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ABSTRACT. In this paper, in order to meet the requirements of speech authentication for
low amount of data and low complexity in the bandwidth resource-limited speech com-
munication environment, we present a new robust perceptual audio hashing algorithm
combined with the G.729 coding standards. This algorithm eztracts the linear predic-
tion residual (LPR) as feature of speech perceptual in the processing of the G.729 speech
codec, and extracts the perceptual hash values. The experimental results illustrate the
effectiveness of the proposed algorithm in terms of better robustness and discrimination
to common speech transmission operation, low time complexity and high efficiency of the
proposed algorithm as well, and it can effectively distinguish between the permissible op-
erating and malicious tampering. In the meantime, it has a higher precision for tamper
localization.

Keywords: Speech authentication, Perceptual hashing, G.729 codec, Linear prediction
residual, Tamper localization

1. Introduction. Speech communication is one of the most basic, direct and important
ways in communication. Compared with the analog signal, the digital transmission and
storage of speech signals not only have good reliability, anti-jamming capability and the
characteristic of rapid transformation, but also are convenient, flexible and easy to keep
secret. In order to guarantee the safety and reliability of speech communications, speech
authentication must be proposed [1,2]. The traditional digest authentication algorithm
has poor robustness and its requirement for resource is very high, its computation is
huge, and it cannot be effectively applied to speech mobile communication terminal also.
Through verification of the integrity and authenticity of multimedia information content,
perceptual audio hashing authentication [3] technology protects multimedia information,
makes multimedia audio information services more secure and reliable, and can be used
to realize retrieval and authentication of content integrity of audio and broadband audio
signal. Therefore, it has been widely researched.

Speech perceptual feature extraction is the key of speech perceptual authentication,
and the existing algorithms about speech perceptual feature extraction and processing
are based on the human ear psychoacoustics model. The speech perceptual feature ex-
traction is mainly for the logarithmic spectrum coefficient [4], linear prediction coefficient

2159



2160 Q. ZHANG, Z. YANG, Y. HUANG, S. YU AND Z. REN

(LPC) [5], linear frequency spectrum [6], Mel-frequency cepstral coefficients (MFCC) [7],
and so on. Chen et al. [8] first obtain the speech Mel cepstral coefficients, and then
use the nonnegative matrix decomposition to analyze spectrum coefficient. M. Pavithra
et al. [9] using sparse kernel principal component analysis to maximize the reduction
of the model data, the original data can reduce the amount of data, thereby improving
operation efficiency. In [10] Hilbert transform spectrum estimation method is used to
implement robust speech feature extraction, and construct hash function perception. In
order to improve the algorithm reliability in the transmission processing, it is combined
with the speech coding standards. Jiao et al. [11] proposed a speech perceptual hashing
algorithm in compressed domain based on MELP coding standards, Wu and Kuo [12]
proposed a content authentication algorithm based on CELP coding standards, Wu and
Kuo [13] proposed a content authentication algorithm based on ITU G.723.1 speech cod-
ing standards, and Jiao et al. [14] proposed a speech content authentication algorithm
based on G.729 speech coding standards. All of the above-mentioned perceptual hashing
algorithms based on speech coding standards which extract the related parameters as
perceptual values in the process of encoding are of robustness to common speech trans-
mission operations. However, the robustness of them to the white Gaussian noise and
the low-pass filter operations is poor and the data volume is huge, and time complexity
is high. In addition, the detection and localization of the malicious attacks or tamper of
them are not accurate.

From what has been discussed above, in order to reduce the amount of data and the
time computational complexity of the perceptual hashing algorithm, we improve the ro-
bustness of the common operations of the algorithm, realize detection and localization
of the speech during transmission under malicious attacks or tamper. In this study, a
robust perceptual audio hashing algorithm based on linear predication residual of G.729
speech codec is proposed. G.729 coding scheme is the telephone bandwidth of speech
signal coding standards. G.729 protocol uses CS-ACELP algorithm which is based on the
CELP coding model. This algorithm extracts the linear prediction residual as perceptual
feature value in the processing of the encoding. On the one hand, small data volume of
perceptual feature makes it easy to process the digest of the perceptual hashing function,
and ensures that the perceptual hashing can satisfy the requirements of the nature of
the hash function. On the other hand, this algorithm has low time complexity, and can
realize accurate detection and localization in the processing of speech transmission by
malicious tamper. It can satisfy the requirements real-time, robustness and security of
speech information in the mobile computing environment.

