and determine the final DOA estimation result.
A good resolution is obtained by using spatial smoothing in [13], of which the covariance
matrix was reconstructed into a new matrix with a feature of full-rank.

There is a similarity of these representative algorithms that covariance matrix of signals
is reconstructed by some methods, such as Toeplitz matrix and unitary matrix. Conse-
quently, the covariance has a feature of full-rank and coherent sources are estimated
successfully. However, these methods are relatively complex especially unitary matrix
construction that covariance matrix needs to be changed dramatically. Toeplitz method
is often used with fourth-order-cumulant (FOC) algorithm so that a good anti-noise per-
formance can be obtained. However, it usually spends plenty of time on computation.
There also exists rank deficient when using spatial smoothing (SS) method, which leads
to loss of array aperture, even though coherent sources are estimated effectively. Hence,
we have been working to search a simple strategy that can provide a good performance
for estimating DOAs of coherent signals.

Compressive sensing (CS) [14-16] theory is used for estimating DOA of signals in many
recent works, and applications of CS-based algorithms for DOA estimation possessed good
ability to overcome closely spaced sources, few snapshot and sensor numbers requirement
and mitigate the effect of coherent signals [17,19]. Bilik [17] proposed a DOA estimation
algorithm for multiple sources via spatial compressive sensing (SCS), which used dynamic
sensor arrays and allowed exploitation of the array orientation diversity. The experimental
result showed that a good super-resolution was obtained by this algorithm and the problem
of poor estimation at endfire can be addressed effectively. Carlin et al. [18] derived a
DOA method exploited Bayesian compressive sensing for narrow band signals. In that
paper, the estimation performance of DOAs was determined directly by the voltages at
the output of the receiving sensors. Northard et al. [19] put forward an optimization
algorithm based on SCS for DOA estimation via an expected likelihood (EL) method,
and a new application of EL method was derived to investigate the SCS bias signals.
Simulations showed that DOA estimation accuracy was significantly improved by this
method without the requirement for intensive regularization parameter tuning. In [20],
Rossi et al. derived a sparse localization framework to reduce the number of transmit
and receive elements needed. The authors supplied a bound to the coherence of the
measurement matrix to make it satisfy the isotropy property. It is observed that a high
resolution can be provided by this virtual array with a small number of antenna elements.

Taking the features of array signals into account, we propose a novel strategy based on
CS for improving root-MUSIC. Steering matrix is converted into trigonometric form via
e/’ = cosf + jsinf so that it is decomposed into real part and imaginary part. These
two parts are respectively compressed by using FFT and we would observe the “sparsity”.
In our work OMP [21] is used to recover steering matrix. Due to the difference between
sparsity of real part and imaginary part, the initial data are not recovered simultaneously
if it assigns the same value to the sparsity. Consequently, the covariance matrix will be
changed into a new matrix with a feature of full-rank, as well as through computation
we find that the number of maximum eigenvalues in the covariance matrix equals that of
emitted sources, so that coherent sources are estimated successfully.



A NOVEL STRATEGY FOR IMPROVING ROOT-MUSIC 2077

Our strategy has dramatically reduced complexity of constructing full-rank covariance
matrix compared with other de-correlation methods and seems to be the first attempt to
directly combine CS with e conventional root-MUSIC. Tt is a fairly simple implementation
for mitigating estimation biases of coherent signals in the presence of 1-D ULA. Simulation
results show a goal of good resolution is achieved at limited number of sensors and a stable
root mean square error (RMSE) is obtained at low signal to noise (SNR).

2. Related Work. Compressive sensing is regarded as a paradigmatic shift in the way
information is represented, transmitted and recovered [22]. It overcomes the bottleneck
of conventional Nyqusit sampling theorem and leads to a reduction of sampling rate in a
largely extent [14-17,20]. The theory is referred to two parts of work, sparse representation
and signal reconstruction.