The rest of this paper is organized as follows. Section 2 describes the basic theory of
G.729 speech coding standards and linear prediction residual (LPR). A detailed Speech
Perceptual Hashing Authentication scheme is described in Section 3. Subsequently, Sec-
tion 4 gives the experimental results as compared with other related methods. Finally,
we conclude our paper in Section 5.

2. The Preliminaries.

2.1. G.729 speech coding standards. The G.729 speech coding standard was pub-
lished in 1996 by the ITU-T 8 kbps/s speech coding protocol [15], using conjugate struc-
ture algebraic code excited linear prediction (CS-ACELP) method to 8 kbps bit rate
speech coding, the coding method based on the code excitation linear prediction. The
G.729 speech coding standard mainly consists of seven parts: (1) Pre-processing; (2)
Linear prediction analysis and quantization of the LPC coefficients; (3) Open loop pitch
estimation; (4) Close loop pitch estimation; (5) The search of adaptive codebook; (6)
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The search of fixed codebook; (7) Codebook gain quantization. The G.729 belongs to
low speech coding, and it can solve the insufficient bandwidth problem in the processing
of speech transmission and reduce the coding rate in the case of ensuring high speech
quality.

2.2. Linear prediction residual. The basic idea behind linear prediction is forming a
value of a speech clip (frame) with a weighted linear combination of several past linear
predictors. Linear prediction analysis, the most effective method of speech signal analysis,
can be applied to estimation of many basic speech parameters, such as the pitch period,
and spectrum signature. To speech signal s(n), p-order linear prediction can be defined
as follows:

§(n):Zais(n—i)+r(n), i=1,2,---,p (1)

where § is predicted value of s(n), r(n) is the linear prediction residual, a; is the linear
prediction coefficient, and p is the order of prediction.

In the linear prediction coding, in order to improve the robustness of the linear pre-
diction coefficients, there are many representing methods equivalent to linear prediction
coefficients. There are many derived parameters generated from linear prediction param-
eters, such as linear prediction cepstrum coefficients (LPCC) [16], linear spectrum pair
(LSP) [14], linear spectral frequency (LSF) [11], and linear prediction residual (LPR)
[17,18].

In this study, the speech signal s(n) which is regarded as the convolution of the glottis
excitation signal e(n) and the channel impulse response signal v(n) is as follows:

s(n) = e(n) ® v(n) (2)

The main idea behind linear prediction analysis of speech signal is relationship be-
tween the speech sampling signal s(n) and the glottis excitation signal e(n), which can
be represented with difference equation, as follows:

s(n) = Z ars(n — k) + Ge(n) (3)

where p is the order of linear predictor, a; is the prediction coefficient, and G is the
amplitude factor. The first item on the right is the output of p-order linear predictor
assuming that G is 1 in the ideal state, bringing it down as follows:

$(n) = Z ags(n — k) (4)

According to (4), the LPR signal R(n) can be expressed as (5).

R(n) = s(n) — §(n) = s(n) — Zaks(n — k) =e(n) (5)

In order to achieve the smallest prediction error, the minimum mean square error
criterion is usually used in the solving process of linear prediction coefficient ai. The
Levinson-Durbin algorithm is used in this study. The mean square error is expressed as

follows.
+00

E, =7 ls(n) —3(n)’ (6)
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Namely
E,=FE {e(n){s(n) ) as(n - k)H =7(0) = > _ apr(k) (7)
Due to . ) ) .
El*(n)] = E {s(n) — ) aks(n - k)] ] (8)
assuming -
WZO’ k=0,1,--+,p (9)

substituting (5) into (9) gets (10)

E |s(n)s(n —k) =Y ars(n)s(n — k)] =r(k) =Y _ ar(k—j) (10)

In (10)
r(k) = Els(n)s(n — j)] (11)
The r(k) in (11) means the autocorrelation function of speech signal sequence. Solve
(7) and (10) to get linear prediction coefficients ay, whose matrix equations form can be
expressed as follows.

r(0) r(1) .. r(p) 1 E,
r(1) r0) ... r(p—1) —ay 0
r(2) r(1) oo r(p—2) —as | = | O (12)
r(p) r(p _ 1) . . 7"(.0) —.ap 0

Substituting ay, the linear prediction coefficients, which can be achieved by using the
Levinson-Durbin algorithm, into (5), then get the linear prediction residual signal.

3. The Proposed Scheme.

3.1. Speech perceptual feature value extraction. Compared with general audio sig-
nals, the data volume of speech signal is small, first of all. The G.729 firstly pre-processes
the input signal, and then conducts 10-order linear prediction analysis for every 10ms as
a frame. Considering that the order of linear predictor filter in G.729 is too low, there
are still a lot of channel information in residual signal.

In order to reduce the complexity and authentication data volume of algorithm, the
algorithm proposed in this study extracts the linear prediction residual as speech percep-
tual feature value in the processing of the G.729 coding. The speech perceptual feature
value extraction process is shown in Figure 1.

The detailed steps of the speech perceptual feature value extraction process are showed
as follows.

Step 1: Pre-processing. First of all, the G.729 pre-processes the input speech signal,
including signal calibration and high-pass filtering, and, as the main part in the G.729

Speech Residual
signal = : i
g Pre . Prz?me and w| TP analysis - lnve‘rse signal
processing windows filtering

FIGURE 1. Speech feature extraction block diagram
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coding pre-processing, the signal calibration makes the signal amplitude reduced by half,
thereby reducing overflow probability in the fixed point operation. The high-pass filtering
is aimed to filter out the low frequency part of signal, to improve the useful high frequency
spectrum, to reduce the edge effects and to eliminate noise. The high-pass filter is a 2-
order filter of pole/zero type with a cutoff frequency of 140 Hz. Associate signal calibration
with high-pass filter, and the transfer function is as follows.

H(z) = 0.46363718 — 0.927247052 " + 0.463637182 2
- 1 —1.90594652=! + 0.9114024 22

where after H(z) filtering of signal is called the pre-processing signal, denoted by S(n).

Step 2: Windowing and framing. G.729 uses 10-order linear prediction filter to obtain
the pre-processing signal S(n) by pre-processing, and adds window function to speech
signal S(n) in order to ensure the short-time of the linear prediction analysis, and for
after the pre-processing of speech signal S(n) adding window function. The window
function consists of two parts: the first part is a half of the hamming window, and the
second part is a quarter of the cosine function window, as follows.

(13)

399
cos [M] n =200, ,239

0.54 — 0.46 cos (2”—”) n=0,---,199

W(n) = (14)

159
The speech after windowing is:
Sw(n) =W(mn)S(n), n=0,---,239 (15)

Frame the speech signal S, (n) after windowing, and speech signal for per frame T; can
be obtained, as follows.

T, ={Ti(k)i=1,2,--- ,n,k=1,2,--- 1} (16)

where [ is the length of every frame, and n is the number of frames.

Step 3: Linear prediction residual feature extraction. Conduct linear prediction anal-
ysis to each frame 7T; speech signal. Use Levinson-Durbin algorithm to get results during
linear prediction analysis and regard linear prediction residual as the speech perceptual
feature with the extraction process shown in Table 1.

TABLE 1. The process of the LPR features extraction

Input: the each frame speech signal of frame and window
Output: the each frame LPR signal

1 fori=1top

R = r(0)
i1 o
3 k; = r(z)—Za;_lr(i—j) /R“J, 1<i<p
j=1
agﬂ =k;
forj=1toi—1
(6] _ [i—1] [i—1]
a;’ = aj; + k; i

© 0~ & Ot =
@
=
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The R is the linear prediction residual in Table 1, the superscript is the number of
predictor order, and k; is reflection coefficient or partial correlation coefficient.