2.1. Sparse representation.

Lemma 2.1. Consider a discrete signal f with a length of N in a certain space, and it

is written with a linear combination of a base vector ¢; (i =1,2,---, N).
N
f= Z?/}iai =¥ (1)
i=1
where ¥ and o respectively satisfy
U = [, 1o, Yw] (2)
o =[ag, a9, an]” (3)

It is named K-sparse if there exist K (K < N) nonzero coefficients of a. Here K
15 reqarded as “spsrsity”. The information of f can live at most K dimensions rather
than N [22]. Let ¥ denote sparse basis, and © (© = WT f) represents the sparse (or
projection) coefficient vector. Both © and f are equivalent expression in the view of ¥
domain and time domain. Assume there exists a measurement matric ® of size M x N
(M < N), which is independent of the signal f. We need to guarantee the information
quality when the signal is reduced from M-D to N-D. It has been demonstrated that f
can be recovered perfectly if ® satisfies restricted isometry property (RIP) [22,23]. Let'Y
denote the measurement vector, written as

Y=30 =0T f=Af (4)

Here the length of Y s far less than that of initial data f. The thought of CS is that
signal [ is recovered with rare data' Y and a measurement matriz ® that are known.

2.2. Signal reconstruction. Signal reconstruction is another important aspect of CS.
There are noted methods including greedy algorithms, such as matching pursuit (MP)
[24] and orthogonal matching pursuit (OMP). Convex optimization algorithm is another
reconstructed method, such as basis pursuit (BP) [14,25] and gradient projection for
sparse reconstruction (GPSR) [26]. Although a better performance is obtained by convex
optimization algorithms, OMP is used in our work relying on its lower complexity, and
it provides a faster convergence than MP for non-orthogonal dictionaries. Generally,
the idea of OMP is that residual is orthogonal to the selected atom using Gram-Schmidt
method in each iteration. All the selected atoms are linearly independent so that repeated
selection is avoided.

OMP: Define a Hilbert space H, and assume a dictionary D (D € H). Assume a
discrete signal f (f € H). The initial index set Dy satisfies Do = (). The initial residual
isag. DuetoY = ®WUTf, let oy =Y. The sparsity equals K. OMP process is presented
in [27], which is as follows.
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(1) Consider V.= ®¥T. Compute mazimum value of inner product (represented with
An) between the measurement vector v; selected from V' and the initial residual cvy. Find
out the corresponding vector vy,. Let n denote iteration times, whose initial value equals
to 1.

Ap = argmax [< ap_1,0; >[5, |y (5)
(2) Update the index set D,, and the selected column space V,

D, =D, ;U{\} (6)

V, = [anl, U/\n] (7)

(3) Compute projection fn with least square method and make sure a minimum residual
15 obtained.

fu = argmin|lag = Vo f1l, (8)
(4) Update residual
= ag = Vo fa (9)

(5) Let n =n+ 1. Repeat the cycle until n > K.

It is shown that at each iteration Y is optimally projected to selected column wvector,
and the residual o is required to be the minimum. Consequently, the recovered signal fn
can be approximated gradually to initial signal.

3. Signal Model and Proposed Strategy.

3.1. Signal model. According to [12,28,29], the signal model is established.

Lemma 3.1. Assume a uniform linear array (ULA) composed of N isotropic sensors,
there are P (P < N) coherent narrowband source signals, from directions (0y,0s,- -+, 0))
impinging on array in the far filed. The N X 1 signal vector is

X(t) = AB)S(t) + N(#) (10)

Here S(t) is the source signal vector consisting of P different incidence signals, A(t)
denotes the steering matriz consisting of steering vectors, and G(t) represents a Gaussian
noise vector which is generated by each array element with a zero mean and variance of

o%. They are respectively defined as

S(t) = [s1(t), s2(t), -+, sp(1)]" (11)
A(0) = [a(0h),a(0s), - ,a(0p)] (12)
G(t) = [g1(t), g2(), -+, gn (D))" (13)

Let \ denote the carrier wavelength, and the i-th steering vector a(0;) can be expressed
as

a(gi) _ [1, e—j?ﬂsiné‘id/)\, . ,e—jQW(N—l)sineid/)\]T (14)
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3.2. The proposed strategy. The novel strategy is presented in this part, and we have
named it OR-MUSIC. Tt derives from CS and de-correlation DOA estimation theory. The
thought of this strategy is constructing a full-rank covariance matrix and make sure that
its number of maximum eigenvalue equals that of signal sources. The derivation process
is as follows.