3.2. Hashing generation. In the analysis of speech signal, the simple structure and
small data volume of binary data make it easy to be analyzed and operated. Therefore,
we quantify the extracted perceptual features using median quantization, as follows.

H():{(l) ZE”)ZI? lsn<l (17)
nf<RkR 1<n<L
where R is the median of R(n), and L is the number of frames.
Conduct median quantization for residual signal R(n) to obtain perceptual hash se-
quence H(n). The hash generation process in the algorithm proposed in this study is
shown in Table 2.

TABLE 2. Hashing generation of proposed algorithm

Input: the speech feature value
Output: the perceptual hashing sequence

1 R =median(R); R is median of sequences R

2 fori=1toL
3 ifRG)>R
4 H(i)=1
5 else

6 H(i)=0
7 end

8 end

3.3. Transmission and matching. In the speech authentication, the first problem
needed to be considered is transmission. Adoption of different transmission models has a
great influence on precision and accuracy of authentication. The algorithm proposed in
this study is a perceptual audio hashing authentication algorithm based on linear predic-
tion residual parameters of G.729 speech coding standards. Extracting the linear predic-
tion residual as the authentication data at the encoding end can send authentication data
and bit stream at the same time. Authentication data can be obtained from bit stream
according to the relevant decoding operation at the decoding end. On the sending side,
the algorithm extracts the linear prediction residual parameters in the G.729 encoding
process to obtain perceptual hash H; through calculating, and then sends it with speech
coding bit stream. At the receiver, the algorithm extracts the linear prediction residual
parameters again when receiving bit stream to obtain perceptual hash Hs by conducting
hashing generation. Calculate the difference between the perceptual hashes on the two
sides to get the absolute value, hash mathematical distance Dy, as the match value. This
is defined by:

Dy(Hy, Hy) =Y |hi(m) — ha(m)|, m=1,2,---,n (18)

Comparing the match value above and the match threshold in (18), if the match value
is less than the match threshold, it will pass; if the match value is greater than the match
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threshold, it will not pass, as follows.

{ NoPass Dp(i)>1 1<i<n

Pass Dyiy <t 1<i<n (19)

where n is the number of speech clips, and 7 is the match threshold in (19).

The algorithm proposed in this study, combined with G.729 coding standards, extracts
the linear prediction residual as the perceptual feature in the processing of coding in
encoder, sends it with coding bit stream at the same time, extracts linear prediction
residual again through different kinds of usual operations in transmission, calculates the
mathematics distance between the two linear prediction residual perceptual features to
get the match value, and finally compares the match value and the match threshold to
get the authentication result.

The block diagram of the algorithm proposed in this study is shown in Figure 2.

Transmission

Speech ! :
: i channel
signal [ 729 { I G.729
— e R e ;
encoding , : decoding
i Content i
v . preserving | 4
Feature ! operations Feature
extraction | 1 o tampering | extraction
hl i h2 Pass
» Distance @
No pass

F1GURE 2. Proposed algorithm block diagram

4. Experimental Results and Analysis.

4.1. Experimental environment. Experiments in this study use the TIMIT speech
library, including 400 clips at the length 4 s, and conduct encoding and decoding through
the G.729 coding standards. Followings are experimental speech parameters: the coding
standard is G.729, the sampling rate is 8000 Hz, the channel is mono, the sampling
precision is 16 bits and the format is WAV.

The experimental hardware platform is Inter Core i3, 2450M, 2 G, 2.27 GHz, and
software environment is the MATLAB R2012b under Windows 7 OS.

4.2. Bit error rate, false accept rate and false reject rate. This paper uses binary
perceptual hash sequences to calculate, the evaluation parameter is bit error rate (BER),
percentage of error bits in total bits, and the calculation formula is as follows.

i:zNzlum ~ hy) ZNE(’“ & hy)
BER = - == (20)

where N is the number of speeches, and h; and hy are respectively perceptual hashing in
(20).

The error recognition rate, which is also known as false accept rate (FAR), is the
proportion of speech of different perceptual contents accepted by the system mistakenly.
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The calculation formula is as follows.

rane) - [ ;f(am, 7)o = [

—oo0 OV 2T

T 1 —(a—w)?
e 202

(21)

where 1 is the mean, and o is the standard deviation in (21).

The error rejection rate, which is also known as false reject rate (FRR), is the propor-
tion of speech of the same perceptual content rejected by the system mistakenly. The
calculation formula is as follows.

FRR(r) = 1 —/_;f(am,a)da —1 —/

oo OV 2T

—(a—p)
e 2.7 da

(22)

4.3. Analysis of robustness. Conduct operations such as volume adjustment, resam-
pling, echo added, noise added, cutting, low-pass filtering and MP3 compress. Various
content, keeping operations are shown in Table 3.

The BER of content keeping operation above is shown in Table 4.

As shown in Table 4, the biggest BER of different kinds of content keeping operations
above is below 0.28.

The average BER under various content keeping operations of the algorithm is shown
in Table 5.

As shown in Table 5, the average BE R values of the algorithm proposed under various
operations described in Table 3 are less than the ones of the LSP algorithm [11], implying
the better robustness of the algorithm proposed to the content keeping operations.

TABLE 3. Operating means and corresponding level

Operating means Level
Adjust volume 150%
Adjust volume 50%
Resampling 8-4-8 bits/sample
Resampling 8-16-8 bits/sample
Addition echo 300 ms, 10%
Addition noise 50 dB

Cut 300 ms
Low-pass filter 4 kHz 6-order
MP3 compress 32 kbps
MP3 compress 128 kbps

TABLE 4. The BER of the proposed algorithm

Parameters Average BER | Standard deviation | Width BER
Increase volume 0.1168 0.0290 0.2300
Decrease volume 0.1678 0.0411 0.2800
Resampling (4-8) 0.0041 0.0033 0.0175
Resampling (16-8) 0.0007 0.0014 0.0100
Addition echo 0.2208 0.0218 0.2800
Addition noise 0.0421 0.0204 0.1375
Cut 0.0653 0.0091 0.0950
Low-pass filter 0.1155 0.0212 0.2050
MP3 compress (32 kbps) 0.0887 0.0144 0.1315
MP3 compress (128 kbps) 0.0479 0.0103 0.0819
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TABLE 5. Average BER of the proposed algorithm

Operating means Proposed algorithm | LSP algorithm
Parameters Average BER
Increase volume 0.1168 0.0664
Decrease volume 0.1678 0.0229
Resampling (4-8) 0.0007 0.0018
Resampling (16-8) 0.0041 0.0112
Addition echo 0.2208 0.2211
Addition noise 0.0421 0.0486
Cut 0.0653 0.0655
Low-pass filter 0.1155 0.1048
MP3 compress (32 kbps) 0.0887 0.2352
MP3 compress (128 kbps) 0.0479 0.3447

FRR-FAR Curve FRR-FAR Curve

= : : * : —+—FAR 5 i ; : : : :
1[|' i L L f L T 10' i 1 Il i L T
0 0.1 0.2 03 0.4 05 06 0.7 0 0.1 02 03 0.4 05 06 07
Threshold Value Threshold Value
(a) Proposed algorithm (b) LSP algorithm

FiGUrE 3. The algorithm FFRR-F AR curves

The FRR-F AR curve of the LSP algorithm is shown in Figure 3(b), and the FRR-F AR
curve of the proposed algorithm is shown in Figure 3(a).

In Figure 3(a), the perceptual hash is extracted from speeches with the same content,
whose BER values are below threshold 7 = 0.28.

Experimental results show that the curves of FRR and FAR do not intersect, and
the FFRR curve has obvious convergence, and has a relatively broad decision interval.
When the decision threshold 7 is between 0.28 to 0.4, the algorithm can conduct authen-
tication both same speech clips and different clips of speeches accurately, at the same
time, it can conduct authentication among speech clips through content keeping opera-
tions and content malicious attacks, demonstrating that the algorithm proposed has good
discrimination and robustness at the same time. As what can be seen from Figure 3,
the robustness and discrimination of the algorithm in this study are better than the LSP
algorithm.
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4.4. The robustness of white Gaussian noise. The speech signal is easily affected
by noise in the processing of transmission, and the normal distribution curves and F'RE-
F AR curves of algorithm proposed in this study under white Gaussian noise operations
with different SNR are shown in Figure 4 and Figure 5.