Proof: According to that e’ satisfies e™? = cosf £ jsin§, e 727 (N-Dsin0d/X ]| he
converted into trigonometric form.

e7I2m(IN=1)sin0d/A — ¢og[97(N — 1) sinfd/\] — jsin[27(N — 1) sin 0d/ )] (15)

We extract the real part of Formula (15), that is cos[2mr(N — 1)sinfd/A]. By that
analogy, the real part of vector a(f;) is described as

are = {1,cos(2wsinOd/\),--- ,cos[2mr(N — 1)sin0@/A]} (16)

According to OMP theory, let y = ®¥"ag,. Here ® is a random matrix of size M x N
(M > N), and the sparse matrix ¥ is obtained by doing FFT of an N x N identity
matrix. Meanwhile, FFT is applicable to ar. so that the sparsity K can be observed,
which is represented with K. Let ¢ denote iteration tines, whose initial value is 1.

Let Ay denote the initial index, which satisfies Ay = (. The initial residual is . Here

ay =1y (17)
OMP is applied to age in the following.
(1) Define I' = ®¥”, and then work out inner product between selected vector ¢;

in the index set I' and oy by (22), which is represented as \;. Meanwhile, find out the
corresponding vector ¢y,.

A\t = argj:{ré&}?iﬁ < a1, 95 > | (18)

(2) Update the index set A; and the index set T’
A=A UMY (19)
Ly = [Ta i oal] (20)

(3) Ordinary least square (OLS) is used as (21), and the approximate signal a; is
obtained in the following.

a; = argmin ||ag — T'yage||, (21)
(4) The updated residual o is obtained, and «; satisfies (25).
oy =Y — Ftdt (22)

Repeat the iteration process (1) to (4) until condition ¢ > K is met. Let ar. denote
the recovered signal of age.

Similarly, we extract the imaginary part of
and satisfies

e 72mr(N=1)sin0d/X " which is denoted with apy,

am = {0,sin(27sin Od/\), - - - ,sin[27(N — 1) sin0/)\]} (23)
We set the sparsity equal to K, and use ar, to represent the approximate signal of ar,
through CS, so the steering vector is expressed as

a(0;) = [ape — jarm) . i=1,2,--- P (24)
According to (12), that is
A(6) = [a(61), a(62), -, a(0p)] (25)
The new array output X (¢) satisfies
X(t)=AS(t)+ N(t) =) _as; + N(t) (26)
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The new covariance of X (t) is denoted as
. L . N\ H
R=E [X(t)X(t)H] — AR, (A) + 02Ty (27)

Here R, = E[S(t)S(t)"] is the covariance matrix of source signal vector. Let L repre-
sent the snapshot number, and then the covariance matrix is denoted as

Z (28)

We compute MUSIC spectrum by performing an eigen-decomposition on the matrix
R, and the space spanned by N? eigenvectors produces into two disjoint subspaces: those
are signal-noise subspaces [11].

h |

E; =[e,ea,- e (29)

En = [epi1,€pio, - ,en2] (30)

Here E, represents the signal subspace consisting of P eigenvectors, and Ep is the

noise subspace consisting of N2-P eigenvectors, and then MUSIC spectrum is defined as
1

P(O) = — (31)

(a)" ExEya

Reference [30] presents root-MUSIC in detail. Let C = EnEX, where C is a hermitian
matrix, so Formula (31) is written as

PO) = —— (32)
(@) Ca

Let m denote the sequence number of sensors. According to (14), the denominator of
(32) is written as

N N N-1
N Z Zeg2ﬁdm 1) s1n0//\C —j27rd(n—1)sin0//\ — Z Ce—j?ﬂdlsiné‘/)\ (33)
m=1 n=1 [=—N+1
Let ¢, = Y. Cp,. Here ¢ represents summation of the [-th diagonal’s elements in
n—m=I[
matrix C. According to the Z-Transform theory
N-1
D(z) = Z az, 7 = |z|e e (34)
I=—N+1

There exist exact zeros under the condition of |z;| = 1, and the final estimation angel
is computed as follows

A~ . A
; = — arcsin (ﬂ arg(zi)> (35)

Here 6; is the final estimation performance.