Nomnal Probability Plot Nomnal Frobability Plot.‘
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FIGURE 4. Normal distribution curves under addition white Gaussian noise

The SNR in Figure 4(a) is 40 dB, the SNR in Figure 4(b) is 50 dB, and the SNR in
Figure 4(c) is 55 dB. As what can be seen from Figure 4 clearly, the maximum value of the
normal distribution curve under the white Gaussian noise adding different SN R values is
less than 0.28. As what can be seen from Figure 5 obviously, the algorithm proposed in
this study still keeps good robustness and discrimination under the white Gaussian noise
operations adding different SN R values.

4.5. The robustness under low-pass filtering. The operational robustness to low-
pass filtering [8-11] in the existing perceptual audio hashing algorithms is pretty poor.
The normal distribution curves and the FRR-F AR curves of the algorithm proposed in
this study under different cut-off frequency FIR low-pass filtering operations are shown
in Figure 6 and Figure 7.
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FRR-FAR Curve of Addition Noise
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FIGURE 5. FRR-F AR curves under addition white Gaussian noise
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As what can be seen from Figure 6 clearly, the 6-order 2 kHz FIR filter in Figure
6(a), the 6-order 3.4 kHz FIR filter in Figure 6(b) and the 6-order 4 kHz FIR filter in
Figure 6(c), the maximum value of the normal distribution curve under different low-pass
filtering operations is less than 0.28.

As what can be seen from Figure 7 obviously, the algorithm proposed in this study
has good robustness and discrimination under the FIR low-pass filtering operations of
different cut-off frequency and improves robustness of the algorithm for low-pass filtering
operations.

FRR-FAR Curve under Low-pass Filter

0 01 02 03 04 05 06 07
Threshold Value

FIGURE 7. FRR-F AR curves under FIR low-pass filter

4.6. Analysis of discrimination. This paper totally gets 79800 BER data by con-
ducting pairwise comparison between perceptual hashing values from 400 different speech
clips, with normal distribution curves of BE R shown in Figure 8.

The perceptual hash mathematical distance in the algorithm proposed in this study
can be approximately seen as hamming distance. According to central-limit distance,
the BER approximately obeys the normal distribution with mean p = 0.5 and standard
deviation 0 = /1/4N. The length of perceptual hash sequence in the algorithm proposed
in this study is 400, namely N = 400. According to the theoretical calculation, theory
parameters are (g = 0.5, 0 = 0.0250). The parameters of the experimental measuring are
(u = 0.4984, 0 = 0.0252), which is very close to the theoretical values. The FAR curve
drawn is shown in Figure 9.

According to the theory parameter values p and o, the FAR curve is shown in Figure
9 with dotted line, the smaller the FFAR value is, the better the discrimination is. As
what can be seen from Figure 8 and Figure 9, the algorithm proposed in this study has
good discrimination.

According to (21) F AR values of algorithm can be obtained under the different match
threshold 7, as shown in Table 6, and the FAR values are very small. Compared with
the LSP algorithm, the algorithm proposed is worse than the LSP algorithm, but when
7= 0.3, the FAR = 1.9199e-15, which means that if 7 = 0.3, there will be approximately
two speech clips which is wrong in 10 speech clips. So it can meet requirement of the
people who ask for speech perceptual authentication; therefore, the algorithm has good
discrimination.
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TABLE 6. FAR of the proposed algorithm and LSP algorithm

Threshold

T

0.35
0.30
0.25
0.20
0.15

Proposed algorithm | LSP algorithm
FAR
2.0583e-09 1.3858e-09
1.9199e-15 1.1060e-15
3.7610e-23 1.8256e-23
1.5155e-32 6.1069e-33
1.2417e-43 4.0930e-44
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4.7. Tamper detection and localization. The speech signal is vulnerable to illegal
tamper attacks in the processing of transmission. In order to guarantee the reliability
of the speech content, the perceptual audio hashing algorithm should have sensitive and
accurate tamper detection ability. To test sensitivity to content tamper of the algorithm
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proposed, different speeches from the same speaker are used to replace parts in original
speech clips, tampered at the length of about 500 ms. According to the standard sound
speed 600 words per minute, the content of the replacement is about three words. The
experimental cumulative probability curve of the bit-error-rate got from 400 comparisons
is shown in Figure 10 with dotted line, and the experimental cumulative probability curve
of the bit-error-rate got from content keeping operations is shown in Figure 10 with solid
line.
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FIGURE 10. Probability plot of BER

As shown in Figure 10, the two curves separated from each other, meaning that the
algorithm proposed has the ability of tamper detection.

Following is analysis of tamper localization. Due to the binary perceptual hash used
in this algorithm, we can determine whether the information has been tampered or not
by comparing the perceptual hash. Assuming that the perceptual hash of the original
speech signal is h,pj; and the perceptual hash of the tamper speech signal is A, the
determination of tamper localization according to the perceptual hash is as (23) and (24):

horig (Z) = htama 1<i<I (23)

horig (Z) 7é htama 1 S { S [ (24)
where [ is the length of perceptual hash.

If the perceptual hash hg, and hyg, meet (23), it is not tampered. If the perceptual
hash hgig and hygy, satisfy (24), the hy,y, is tampered, and the tamper location is hgm, (7),
and the tamper location can be determined according to (24). The experiment randomly
selects one 4 s speech clip, and randomly replaces three places in it greater than 10
frames. The schematic diagrams of tamper localization perceptual hash in time domain
are shown in Figure 11, the tampered area are areas included in elliptic curves. It can be
seen that the algorithm proposed has the ability of tamper detection, and it can be able
to accurately realize tamper detection and localization at one or more point.

4.8. Analysis of efficiency. The characteristics of the algorithm proposed in this study
are small authentication data, low time complexity and high efficiency. In terms of per-
ceptual hashing algorithm, the algorithm proposed in this study extracted the linear
prediction residual as perceptual feature in the processing of (G.729 codec. The proposed
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TABLE 7. Run time

Algorithm Proposed algorithm ‘ LSP algorithm
Operating means Average run time (s)
File lengths 4s 4s
Platform working frequency 2.27 GHz 2.27 GHz
Feature extraction 0.076473 0.700739
Hashing structure 0.008508 0.007888
Total 0.084981 0.708627

Counts
I
=

3 4 . 5 x10°*
Elapsed Time

FicUure 12. Histogram of authentication time

algorithm in this study greatly reduced the time cost of the extraction of perceptual
feature and the time complexity of the algorithm, and improved the efficiency of the algo-
rithm. The experiment randomly extracted 100 speech clips from the speech library and
did statistics on algorithm running time for totally 100 times and the average run time is
shown in Table 7.

The histogram of authentication time is shown in Figure 12. The authentication time
of the proposed algorithm concentrates from 3.4e-04 s to 3.5e-04 s, and the average au-
thentication time ¢ = 3.5682e-04 s. The authentication time is steady and short, which
means that the proposed algorithm can satisfy the requirement of real-time application.
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5. Conclusions. A robust perceptual audio hashing algorithm combined with G.729
speech coding standards based on linear prediction residual parameters is proposed in
this study. The proposed algorithm extracts the linear prediction residual parameters
as perceptual feature value in the processing of the speech coding, and sends it with
coding bit stream at the same time. At the receiver, when after receiving the speech
bit stream, it extracts the perceptual feature value again and calculates the mathematics
distance of perceptual feature values from both sender and receiver to conduct matching
and authentication. The experimental results illustrate that compared with the LSP
algorithm, the proposed algorithm not only has a good robustness and discrimination
to common speech channel transmission operation, but also has a better robustness and
discrimination under the white Gaussian noise and low-pass filtering operations, and
low time computational complexity, small data volume of the perceptual hashing and
high efficiency. In addition, it can be able to accurately realize tamper detection and
localization at one or more point and satisfy the real-time and robustness requirement of
the existing mobile speech communication.
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