We make sure that array matrix R has a full-rank feature in this strategy that the prob-
lem of loss of array aperture generated by the spatial smoothing is solved. Due to there
being P maximum eigenvalues of matrix R, coherent signals are estimated effectively.
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4. Simulations. This section presents numerical experiments to illustrate the perfor-
mance of OR-MUSIC. In the first experiment, compare the estimation results between
OR-MUSIC and root-MUSIC through estimating the same sources. Next, in the sec-
ond experiment we analyze the performance of estimation bias under the condition of
different angle separation by comparing with some other de-correlation algorithms (such
as Toeplitz-ESPRIT, Spatial-smoothing FOC and L1-SVD). In the third experiment we
present root mean square errors (RMSEs) of different methods from the perspective of
SNR, sensor number and snapshot number.

Experiment 1. Accuracy analysis. Consider a uniform linear array with an inter-
element spacing of A\/2 and N = 12 isotropic sensors. There are three narrowband signal
sources #; = —10.37, f; = —10.26, 3 = 35.54 in far-field impinging on the array, and
their frequency equals 7/4. Let snapshot number L = 1024. Let SNR = 0dB. We set
the sparsity K equal to 5 in this work. Let zeromean white Gaussian be the noise. We
compare the estimation results between the OR-MUSIC and root-MUSIC, which is shown
in Figure 1.

OR-MUSIC o0t-MUSIC
2 ; . ‘ 2 :
18 18
16 16
14 14
£ 12} £12
3 100578 10.767 35562 2 32,6335 -19.2645 20,5332
T 2 1
£ 08 E 08f 1
c <]
= osf | “ 06
04f | 0.4
02 | 0.2}
0 L L L L | 1 | L L | 1 0 1 1 1 1 1 1 1 1 1
80 60 40 2 0 20 40 60 80 80 60 40 20 0 20 40 60 80
Angle /° Angle /°
(a) Estimation performance of OR-MUSIC (b) Estimation performance of root-MUSIC

FI1GURE 1. Comparison of estimation results between OR-MUSIC and root-
MUSIC (source number = 3, SNR, = 0dB, sensor number = 12)

Next SNR is decreased to —10dB and we observe the estimation result, which is shown
in Figure 2.

From Figure 2 we find that our strategy provides an accurate result. Additionally, it is
shown that a good performance is also obtained even though at low SNR condition.

Experiment 2. Bias analysis. Estimation biases are presented in this part at
different angle separation. Let SNR = 0 and 10 dB respectively. Consider a uniform linear
array with an inter-element spacing of A\/2 and N = 24 isotropic sensors. A narrowband
signal impinges on the array (6 = 20.15), whose frequency is equal to /4. Let snapshot
number L = 1024. There exists another source with the same parameters. Their angle
separation 6, satisfies [5°,10°,15°,20°,25°, 30°] respectively. Work out absolute values
between experimental separations and initial data #,.. Zero-mean white Gaussian is used
to be noise, and the results are shown in Table 1 and Table 2.

It is shown that a more accurate result is obtained by our strategy at low angle sep-
aration situation. However, if the separation satisfies 6, > 10°, the bias in our work is
larger than that of other decorrelation algorithms. From these two tables we also observed
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that the biases in other algorithms are affected greatly with the change of SNR, but our
approach seemingly provides a more stationary performance. The biases from Table 1
and Table 2 are presented intuitively in Figure 3.

Experiment 3. RMSE analysis. Work out RMSEs, which is defined as (36), so
that we can find that different conditions have different impacts on the experimental

. OR-MUSIC ) rool-MUSIC
g - -10.1926 10.7166 85,5679 %I.E_ -32.6335 -19.2645 20.5332
g 0.8 g 0.8
=80 =60 =40 =20 A”s:lje " 20 40 G0 B0 -B0 =60 -40 =20 Angio ¥ 20 40 G0 B0
(a) Estimation performance of OR-MUSIC (b) Estimation performance of root-MUSIC
FiGure 2. Comparison of estimation performance between OR-MUSIC
and root-MUSIC (source number = 3, SNR = —10dB, sensor number =
12)
TABLE 1. Estimation bias at different separation (SNR = 0dB, sensor num-
ber = 24, snapshot number = 1024)
Angle Maximum bias /° (SNR = 0dB)
separation | OR-MUSIC Toeplitz-ESPRIT Spatial smoothing FOC L1-SVD
5° 0.8749 1.0065 2.3303 1.3765  1.2500
10° 0.4684 0.2730 0.2764 0.1730  0.8500
15° 0.4272 0.1500 0.1491 0.2535  0.8500
20° 0.4092 0.1840 0.1457 0.2183  0.1500
25° 0.2528 0.1555 0.1019 0.2460  0.2500
30° 0.2315 0.1500 0.1074 0.2760  0.1500
TABLE 2. Estimation bias at different separation (SNR = 10dB, sensor
number = 24, snapshot number = 1024)
Angle Maximum bias /° (SNR = 10dB)
separation | OR-MUSIC Toeplitz-ESPRIT Spatial smoothing FOC L1-SVD
5° 0.8830 0.9224 1.1270 1.3050  1.1500
10° 0.4454 0.2985 0.0350 0.1650  0.8500
15° 0.4138 0.1550 0.0285 0.1713  0.4500
20° 0.4042 0.1300 0.0270 0.1525 0.1500
25° 0.2492 0.1555 0.0085 0.1480 0.1500
30° 0.2301 0.1260 0.0030 0.1515 0.8500
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performance.

1 N
RMSE = ﬁz

n=

2

~

0, — 0,

(36)

Here 6, represents the estimated performance and 6, is the initial data respectively. In
this part, 200 Monte Carlo experiments are carried out to calculate the RMSE in terms
of SNR, sensor number, and snapshot number.

1) Assume a uniform linear array with an inter-element spacing of A/2 and 10 isotropic
sensors. There is one narrowband signal (f# = 50.15) in the far-field impinging on the
array, and frequency is equal to /4. The snapshot number is L = 1024. Let SNR =
[—15,—10,—5,0, 5, 10, 15]dB. We use zero-mean white Gaussian to be noise. The relation
between RMSE and SNR is shown in Figure 4.

RMSE wersus different DOA
3 T T T

= <= - OR-MUSIC
25| = A= - Toeplitz ESPRIT
~ -~ - Spatial smoothing
FOC
2r = - - L1-SVD 1
w 1.5 .
73]
=
o
1
osk ' 4
R 1 3|
o— = - ) o il
0 B~ =
L 1 L Il 1 1
-15 -10 -5 0 5 10 15
SNR /dB

FIGURE 4. RMSE performance versus SNR (incidence angle = 50.15°,
snapshot number = 1024, sensor number = 10)

It is observed from Figure 4 that a lower RMSE is obtained by our work under the
condition of SNR < —10dB. When the SNR satisfies the condition of —10dB < SNR <
0dB, the RMSE of our work is approximately equal to those of other algorithms, so we
can get the conclusion that our strategy gets a good estimation performance at a low SNR
situation.

2) Consider a uniform linear array with an inter-element spacing of A\/2 and N =
[10, 12,14, 16, 18, 20, 22, 24] isotropic sensors. There is one narrowband signal (6 = 50.15)
in the far-field impinging on the array, and frequency is equal to 7/4. The snapshot
number satisfies L = 1024. Let SNR = 0dB. We use zero-mean white Gaussian to be
noise. The relation between sensor number and RMSE is shown in Figure 5.

We find from Figure 5 that the RMSE in our work is just smaller than that of L1-SVD,
and the performance is no better than that of Toeplitz-ESPRIT, Spatial smoothing and
FOC, even though a good stability is obtained with our strategy.

3) Consider a uniform linear array with an inter-element spacing of A/2 and 10 isotropic
sensors. There is a narrowband signal (# = 50.15) in the far-field impinging on the array,
whose frequency is equal to /4. The number of snapshots is L = [100, 200, 300, 400, 500,
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600, 700, 800, 900, 1000]. Let SNR = 0dB. We use zero-mean white Gaussian to be noise.

The relation between snapshot number and RMSE is shown in Figure 6.

From Figure 6 we find that the RMSE in the OR-MUSIC is no more than those in other
algorithms when snapshot number satisfies L < 200. Therefore, our strategy provides a
good estimation performance at a low snapshot number situation.

5. Conclusions. A novel strategy based on compressive sensing is proposed in this work
for improving conventional root-MUSIC. The steering matrix is compressed and recovered
by CS that covariance matrix is changed into a full-rank matrix, of which the number of
maximum eigenvalues equals that of emitted sources. Consequently, coherent sources are
estimated significantly. In contrast to other de-correlation methods, the proposed strategy
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reduces the complexity of calculation. Simulation results show that a good accuracy has
been obtained at close space, and a stationary performance of estimation bias is gained
at a low SNR. Lastly, we can also get a low RMSE at a small snapshots number situation.
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